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a b s t r a c t

We establish relations between the bandwidth and the treewidth
of bounded degree graphsG, and relate these parameters to the size
of a separator of G as well as the size of an expanding subgraph of
G. Our results imply that if one of these parameters is sublinear in
the number of vertices of G then so are all the others. This implies
for example that graphs of fixed genus have sublinear bandwidth
or,more generally, a corresponding result for graphswith any fixed
forbidden minor. As a consequence we establish a simple criterion
for universality for such classes of graphs and show for example
that for each γ > 0 every n-vertex graph with minimum degree
( 34 + γ )n contains a copy of every bounded-degree planar graph
on n vertices if n is sufficiently large.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

There are a number of different parameters in graph theory which measure how well a graph
can be organized in a particular way, where the type of desired arrangement is often motivated by
geometrical properties, algorithmic considerations, or specific applications. Well-known examples of
such parameters are the genus, the bandwidth, or the treewidth of a graph. The topic of this paper is to
discuss the relations between such parameters. We would like to determine how they influence each
other and what causes them to be large. To this end we will mostly be interested in distinguishing
between the cases when these parameters are linear or sublinear in the number of vertices in the
graph.
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We start with a few simple observations. Let G = (V , E) be a graph on n vertices. The bandwidth
of G is denoted by bw(G) and defined to be the minimum positive integer b, such that there exists a
labelling of the vertices in V by numbers 1, . . . , n so that the labels of every pair of adjacent vertices
differ by at most b. Clearly one reason for a graph to have high bandwidth are vertices of high degree
as bw(G) ≥ d∆(G)/2e, where ∆(G) is the maximum degree of G. It is also clear that not all graphs
of bounded maximum degree have sublinear bandwidth: Consider for example a random bipartite
graph G on n vertices with bounded maximum degree. Indeed, with high probability, G does not have
small bandwidth since in any linear ordering of its vertices there will be an edge between the first n/3
and the last n/3 vertices in this ordering. The reason behind this obstacle is that G has good expansion
properties (definitions and exact statements are provided in Section 2). This implies that graphs with
sublinear bandwidth cannot exhibit good expansion properties. Onemay ask whether the converse is
also true, i.e., whether the absence of big expanding subgraphs in bounded-degree graphs must lead
to small bandwidth. We will prove that this is indeed the case via the existence of certain separators.
In fact, we will show a more general theorem in Section 2 (Theorem 8) which proves that

the concepts of sublinear bandwidth, sublinear treewidth, bad expansion properties, and sublinear
separators are equivalent for graphs of bounded maximum degree. In order to prove this theorem,
we will establish quantitative relations between the parameters involved (see Theorems 5, 6, and
Proposition 7).
As a byproduct of these relations we obtain sublinear bandwidth bounds for several graph classes

(see Section 4). Since planar graphs are known to have small separators [19] for example, we get the
following result: The bandwidth of a planar graph on n vertices with maximum degree at most ∆
is bounded from above by bw(G) ≤ 15n

log∆(n)
. This extends a result of Chung [8] who proved that any

n-vertex tree T with maximum degree ∆ has bandwidth at most 5n/ log∆(n). Similar upper bounds
can be formulated for graphs of any fixed genus and, more generally, for any graph class defined by a
set of forbidden minors (see Section 4.1).
In Section 4.2 we conclude by considering applications of these results to the domain of universal

graphs and derive implications such as the following. If n is sufficiently large then any n-vertex
graph with minimum degree slightly above 34n contains every planar n-vertex graphs with bounded
maximum degree as a subgraph (cf. Corollary 19).

2. Definitions and results

In this section we formulate our main results which provide relations between the bandwidth, the
treewidth, the expansion properties, and separators of bounded-degree graphs.Weneed some further
definitions. For a graph G = (V , E) and disjoint vertex sets A, B ⊂ V we denote by E(A, B) the set of
edges with one vertex in A and one vertex in B and by e(A, B) the number of such edges.
Next, we will introduce the notions of tree decomposition and treewidth. Roughly speaking, a

tree decomposition tries to arrange the vertices of a graph in a tree-like manner and the treewidth
measures how well this can be done.

Definition 1 (Treewidth). A tree decomposition of a graph G = (V , E) is a pair ({Xi : i ∈ I}, T = (I, F))
where {Xi : i ∈ I} is a family of subsets Xi ⊆ V and T = (I, F) is a tree such that the following holds:

(a)
⋃
i∈I Xi = V ,

(b) for every edge {v,w} ∈ E there exists i ∈ I with {v,w} ⊆ Xi,
(c) for every i, j, k ∈ I the following holds: if j lies on the path from i to k in T , then Xi ∩ Xk ⊆ Xj.

The width of ({Xi : i ∈ I}, T = (I, F)) is defined as maxi∈I |Xi| − 1. The treewidth tw(G) of G is the
minimum width of a tree decomposition of G.

It follows directly from the definition that tw(G) ≤ bw(G) for any graph G: if the vertices of G
are labelled by numbers 1, . . . , n such that the labels of adjacent vertices differ by at most b, then
I := [n− b], Xi := {i, . . . , i+ b} for i ∈ I and T := (I, F)with F := {{i− 1, i} : 2 ≤ i ≤ n− b} define
a tree decomposition of Gwith width b.
A separator in a graph is a small cut-set that splits the graph into components of limited size.
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Definition 2 (Separator, Separation Number). Let 12 ≤ α < 1 be a real number, s ∈ N and G = (V , E)
a graph. A subset S ⊂ V is said to be an (s, α)-separator of G, if there exist subsets A, B ⊂ V such that
(a) V = A ∪̇ B ∪̇ S,
(b) |S| ≤ s, |A|, |B| ≤ α|V |, and
(c) E(A, B) = ∅.
We also say that S separates G into A and B. The separation number s(G) of G is the smallest s such that
all subgraphs G′ of G have an (s, 2/3)-separator.

A vertex set is said to be expanding, if it has many external neighbours. We call a graph bounded,
if every sufficiently large subgraph contains a subset which is not expanding.

Definition 3 (Expander, Bounded). Let ε > 0 be a real number, b ∈ N and consider graphs G = (V , E)
and G′ = (V ′, E ′). We say that G′ is an ε-expander if all subsets U ⊂ V ′ with |U| ≤ |V ′|/2 fulfil
|N(U)| ≥ ε|U|. (Here N(U) is the set of neighbours of vertices in U that lie outside of U .) The graph
G is called (b, ε)-bounded, if no subgraph G′ ⊂ G with |V ′| ≥ b vertices is an ε-expander. Finally, we
define the ε-boundedness bε(G) of G to be the minimum b for which G is (b+ 1, ε)-bounded.

There is a wealth of literature on expander graphs (see, e.g., [15]). In particular, it is known that
for example (bipartite) random graphs with boundedmaximum degree form a family of ε-expanders.
We also loosely say that such graphs have good expansion properties.
As indicated earlier, our aim is to provide relations between the parameters we defined above. A

well-known example of a result of this type is the following theorem due to Robertson and Seymour
which relates the treewidth and the separation number of a graph.1

Theorem 4 (Treewidth→Separator, [20]). All graphs G have separation number

s(G) ≤ tw(G)+ 1.

This theorem states that graphs with small treewidth have small separators. By repeatedly
extracting separators, one can show that (a qualitatively different version of) the converse also holds:
tw(G) ≤ O(s(G) log n) for a graph G on n vertices (see, e.g., [4, Theorem 20]). In this paper, we use a
similar but more involved argument to show that one can establish the following relation linking the
separation number with the bandwidth of graphs with bounded maximum degree.

Theorem 5 (Separator→Bandwidth). For each ∆ ≥ 2 every graph G on n vertices with maximum degree
∆(G) ≤ ∆ has bandwidth

bw(G) ≤
6n

log∆(n/s(G))
.

The proof of this theorem is provided in Section 3.2. Observe that Theorems 4 and 5 together with
the obvious inequality tw(G) ≤ bw(G) tie the concepts of treewidth, bandwidth, and separation
number well together. Apart from the somewhat negative statement of not having a small separator,
what can we say about a graph with large tree- or bandwidth? The next theorem states that such a
graph must contain a big expander.

Theorem 6 (Bounded→Treewidth). Let ε > 0 be constant. All graphs G on n vertices have treewidth
tw(G) ≤ 2 bε(G)+ 2εn.

A result with similar implications was recently proved by Grohe and Marx in [13]. It shows that
bε(G) < εn implies tw(G) ≤ 2εn. For the sake of being self-contained we present our (short) proof
of Theorem 6 in Section 3.3. In addition, it is not difficult to see that conversely the boundedness of a
graph can be estimated via its bandwidth — which we prove in Section 3.3, too.

1 In fact, their result states that any graph G has a (tw(G) + 1, 1/2)-separator, and does not talk about subgraphs of G. But
since every subgraph of G has treewidth at most tw(G), it thus also has a (tw(G) + 1, 1/2)-separator and the result, as stated
here, follows.
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Proposition 7 (Bandwidth→Bounded). Let ε > 0 be constant. All graphs G on n vertices have bε(G) ≤
2bw(G)/ε.

A qualitative consequence summarising the four results above is given in the following theorem.
It states that if one of the parameters bandwidth, treewidth, separation number, or boundedness is
sublinear for a family of bounded-degree graphs, then so are the others.

Theorem 8 (Sublinear Equivalence Theorem). Let ∆ be an arbitrary but fixed positive integer and consider
a hereditary class of graphs C such that all graphs in C have maximum degree at most ∆. Denote by Cn
the set of those graphs in C with n vertices. Then the following four properties are equivalent:

(1) For all β1 > 0 there is n1 s.t. tw(G) ≤ β1n for all G ∈ Cn with n ≥ n1.
(2) For all β2 > 0 there is n2 s.t. bw(G) ≤ β2n for all G ∈ Cn with n ≥ n2.
(3) For all β3, ε > 0 there is n3 s.t. bε(G) ≤ β3n for all G ∈ Cn with n ≥ n3.
(4) For all β4 > 0 there is n4 s.t. s(G) ≤ β4n for all G ∈ Cn with n ≥ n4.

The paper is organized as follows. Section 3 contains the proofs of all the results mentioned so far:
First we derive Theorem 8 from Theorems 4–6 and Proposition 7. Then Section 3.2 is devoted to the
proof of Theorem 5, whereas Section 3.3 contains the proofs of Theorem 6 and Proposition 7. Finally,
in Section 4, we apply our results to deduce that certain classes of graphs have sublinear bandwidth
and can therefore be embedded as spanning subgraphs into graphs of high minimum degree.

3. Proofs

3.1. Proof of Theorem 8

Proof. (1)⇒(4): Given β4 > 0 set β1 := β4/2, let n1 be the constant from (1) for this β1, and set
n4 := max{n1, 2/β4}. Now consider G ∈ Cn with n ≥ n4. By assumption we have tw(G) ≤ β1n and
thus we can apply Theorem 4 to conclude that s(G) ≤ tw(G)+ 1 ≤ β1n+ 1 ≤ (β4/2+ 1/n)n ≤ β4n.
(4)⇒(2): Given β2 > 0 let d := max{2,∆}, set β4 := d−6/β2 , get n4 from (4) for this β4, and set

n2 := n4. Let G ∈ Cn with n ≥ n2. We conclude from (4) and Theorem 5 that

bw(G) ≤
6n

logd n− logd s(G)
≤

6n
logd n− logd(d−6/β2n)

= β2n.

(2)⇒(3): Given β3, ε > 0 set β2 := εβ3/2, get n2 from (2) for this β2 and set n3 := n2. By (2) and
Proposition 7 we get for G ∈ Cn with n ≥ n3 that bε(G) ≤ 2bw(G)/ε ≤ 2β2n/ε ≤ β3n.
(3)⇒(1): Given β1 > 0, set β3 := β1/4, ε := β1/4 and get n3 from (3) for this β3 and ε, and

set n1 := n3. Let G ∈ Cn with n ≥ n1. Then (3) and Theorem 6 imply tw(G) ≤ 2 bε(G) + 2εn ≤
2β3n+ 2(β1/4)n = β1n. �

3.2. Separation and bandwidth

For the proof of Theorem5wewill use the following decomposition resultwhich roughly states the
following. If the removal of a small separator S decomposes the vertex set of a graph G into relatively
small components Ri ∪̇ Pi such that the vertices in Pi form a ‘‘buffer’’ between the vertices in the
separator S and the set of remaining vertices Ri in the sense that distG(S, Ri) is sufficiently big, then
the bandwidth of G is small.

Lemma 9 (Decomposition Lemma). Let G = (V , E) be a graph and S, P, and R be vertex sets such that
V = S ∪̇ P ∪̇ R. For b, r ∈ Nwith b ≥ 3 assume further that there are decompositions P = P1 ∪̇ · · · ∪̇ Pb
and R = R1 ∪̇ · · · ∪̇ Rb of P and R, respectively, such that the following properties are satisfied:

(i) |Ri| ≤ r,
(ii) e(Ri ∪̇ Pi, Rj ∪̇ Pj) = 0 for all 1 ≤ i < j ≤ b,
(iii) distG(u, v) ≥ bb/2c for all u ∈ S and v ∈ Ri with i ∈ [b].

Then bw(G) < 2(|S| + |P| + r).



J. Böttcher et al. / European Journal of Combinatorics 31 (2010) 1217–1227 1221

Proof. Assume we have G = (V , E), V = S ∪̇ P ∪̇ R and b, r ∈ N with the properties stated above.
Our first goal is to partition V into pairwise disjoint sets B1, . . . , Bb, which we call buckets, and that
satisfy the following property:

If {u, v} ∈ E for u ∈ Bi and v ∈ Bj then |i− j| ≤ 1. (1)

To this end all vertices of Ri are placed into bucket Bi for each i ∈ [b] and the vertices of S are placed
into bucket Bdb/2e. The remaining vertices from the sets Pi are distributed over the buckets according
to their distance from S: vertex v ∈ Pi is assigned to bucket Bj(v) where j(v) ∈ [b] is defined by

j(v) :=

{i if dist(S, v) ≥ |db/2e − i|,
db/2e − dist(S, v) if dist(S, v) < db/2e − i,
db/2e + dist(S, v) if dist(S, v) < i− db/2e.

(2)

This placement obviously satisfies

|Bi| ≤ |S| + |P| + |Ri| ≤ |S| + |P| + r (3)

by construction and condition (i). Moreover, we claim that it guarantees condition (1). Indeed, let
{u, v} ∈ E be an edge. If u and v are both in S then clearly (1) is satisfied. Thus it remains to consider
the case where, without loss of generality, u ∈ Ri ∪̇ Pi for some i ∈ [b]. By condition (ii) this implies
v ∈ S ∪̇ Ri ∪̇ Pi. First assume that v ∈ S. Thus dist(u, S) = 1 and from condition (iii) we infer that
u ∈ Pi. Accordingly u is placed into bucket Bj(u) ∈ {Bdb/2e−1, Bdb/2e, Bdb/2e+1} by (2) and v is placed
into bucket Bdb/2e and so we also get (1) in this case. If both u, v ∈ Ri ∪̇ Pi, on the other hand, we
are clearly done if u, v ∈ Ri. So assume without loss of generality, that u ∈ Pi. If v ∈ Pi then we
conclude from |dist(S, u)−dist(S, v)| ≤ 1 and (2) that u is placed into bucket Bj(u) and v into Bj(v)with
|j(u)−j(v)| ≤ 1. If v ∈ Ri, finally, observe that |dist(S, u)−dist(S, v)| ≤ 1 togetherwith condition (iii)
implies that dist(S, u) ≥ bb/2c − 1 and so u is placed into bucket Bj(u) with |j(u)− i| ≤ 1, where i is
the index such that v ∈ Bi, by (2). Thus we also get (1) in this last case.
Nowwe are ready to construct an ordering of V respecting the desired bandwidth bound. We start

with the vertices in bucket B1, order them arbitrarily, proceed to the vertices in bucket B2, order them
arbitrarily, and so on, up to bucket Bb. By condition (1) this gives an ordering with bandwidth at most
twice as large as the largest bucket and thus we conclude from (3) that bw(G) < 2(|S|+ |P|+ r). �

A decomposition of the vertices of G into buckets as in the proof of Lemma 9 is also called a path
partition of G and appears, e.g., in [11].
Before we get to the proof of Theorem 5, we will establish the following technical observation

about labelled trees.

Proposition 10. Let b be a positive real, T = (V , E) be a tree with |V | ≥ 3, and ` : V → [0, 1] be a
real valued labelling of its vertices such that

∑
v∈V `(v) ≤ 1. Denote further for all v ∈ V by L(v) the set

of leaves that are adjacent to v and suppose that `(v) +
∑
u∈L(v) `(u) ≥ |L(v)|/b. Then T has at most b

leaves in total.

Proof. Let L ⊂ V be the set of leaves of T and I := V \ L be the set of internal vertices. Clearly

1 ≥
∑
v∈V

`(v) =
∑
v∈I

(
`(v)+

∑
u∈L(v)

`(u)

)
≥

∑
v∈I

|L(v)|
b
=
|L|
b

which implies the assertion. �

The idea of the proof of Theorem 5 is to repeatedly extract separators from G and the pieces that
result from the removal of such separators. We denote the union of these separators by S, put all
remaining vertices with small distance from S into sets Pi, and all other vertices into sets Ri. Then we
can apply the decomposition lemma (Lemma 9) to these sets S, Pi, and Ri. This, together with some
technical calculations, will give the desired bandwidth bound for G.

Proof (Of Theorem 5). Let G = (V , E) be a graph on n vertices with maximum degree∆ ≥ 2. Observe
that the desired bandwidth bound is trivial if ∆ = 2 or if log∆ n − log∆ s(G) ≤ 6, so assume in the
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following that∆ ≥ 3 and log∆ n− log∆ s(G) > 6. Define

β := log∆ n− log∆ s(G) and b := bβc ≥ 6 (4)

and observe that with this choice of β our aim is to show that bw(G) ≤ 6n/β .
The goal is to construct a partition V = S ∪̇ P ∪̇ Rwith the properties required by Lemma 9. For this

purpose we will recursively use the fact that G and its subgraphs have separators of size at most s(G).
In the ith round we will identify separators Si,k in G whose removal splits G into parts Vi,1, . . . , Vi,bi .
The details are as follows.
In the first round let S1,1 be an arbitrary (s(G), 2/3)-separator inG that separatesG intoV1,1 andV1,2

and set b1 := 2. In the ith round, i > 1, consider each of the sets Vi−1,j with j ∈ [bi−1]. If |Vi−1,j| ≤ 2n/b
then let Vi,j′ := Vi−1,j, otherwise choose an (s(G), 2/3)-separator Si,k that separates G[Vi−1,j] into sets
Vi,j′ and Vi,j′+1 (where k and j′ are appropriate indices, for simplicity we do not specify them further).
Let Si denote the union of all separators constructed in this way (and in this round). This finishes
the ith round. We stop this procedure as soon as all sets Vi,j′ have size at most 2n/b and denote the
corresponding i by i∗. Then bi∗ is the number of sets Vi∗,j′ we end up with in the last iteration. Let
further xS be the number of separators Si,k extracted from G during this process in total.

Claim 11. We have bi∗ ≤ b and xS ≤ b− 1.
Wewill postpone the proof of this fact and first showhow it implies the theorem. Set S :=

⋃
i∈[i∗] Si,

for j ∈ [bi∗ ] define

Pj := {v ∈ Vi∗,j : dist(v, S) < bb/2c} and Rj = Vi∗,j \ Pj,

set Pj = Rj = ∅ for bi∗ < j ≤ b and finally define P :=
⋃
j∈[b] Pj and R :=

⋃
j∈[b] Rj.

We claim that V = S ∪̇ P ∪̇ R is a partition that satisfies the requirements of the decomposition
lemma (Lemma 9) with parameter b and r = 2n/b. To check this, observe first that for all i ∈ [i∗]
and j, j′ ∈ [bi] we have e(Vi,j, Vi,j′) = 0 since Vi,j and Vi,j′ were separated by some Si′,k. It follows that
e(Rj ∪̇ Pj, Rj′ ∪̇ Pj′) = e(Vi∗,j, Vi∗,j′) = 0 for all j, j′ ∈ [bi∗ ]. Trivially e(Rj ∪̇ Pj, Rj′ ∪̇ Pj′) = 0 for all j ∈ [b]
and bi∗ < j′ ≤ b and therefore we get condition (ii) of Lemma 9. Moreover, condition (iii) is satisfied
by the definition of the sets Pj and Rj above. To verify condition (i) note that |Rj| ≤ |Vi∗,j| ≤ 2n/b = r
for all j ∈ [bi∗ ] by the choice of i∗ and |Rj| = 0 for all bi∗ < j ≤ b. Accordingly we can apply Lemma 9
and infer that

bw(G) ≤ 2
(
|S| + |P| +

2n
b

)
. (5)

In order to establish the desired bound on the bandwidth, we thus need to show that |S|+ |P| ≤ n/β .
We first estimate the size of S. By Claim 11 at most xS ≤ b−1 separators have been extracted in total,
which implies

|S| ≤ xS · s(G) ≤ (b− 1)s(G). (6)

Furthermore all vertices v ∈ P satisfy distG(v, S) ≤ bb/2c−1 by definition. AsG hasmaximumdegree
∆ there are at most |S|(∆bb/2c − 1)/(∆− 1) vertices v ∈ V \ S with this property and hence

|S| + |P| ≤ |S|
(
1+

∆bb/2c − 1
∆− 1

)
≤ |S|

∆β/2

∆− 3/2

≤
(b− 1)s(G)
(∆− 3/2)

√
n
s(G)
=

(b− 1)n
(∆− 3/2)

√
s(G)
n

where the second inequality holds for any∆ ≥ 3 and b ≥ 6 and the third inequality follows from (4)
and (6). It is easy to verify that for any ∆ ≥ 3 and x ≥ ∆6 we have (∆ − 3/2)

√
x ≥ 9

8 log
2
∆ x. This

together with (4) gives (∆− 3/2)
√
n/s(G) ≥ 9

8β
2 and hence we get

|S| + |P| ≤
8(b− 1)n
9β2

. (7)
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As 6 ≤ b = bβc it is not difficult to check that

8(b− 1)
9β2

+
2
b
≤
3
β
.

Together with (5) and (7) this gives our bound.
It remains to prove Claim 11. Notice that the process of repeatedly separating G and its subgraphs

can be seen as a binary tree T on vertex set W whose internal nodes represent the extraction of a
separator Si,k for some i (and thus the separation of a subgraph of G into two sets Vi,j and Vi,j′ ) and
whose leaves represent the sets Vi,j that are of size at most 2n/b. Clearly the number of leaves of T is
bi∗ and the number of internal nodes xS . As T is a binary tree we conclude xS = bi∗ − 1 and thus it
suffices to show that T has at most b leaves in order to establish the claim. To this end we would like
to apply Proposition 10. Label an internal node of T that represents a separator Si,k with |Si,k|/n, a leaf
representingVi,jwith |Vi,j|/n and denote the resulting labelling by `. Clearlywe have

∑
w∈W `(w) = 1.

Moreover we claim that

`(w)+
∑
u∈L(w)

`(w) ≥ |L(w)|/b for allw ∈ W (8)

where L(w) denotes the set of leaves that are children of w. Indeed, let w ∈ W , notice that
|L(w)| ≤ 2 as T is a binary tree, and let u and u′ be the two children of w. If |L(w)| = 0 we are
done. If |L(w)| > 0 then w represents a (2/3, s(G))-separator S(w) := Si−1,k that separated a graph
G[V (w)] with V (w) := Vi−1,j ≥ 2n/b into two sets U(w) := Vi,j′ and U ′(w) := Vi,j′+1 such that
|U(w)| + |U ′(w)| + |S(w)| = |V (w)|. In the case that |L(w)| = 2 this implies

`(w)+ `(u)+ `(u′) =
|S(w)| + |U(w)| + |U ′(w)|

n
=
|V (w)|
n
≥ 2/b

and thus we get (8). If |L(w)| = 1 on the other hand then, without loss of generality, u is a leaf of T
and |U ′(w)| > 2n/b. Since S(w) is a (2/3, s(G))-separator however we know that |V (w)| ≥ 3

2 |U
′(w)|

and hence

`(w)+ `(u) =
|S(w)| + |U(w)|

n
=
|S(w)| + |V (w)| − |U ′(w)| − |S(w)|

n

≥

3
2 |U
′(w)| − |U ′(w)|

n
≥

1
2 (2n/b)
n

which also gives (8) in this case. Therefore we can apply Proposition 10 and infer that T has at most b
leaves as claimed. �

3.3. Boundedness

In this section we study the relation between boundedness, bandwidth and treewidth. We first
give a proof of Proposition 7.

Proof (Of Proposition 7). We have to show that for every graph G and every ε > 0 the inequality
bε(G) ≤ 2bw(G)/ε holds. Suppose that G has n vertices and let σ : V → [n] be an arbitrary labelling
of G. Furthermore assume that V ′ ⊆ V with |V ′| = bε(G) induces an ε-expander in G. Define V ∗ ⊂ V ′
to be the first bε(G)/2 = |V ′|/2 vertices of V ′ with respect to the ordering σ . Since V ′ induces an
ε-expander in G there must be at least εbε(G)/2 vertices in N∗ := N(V ∗) ∩ V ′. Let u be the vertex in
N∗ with maximal σ(u) and v ∈ V ∗ ∩ N(u). As u 6∈ V ∗ and σ(u′) > σ(v′) for all u′ ∈ N∗ and v′ ∈ V ∗
by the choice of V ∗ we have |σ(u)− σ(v)| ≥ |N∗| ≥ εbε(G)/2. Since this is true for every labelling σ
we can deduce that bε(G) ≤ 2bw(G)/ε. �

The remainder of this section is devoted to the proof of Theorem6.Wewill use the following lemma
which establishes a relation between boundedness and certain separators.

Lemma 12 (Bounded→Separator). Let G be a graph on n vertices and let ε > 0. If G is (n/2, ε)-bounded
then G has a (2εn/3, 2/3)-separator.
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Proof. LetG = (V , E)with |V | = n be (n/2, ε)-bounded for ε > 0. It follows that every subset V ′ ⊆ V
with |V ′| ≥ n/2 induces a subgraph G′ ⊆ G with the following property: there isW ⊆ V ′ such that
|W | ≤ |V ′|/2 and |NG′(W )| ≤ ε|W |. We use this fact to construct a (2εn/3, 2/3)-separator in the
following way:

1. Define V1 := V and i := 1.
2. Let Gi := G[Vi].
3. Find a subsetWi ⊆ Vi with |Wi| ≤ |Vi|/2 and |NGi(Wi)| ≤ ε|Wi|.
4. Set Si := NGi(Wi), Vi+1 := Vi \ (Wi ∪ Si).
5. If |Vi+1| ≥ 2

3n then set i := i+ 1 and go to step (2).
6. Set i∗ := i and return

A :=
i∗⋃
i=1

Wi, B := Vi∗+1, S :=
i∗⋃
i=1

Si.

This construction obviously returns a partition V = A ∪̇ B ∪̇ S with |B| < 2
3n. Moreover, |Vi∗ | ≥

2
3n

and |Wi∗ | ≤ |Vi∗ |/2 and hence

|A| = n− |B| − |S| = n− |Vi∗+1| − |S| = n− (|Vi∗ | − |Wi∗ | − |Si∗ |)− |S| ≤ n−
|Vi∗ |
2
≤
2
3
n.

The upper bound on |S| follows easily since

|S| =
i∗∑
i=1

|NGi(Wi)| ≤
i∗∑
i=1

ε|Wi| = ε|A| ≤
2
3
εn.

It remains to show that S separates G. This is indeed the case as NG(A) ⊆ S by construction and thus
E(A, B) = ∅. �

Now we can prove Theorem 6. As remarked earlier, Grohe and Marx [13] independently gave a proof
of an equivalent result which employs similar ideas but does not use separators explicitly.

Proof (Of Theorem 6). Let G = (V , E) be a graph on n vertices, ε > 0, and let b ≥ bε(G). It follows
immediately from the definition of boundedness that every subgraph G′ ⊆ G with G′ = (V ′, E ′) and
|V ′| ≥ 2b also has bε(G′) ≤ b.
We now prove Theorem 6 by induction on the size of G. The relation tw(G) ≤ 2εn + 2b trivially

holds if n ≤ 2b. So let G have n > 2b vertices and assume that the theorem holds for all graphs with
less than n vertices. Then G is (b, ε)-bounded and thus has a (2εn/3, 2/3)-separator S by Lemma 12.
Assume that S separates G into the two subgraphs G1 = (V1, E1) and G2 = (V2, E2). Let (X1, T1) and
(X2, T2) be tree decompositions of G1 and G2, respectively, such thatX1 ∩X2 = ∅. We use them to
construct a tree decomposition (X, T ) of G as follows. LetX = {Xi ∪ S : Xi ∈ X1} ∪ {Xi ∪ S : Xi ∈ X2}

and T = (I1 ∪ I2, F = F1 ∪ F2 ∪ {e}) where e is an arbitrary edge between the two trees. This is
indeed a tree decomposition of G: Every vertex v ∈ V belongs to at least one Xi ∈ X and for every
edge {v,w} ∈ E there exists i ∈ I (where I is the index set ofX) with {v,w} ⊆ Xi. This is trivial for
{v,w} ⊆ Vi and follows from the definition ofX for v ∈ S andw ∈ Vi. Since S separates G there are no
edges {v,w}with v ∈ V1 andw ∈ V2. For the same reason the third property of a tree decomposition
holds: if j lies on the path from i to k in T , then Xi ∩ Xk ⊆ Xj as the intersection is S if Xi, Xk are subsets
of V1 and V2 respectively.
We have seen that (X, T ) is a tree decomposition of G and can estimate its width as follows:

tw(G) ≤ max{tw(G1), tw(G2)} + |S|. With the induction hypothesis we get

tw(G) ≤ max{2ε · |V1| + 2b, 2ε · |V2| + 2b} + |S|
≤ 2εn+ 2b.

where the second inequality follows from |Vi| ≤ (2/3)n and |S| ≤ (2εn)/3. �
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4. Applications

For many interesting bounded-degree graph classes (non-trivial) upper bounds on the bandwidth
are not at hand. A wealth of results however has been obtained about the existence of sublinear
separators. This illustrates the importance of Theorem 8. In this section we will give examples of such
separator theorems and provide applications of them in conjunction with Theorem 8.

4.1. Separator theorems

A classical result in the theory of planar graphs concerns the existence of separators of size 2
√
2n

in any planar graph on n vertices proved by Lipton and Tarjan [19] in 1977. Clearly, together with
Theorem 5 this result implies the following theorem.

Corollary 13. Let G be a planar graph on n vertices with maximum degree at most ∆ ≥ 2. Then the
bandwidth of G is bounded from above by

bw(G) ≤
15n
log∆(n)

.

It is easy to see that the bound in Corollary 13 is sharp up to the multiplicative constant — since the
bandwidth of any graph G is bounded from below by (n − 1)/diam(G), it suffices to consider for
example the complete binary tree on n vertices. Corollary 13 is used in [7] to infer a result about the
geometric realisability of planar graphs G = (V , E)with |V | = n and∆(G) ≤ ∆.
This motivates why we want to consider some generalisations of the planar separator theorem in

the following. The first such result is due to Gilbert, Hutchinson, and Tarjan [12] and deals with graphs
of arbitrary genus. 2

Theorem 14 ([12]). Ann-vertex graphGwith genus g ≥ 0 has separation number s(G) ≤ 6
√
gn+2

√
2n.

For fixed g the class of all graphs with genus at most g is closed under taking minors. Here H is a
minor of G if it can be obtained from a subgraph of G by a sequence of edge deletions and contractions.
A graph G is called H-minor free if H is no minor of G. The famous graph minor theorem by Robertson
and Seymour [21] states that any minor closed class of graphs can be characterised by a finite set of
forbidden minors (such as K3,3 and K5 in the case of planar graphs). The next separator theorem by
Alon, Seymour, and Thomas [2] shows that already forbidding one minor enforces a small separator.

Theorem 15 ([2]). Let H be an arbitrary graph. Then any n-vertex graph G that is H-minor free has
separation number s(G) ≤ |H|3/2

√
n.

We can apply these theorems to draw the following conclusion concerning the bandwidth of
bounded-degree graphs with fixed genus or some fixed forbidden minor from Theorem 5.

Corollary 16. Let g be a positive integer,∆ ≥ 2 and H be an h-vertex graph and G an n-vertex graph with
maximum degree∆(G) ≤ ∆.
(a) If G has genus g then bw(G) ≤ 15n/ log∆(n/g).
(b) If G is H-minor free then bw(G) ≤ 12n/ log∆(n/h3).

4.2. Embedding problems and universality

A graphH that contains copies of all graphsG ∈ G for some class of graphsG is called universal for G.
The construction of sparse universal graphs for certain familiesGhas applications inVLSI circuit design
and was extensively studied (see, e.g., [1] and the references therein). In contrast to these results our

2 Again, the separator theorems we refer to bound the size of a separator in G. Since the class of graphs with genus less than
g (or, respectively, of H-minor free graphs) is closed under taking subgraphs however, this theorem can also be applied to such
subgraphs and thus the bound on s(G) follows.
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focus is not onminimising the number of edges ofH , but insteadwe are interested in giving a relatively
simple criterion for universality forG that is satisfied bymany graphsH of the same order as the largest
graph in G.
The setting with which we are concerned here are embedding results that guarantee that a

bounded-degree graph G can be embedded into a graph H with sufficiently high minimum degree,
even when G and H have the same number of vertices. Dirac’s theorem [10] concerning the existence
of Hamiltonian cycles in graphs of minimum degree n/2 is a classical example for theorems of this
type. It was followed by results of Corrádi and Hajnal [9], Hajnal and Szemerédi [14] about embedding
Kr -factors, and more recently by a series of theorems due to Komlós, Sarközy, and Szemerédi and
others which deal with powers of Hamiltonian cycles, trees, and H-factors (see, e.g., the survey [17]).
Along the lines of these results the following unifying conjecture was made by Bollobás and
Komlós [16] and recently proved by Böttcher, Schacht, and Taraz [5].

Theorem 17 ([5]). For all r,∆ ∈ N and γ > 0, there exist constants β > 0 and n0 ∈ N such that
for every n ≥ n0 the following holds. If G is an r-chromatic graph on n vertices with ∆(G) ≤ ∆ and
bandwidth at most βn and if H is a graph on n vertices with minimum degree δ(H) ≥ ( r−1r + γ )n, then
G can be embedded into H.

The proof of Theorem 17 heavily uses the bandwidth constraint insofar as it constructs the
required embedding sequentially, following the ordering given by the vertex labels of G. Here it is
of course beneficial that the neighbourhood of every vertex v in G is confined to the βn vertices which
immediately precede or follow v.
Also, it is not difficult to see that the statement in Theorem17 becomes falsewithout the constraint

on the bandwidth: Consider r = 2, let G be a random bipartite graph with boundedmaximum degree
and letH be the graph formed by two cliques of size (1/2+γ )n each,which share exactly 2γ n vertices.
Then H cannot contain a copy of G, since in G every vertex set of size (1/2− γ )n has more than 2γ n
neighbours. The reason for this obstruction is again that G has good expansion properties.
On the other hand, Theorem 8 states that in bounded-degree graphs, the existence of a big

expanding subgraph is in fact the only obstacle which can prevent sublinear bandwidth and thus the
only possible obstruction for a universality result as in Theorem 17. More precisely we immediately
get the following corollary from Theorem 8.

Corollary 18. If the class C meets one (and thus all) of the conditions in Theorem 8, then the following is
also true. For every γ > 0 and r ∈ N there exists n0 such that for all n ≥ n0 and for every graph G ∈ Cn
with chromatic number r and for every graph H on n vertices with minimum degree at least ( r−1r + γ )n,
the graph H contains a copy of G.

By Corollary 13 we infer as a special case that all sufficiently large graphs with minimum degree
( 34 + γ )n are universal for the class of bounded-degree planar graphs. Universal graphs for bounded-
degree planar graphs have also been studied in [3,6].

Corollary 19. For all ∆ ∈ N and γ > 0, there exists n0 ∈ N such that for every n ≥ n0 the following
holds:
(a) Every 3-chromatic planar graph on n vertices with maximum degree at most ∆ can be embedded into
every graph on n vertices with minimum degree at least ( 23 + γ )n.

(b) Every planar graph on n vertices with maximum degree at most ∆ can be embedded into every graph
on n vertices with minimum degree at least ( 34 + γ )n.

This extends a result by Kühn, Osthus, and Taraz [18], who proved that for every graph H
with minimum degree at least ( 23 + γ )n there exists a particular spanning triangulation G that
can be embedded into H . Using Corollary 16 it is moreover possible to formulate corresponding
generalisations for graphs of fixed genus and for H-minor free graphs for any fixed H .
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