70 research outputs found

    Landmine Detection From Gpr Data Using Convolutional Neural Networks

    Get PDF
    The presence of buried landmines is a serious threat in many areas around the World. Despite various techniques have been proposed in the literature to detect and recognize buried objects, automatic and easy to use systems providing accurate performance are still under research. Given the incredible results achieved by deep learning in many detection tasks, in this paper we propose a pipeline for buried landmine detection based on convolutional neural networks (CNNs) applied to ground-penetrating radar (GPR) images. The proposed algorithm is capable of recognizing whether a B-scan profile obtained from GPR acquisitions contains traces of buried mines. Validation of the presented system is carried out on real GPR acquisitions, albeit system training can be performed simply relying on synthetically generated data. Results show that it is possible to reach 95% of detection accuracy without training in real acquisition of landmine profiles. Document type: Conference objec

    Landmine Detection from GPR Data Using Convolutional Neural Networks

    Get PDF
    The presence of buried landmines is a serious threat in many areas around the World. Despite various techniques have been proposed in the literature to detect and recognize buried objects, automatic and easy to use systems providing accurate performance are still under research. Given the incredible results achieved by deep learning in many detection tasks, in this paper we propose a pipeline for buried landmine detection based on convolutional neural networks (CNNs) applied to ground-penetrating radar (GPR) images. The proposed algorithm is capable of recognizing whether a B-scan profile obtained from GPR acquisitions contains traces of buried mines. Validation of the presented system is carried out on real GPR acquisitions, albeit system training can be performed simply relying on synthetically generated data. Results show that it is possible to reach 95% of detection accuracy without training in real acquisition of landmine profiles

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    3DInvNet: A Deep Learning-Based 3D Ground-Penetrating Radar Data Inversion

    Full text link
    The reconstruction of the 3D permittivity map from ground-penetrating radar (GPR) data is of great importance for mapping subsurface environments and inspecting underground structural integrity. Traditional iterative 3D reconstruction algorithms suffer from strong non-linearity, ill-posedness, and high computational cost. To tackle these issues, a 3D deep learning scheme, called 3DInvNet, is proposed to reconstruct 3D permittivity maps from GPR C-scans. The proposed scheme leverages a prior 3D convolutional neural network with a feature attention mechanism to suppress the noise in the C-scans due to subsurface heterogeneous soil environments. Then a 3D U-shaped encoder-decoder network with multi-scale feature aggregation modules is designed to establish the optimal inverse mapping from the denoised C-scans to 3D permittivity maps. Furthermore, a three-step separate learning strategy is employed to pre-train and fine-tune the networks. The proposed scheme is applied to numerical simulation as well as real measurement data. The quantitative and qualitative results show the network capability, generalizability, and robustness in denoising GPR C-scans and reconstructing 3D permittivity maps of subsurface objects

    Classifying GPR images using convolutional neural networks

    Get PDF
    This thesis focused on classifying GPR cylinders\u27 B-scans according to their depth, size, material, and the dielectric constant of the underlying medium using four different architectures of convolutional neural networks. Two CNNs were newly proposed for this study, while the other two were used by other authors. These CNNs were trained using a couple of adjusted training options including initial learning rate, learn rate drop factor, and learn rate drop period; which had a positive impact on a part of the used models, while the option maximum number of epochs worked good with all of the used models. Results show that the first newly proposed CNN showed a superior performance due to the use of a deep network with a large amount of small filters. Using this model, it was found that the best results were carried out when GPR B-scans were classified according to the cylinders\u27 materials

    Shallow Buried Improvised Explosive Device Detection Via Convolutional Neural Networks

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The issue of detecting improvised explosive devices, henceforth IEDs, in rural or built-up urban environments is a persistent and serious concern for governments in the developing world. In many cases, such devices are plastic, or varied metallic objects containing rudimentary explosives, which are not visible to the naked eye and are difficult to detect autonomously. The most effective strategy for detecting land mines also happens to be the most dangerous. This paper intends to leverage the use of a Convolutional Neural Network (CNN) to aid in the discovery of such IEDs. As part of a related project, an autonomous sensor array was used to detect the devices in terrains too hazardous for a human to survey. This paper presents a CNN and its training methodology, suitable to make use of the sensor system. This convolutional neural network can accurately distinguish between a potential IED and surrounding undergrowth and natural features of the environment in real-time. The training methodology enabled the CNN to successfully recognise the IEDs with an accuracy of 98.7%, in well-lit conditions. The results are evaluated against other convolutional neural systems as well as against a deterministic algorithm, showing that the proposed CNN outperforms its competitors including the deterministic method

    Convolutional Autoencoder for Landmine Detection on GPR Scans

    Get PDF
    Buried unexploded landmines are a serious threat in many countries all over the World. As many landmines are nowadays mostly plastic made, the use of ground penetrating radar (GPR) systems for their detection is gaining the trend. However, despite several techniques have been proposed, a safe automatic solution is far from being at hand. In this paper, we propose a landmine detection method based on convolutional autoencoder applied to B-scans acquired with a GPR. The proposed system leverages an anomaly detection pipeline: the autoencoder learns a description of B-scans clear of landmines, and detects landmine traces as anomalies. In doing so, the autoencoder never uses data containing landmine traces at training time. This allows to avoid making strong assumptions on the kind of landmines to detect, thus paving the way to detection of novel landmine models

    Modern GPR Target Recognition Methods

    Full text link
    Traditional GPR target recognition methods include pre-processing the data by removal of noisy signatures, dewowing (high-pass filtering to remove low-frequency noise), filtering, deconvolution, migration (correction of the effect of survey geometry), and can rely on the simulation of GPR responses. The techniques usually suffer from the loss of information, inability to adapt from prior results, and inefficient performance in the presence of strong clutter and noise. To address these challenges, several advanced processing methods have been developed over the past decade to enhance GPR target recognition. In this chapter, we provide an overview of these modern GPR processing techniques. In particular, we focus on the following methods: adaptive receive processing of range profiles depending on the target environment; adoption of learning-based methods so that the radar utilizes the results from prior measurements; application of methods that exploit the fact that the target scene is sparse in some domain or dictionary; application of advanced classification techniques; and convolutional coding which provides succinct and representatives features of the targets. We describe each of these techniques or their combinations through a representative application of landmine detection.Comment: Book chapter, 56 pages, 17 figures, 12 tables. arXiv admin note: substantial text overlap with arXiv:1806.0459
    corecore