Shallow Buried Improvised Explosive Device
Detection Via Convolutional Neural Networks

Simon Colreavy-Donnelly®, Fabio Carafﬁni@ﬂ, Stefan Kuhn, Mario Gongora®,
Johana Florez-Lozano®, Carlos Parra®

2 Institute of Artificial Intelligence, School of Computer Science and Informatics, De Montfort University, UK
E-mails: simon.colreavy-donnelly @dmu.ac.uk, fabio.caraffini @dmu.ac.uk, mgongora @dmu.ac.uk

b Cyber Technology Institute, School of Computer Science and Informatics, De Montfort University, UK
E-mail: stefan.kuhn @dmu.ac.uk

¢ Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62, Bogota, Colombia

E-mails: johana.florez@javeriana.edu.co| carlos.parra@javeriana.edu.co

Abstract. The issue of detecting improvised explosive devices, henceforth IEDs, in rural or built-up urban environments is a per-
sistent and serious concern for governments in the developing world. In many cases, such devices are plastic, or varied metallic
objects containing rudimentary explosives, which are not visible to the naked eye and are difficult to detect autonomously. The
most effective strategy for detecting land mines also happens to be the most dangerous. This paper intends to leverage the use of
a Convolutional Neural Network (CNN) to aid in the discovery of such IEDs. As part of a related project, an autonomous sensor
array was used to detect the devices in terrains too hazardous for a human to survey. This paper presents a CNN and its training
methodology, suitable to make use of the sensor system. This convolutional neural network can accurately distinguish between
a potential IED and surrounding undergrowth and natural features of the environment in real-time. The training methodology
enabled the CNN to successfully recognise the IEDs with an accuracy of 98.7%, in well-lit conditions. The results are evalu-
ated against other convolutional neural systems as well as against a deterministic algorithm, showing that the proposed CNN
outperforms its competitors including the deterministic method.
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1. Introduction

Detecting improvised explosive devices in urban
and rural environments is a new and challenging field
of study that has great potential, in terms of humanitar-
ian developments in Robotics [1H3]], machine learning
[4,15] and Chemical Engineering [6} [7]].

An Improvised Explosive Device (IED) can vary
from simple plastic containers to metallic objects con-
taining explosives. This makes them difficult to recog-
nise and distinguish from surrounding terrain, particu-
larly if they are subterranean, partially-buried or well
disguised in the surrounding scrub, rubble or sand. Ex-
amples of improvised mines built with everyday items,
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e.g. soft drink bottles, PVC pipes, syringes, are shown
in figure 2] This paper presents the use of a Convolu-
tional Neural Network (CNN) [8], to aid the discovery
of such IEDs, by examining features like heat, shini-
ness and shape in image analysis. A CNN was trained
to detect these devices. The network is able to distin-
guish the devices, by looking at heat markers and spec-
ularity, specifically; often IED’s have telltale heat sig-
natures, which can give them away.

The resulting CNN is intended to be deployed in
a detection platform and could prospectively be used
for mine clearance, or removal of hazardous materials.
This paper shows how this CNN can accurately dis-
tinguish between a potential IED and surrounding un-
dergrowth and natural features of the environment in
real-time.


mailto:simon.colreavy-donnelly@dmu.ac.uk
mailto:fabio.caraffini@dmu.ac.uk
mailto:mgongora@dmu.ac.uk
mailto:stefan.kuhn@dmu.ac.uk
mailto:johana.florez@javeriana.edu.co
mailto:carlos.parra@javeriana.edu.co
mailto:fabio.caraffini@dmu.ac.uk
Fabio Caraffini


Fabio Caraffini



2 S. Colreavy-Donnelly, F. Caraffini, S. Kuhn, et al. / IED Detection Using CNNs

The main objectives and challenges of this piece of
research are outlined in section[I.1] Following, a thor-
ough literature review is provided in section 2] to give
a wider overview of machine learning approaches for
detection purposes. Material and methods used to pur-
sue our research goal are described in section [3} For
the sake of reproducibility, this section also contains
technical details and a description of the procedures
designed to obtain and evaluate results. The obtained
results are reported and commented in section [4] and
conclusions on this study are drawn in section 5]

1.1. Objectives and motivations

The focus of this article is on detecting improvised
mines with the help of a Deep Learning approach using
Convolutions Neural Networks. The latter found their
use in a variety of application domains, mainly image
recognition [9]] and several other fields [[10-H13]], but to
the best of our knowledge, they are yet to be exploited
for the detection of IED’s. This extends the successful
CNN application for various mine clearance scenarios
shown in section 2l

However, due to the diverse nature of improvised
land mines, systemic feature recognition and determi-
nation are quite difficult and significantly more chal-
lenging than detecting military mines. A prospective
Deep Learning solution for this problem is also quite
pertinent, given the suitability of Deep Learning mod-
els and Neural Systems for feature recognition and de-
termination, considering specifically features that con-
tribute to give away the position of land mines (heat,
specularity, shininess and so forth). This has resulted
in the choice of a Convolutional Neural Network to
provide a solution to this problem. It must be added
that this choice allows for the detection of patterns in
the ground which even a GPR may miss given that, un-
like military mines, most improvised explosives do not
have an electromagnetic signal. Furthermore, it can be
said that image processing methods are more afford-
able, practical and much faster to deploy than classic
methods based purely on GPR data.

2. Literature Review

The problem of detecting mines in an image can
be considered an image segmentation problem. Sim-
ple methods used for this are thresholding, clustering,
or histogram-based methods. These segment the image
into regions of similar colour, hue, or saturation. Re-

lated are methods based on edge detection, which as-
sume that edges separating segments show particular
characteristics. Over time, many different variants and
combinations of these methods have been suggested,
as e.g. those in [14] and [15]]. For an overview and lit-
erature, see [[16]. A next step is a semantic segmen-
tation, where areas of the image are not only identi-
fied, but also labelled as containing a certain class of
object. Instance segmentation, in addition, separates
the potentially multiple instances of an object. Tradi-
tional approaches (i.e. those not using machine learn-
ing methods) mostly use a sliding window algorithm,
using different combinations of features to look at.
This has been combined with various other techniques
like dimensionality reduction or manually added fea-
tures. See [[17] for a survey. We will call those methods
deterministic in this paper.

Various machine learning techniques have been
applied to the problem of image segmentation and
semantic segmentation. They include Support Vec-
tor Machines (SVMs) [l18]] and Random Forest [19].
Artificial Neural Networks (ANN) are widely used
for image segmentation, for example, Kohonen self-
organising maps [20] and other “shallow” neural net-
works.

Deep Learning neural systems, being the latest in-
carnation of machine learning and currently consid-
ered state of the art in the field, have been investi-
gated and applied in different domains such as civil en-
gineering [21H23|], data clustering [24} 25] and many
other fields [10, 26H33]]. These research activities led
to significant improvements also in image segmenta-
tion [15} 134]. An interesting CNN approach is taken
in [35], where material properties are detected. How-
ever, the most prominent implementations are those
which have won the ImageNet competitions over the
past years: AlexNet [36] in 2012, VGG-16 [37] in
2013, GoogLeNet [38] in 2014 and ResNet [39] in
2016. Typical application areas include autonomous
cars [40-42]] and medical image analysis (34, 43| 44].
The latter was the aim of the Unet fully convolution
network architecture [45]. Other medical applications
where Deep Learning neural systems have been found
to play a major role are signal analysis [46}47], e.g. for
interpreting encephalograms, and providing diagnosis
[48L50].

Specifically for the problem of land mine detection
both deterministic and machine learning methods have
been employed. In [4] a method was used that de-
tects mines using a Ground Penetration Radar (GPR).
It should be noted that this method is deterministic,
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rather than entirely Deep Learning based. Soil analy-
sis and GPR has been a specific approach to land mine
detection, e. g. [51]]. The studies in [52]] represent the
most comprehensive account of land-mine detection
topics; the book collects papers that were presented
at the 2008 NATO Advanced Study Institute on Un-
exploded Ordnance Detection and Mitigation. Another
review of land mine detection methods can be found
in [53]]. In [54], the authors proposed a cellular neural
network (which must not be confused with a CNN) for
the 3D thermal modelling of soil. [55] makes use of a
CNN for spotting patterns in thermal images of buried
items. Other studies using neural networks to analyse
GPR data can be found in [56], which proposes an
ANN approach and a fuzzy approach, and [57], where
a Fast R-CNN is employed. Another CNN-based ap-
proach using GPR data can be found in [58]. These
neural network-based approaches were particularly ef-
fective at recognising mines, but the authors were more
focused on recognising military-standard mines, rather
than the improvised type looked at in this paper. Fi-
nally, in [39], a novel CNN method for detecting mine-
like objects using sonar was presented. It should be
noted that this method is deployed in the sea, rather
than on land. All the comparative methodologies using
subtly different techniques from what is proposed in
this paper and this shall be discussed further in section

1]

3. Material and Methods
3.1. Image acquisition

The multi-device platform in [60] was used to col-
lect images and generate the inputs for the proposed
CNN. As displayed in figure [I] it is equipped with
cameras to scan the terrain. A “Nikon D5300” cam-
era with a 55mm lens is used take RGB photographs.
Conversely, two “Nikon D5200” with a 55mm lens are
used together with an infrared filter and an ultravio-
let filter respectively, plus a ring illuminator, to ob-
tain photographs in those frequency bands. Each cam-
era runs the Al algorithms available from [61]] to self-
adjusts its angular position, so to maximise the quality
of the information on each image acquired, which sig-
nificantly overlaps with the next sample. This allows
for an efficient image registration process and accu-
rate reconstruction of the test terrain in a single high-
resolution image, which still contains the detailed in-
formation of every single original image.

Fig. 1. Sensors of the improvised land mine detection platform in
[60].

Three mock improvised mines from those shown in
figure 2] were buried in a lot of size 670 x 1100 mm to
safely perform the IED detection task.

(b) Plastic bottle IEDs.

(a) PVC pipes IEDs.

Fig. 2. Mock improvised land mines used in the project [62]. More
images (source high resolution files) are available in [60].

The masks are shown in figure [5 indicates their lo-
cation, which can be given in Cartesian coordinate as
(550, 250), (350,600) and (500, 850), where the ori-
gin of the coordinate systems is the bottom left corner
of test terrain, the x and y axis are oriented towards the
right-hand side and up respectively, and distances are
measured in mm. To reproduce real conditions, IEDs
were buried months before the acquisition phase to let
the vegetation grow back, and the test terrain was pro-
tected from city debris that is not usually present in
rural lands, where war and conflict take place.

A significant amount of images are acquired with
each camera while scanning the test terrain using the
Cartesian robot in figure 3] Hence, the latter is config-
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Fig. 3. Improvised land mine detection platform in action. For testing
purposes, the test terrain is scanned via a Cartesian robot.

ured to move the cameras with a fixed step of 50 mm
to have sufficient images to be “stitched” together by
aligning the coordinates of each sample, thus generat-
ing the inputs for the CNN, shown in figure[5|and [6] A
complete collection of the generated input images used
in this study can be found in the repository [63]).

Furthermore, it is worth pointing out that data col-
lected with the remaining sensors, available in [60],
have also been processed in previous attempts but led
to poor detection performances when considered indi-
vidually. Therefore we focused our attention on pro-
cessing images and decided to use CNNs given their
success in manipulating such inputs.

These images, generated as part of our ongoing re-
search, are published in a repository [61]]. Later in this
paper, a separate dataset is used from another project
[64], as explained in section@

3.2. The neural detection system

The VGG-16 network architecture was used as a ba-
sis for the mine-detection CNN [63]. It was altered
to take direct inputs from the infrared or ultravio-
let filtered images in addition to the visual channel,
incorporated in the multi-device platform. This (in-
frared/ultraviolet) input is rendered into a 2-D proba-
bility/greyscale distribution in an additional layer. The
comparison of these channels with the original RGB
image and a black and white 1-D label mask form the
input layers and validation processes of the network:
effectively comparing noisy/labelled inputs provides
greater accuracy than labelled data alone. This is es-
pecially the case with the improvised IED examples,
where there are no specific tell-tale electromagnetic
signals to train a CNN with. Instead, only noisy image-

based data can be used to train the CNN. These lay-
ers of the CNN are shown in figure 4] Rectified Linear
Units (RELU) described in [66], i.e. the de-facto stan-
dard threshold algorithm in image classification and
segmentation in Deep Learning [36 67, 68]], is used as
activation function for the CNN. A grid search is used
to determine the activation function (RELU, Softmax,
Sigmoid), the number of layers and number of neu-
rons per-layer. This neural system was implemented
in Python, and common machine learning modules as
[69-71]] were used. Its structure presents a 32 x 32 con-
volutional filter, an RGB image input and one for the
infrared/ultraviolet filters, with validation provided by
the black and white label-mask. Due to the impossi-
bility of paralleling the execution of the network, as
the system is designed to be deployed in a mobile au-
tonomous platform, training was performed on a CPU.
This must be taken into account when looking at the
results of the testing, reported in section [4 in terms
of both training and testing elapsed time (displayed in
table [T). The reason for the implementation of the in-
frared and ultraviolet filters is two-fold: firstly, the in-
frared channel may be able to detect the heat signature
of an IED buried (or partially-buried) under the ground
and secondly, the ultraviolet channel may detect mines
in low light conditions. Another important point is that
an IED made of plastic or metal will have higher spec-
ularity, so the ultraviolet channel may pick this up also
when employed in combination with infrared.

3.3. Training

Training inputs are the RGB image input and two
other inputs, one for the infrared/ultraviolet filter and
validation provided by the black and white label-mask.
The RGB/UV/IR training images are composed of
two-dozen individual images taken with a digital cam-
era, which are joined together in the final images
shown in figure 3] and [6] which form our final data
set. This is a purely image-based approach, which can
be executed on the platform, in the field, since it is
lightweight enough to be executed on an embedded
system. These images are then passed through the con-
volution filters of the network, testing the aggregate
infrared and ultraviolet probability map channels with
the black and white validation labels. Two sets of data
were used for completeness. One set featured light im-
agery and the other an overcast landscape, to provide
variety of training. The training data employed in the
implementation of the CNN necessarily involved many
false-positive examples, or patches that had several dif-
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Fig. 4. The architecture of the employed Convolutional Neural Network. RELU, in this case, is the chosen activation function. The CNN consists
of 32 x 32 convolution filters and it is structured as follows: input layers, a visual (RGB image), the infrared/ultraviolet filter of a digital camera,
rendered into a 2-D grayscale probability distribution and compared to a 1-D black and white label, fed to a fully-connected layer of the CNN.

ferent examples of terrain feature (grass etc.), but no
actual improvised mine. The patches which had impro-
vised mines were marked out and the actual IED pre-
dictions were labelled with white pixels, as shown in
the ground-truth/output comparison images in figure 3]
and [6] The optimal number of training epochs to max-
imise performance by avoiding overfitting, as well as
underfitting, was found experimentally to be 600.

3.4. Validation

To strengthen the validation phase, the additional
dataset from [64] was employed. The latter was care-
fully selected considering that 1) CNN systems should
not be assessed on the same dataset that used for their
training; 2) the adverse environmental conditions in
the training dataset [63] make it very difficult to find
several other datasets for performing a “like-for-like”
comparison in the literature; 3) the proposed system it-
self will more than likely always be deployed on dis-
similar datasets. Furthermore, we use a deterministic
sliding-window algorithm for validation. By applying
this to the same images as the CNN we can establish
the actual advantages of the machine learning method.

3.5. Deterministic image analysis

The deterministic sliding-window algorithm detects
specular, shiny or reflective objects by looking at
changes in regional variation between hue and inten-
sity; the original area where this algorithm was em-
ployed was in video processing [[72]. For IEDs, areas

where hue does not change significantly, but the in-
tensity does, are good candidates for a non-reflective
(Non-IED) region; conversely, areas, where the oppo-
site is true, are good candidates for a shiny, reflective
(IED) surface, potentially indicating the presence of an
IED. The sliding window/image is calculated through
equation [T]as follows:

1, if HW > ﬁ,’ V VW > V,-
Non-IED = (D
0, otherwise

where Non-IED is a non-reflective candidate pixel, and
its value is black (i.e. 1), if the mean hue of the window
H,, is greater than the mean hue of the image H; and
the mean intensity of the window V,, is greater than the
mean intensity of the image V,, otherwise it is white
(i.e. 0) and may be a candidate for an IED. The sliding
window is set to dimensions of 11 x 11 pixels, with a
centre pixel-value, from where the window moves. The
mean i, j” pixel-values of the window are calculated
with equations (2), for the hue and intensity of their
respective positions:

n

M=

S Hij SVl
Hw = ; 11712 ) VW = sl .
n

n2

The window values are then compared, at these posi-
tions, with global hue and intensity features, as noted
in equation (2).
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There are two important reasons for comparing the
CNN against a deterministic algorithm. Firstly, due to
the hazardous nature of training a robot in real-time
in a minefield, the extent of the data available is lim-
ited. Much of our training data is negative data, rather
than actual positive examples of the explosive impro-
vised mines. For a Deep Learning approach, this can
be problematic. However, a deterministic method not
based on a learning process is helpful to benchmark
against. This is because a deterministic algorithm will
either entirely fail or succeed in categorising pixel re-
gions of an image regardless of training, whereas a
Deep Learning solution involves an iterative process.
Usually, a deterministic methodology will outperform
a Deep Learning method at the initial stages of training
or calibration. Secondly, there is a limited number of
Deep Learning based solutions to the mine-detection
problem, so the deterministic results allow for a di-
rect comparison with our methodology and data set.
As mentioned in section [2] this is work done using ma-
chine learning methods [4} 54} |59]], but they generally
focus on different types of data, such as underwater
mines or are from older studies.

3.6. Comparative Analysis

To enable a fair comparison, we first compare the
results obtained with our proposed CNN to the results
of the deterministic method over the data collected
with our system, as explained in section[3.1] and then
we further compare the results obtained with our pro-
posed CNN method to those from established simi-
lar methods using the dataset in [64]]. In the last com-
parison with the state-of-the-art, accuracy, Intersection
Over Union (IOU) [73], and Sgrensen-Dice Coeffi-
cient (SDC) [74] are employed as evaluation metrics.

For calculating the accuracy of the CNN the seman-
tic segmentation pixel-counting method from [75]] was
employed, whereby the number of correctly guessed
black-pixels was averaged with the number of the cor-
rectly guessed white-pixels, with black pixels repre-
senting Non-IED pixels and white pixels representing
IED pixels. Here, we count the number of pixels of
those specific colours. For this reason, this metric is
here referred to as Black/White (B/W) accuracy. Its
definition is displayed in equation 3}

IEDaccuracy + Non‘IEDaccuracy

B/W =
2

3)

where

Black Pixels

Non-IEDuccuraey = {5 Picels

4
White Pixels

IEDaccurﬁCy = IED Pixels

are the accuracy for the IED and Non-IED regions re-
spectively.

The IOU metric, aka Jaccard method, is a method-
ology whereby similarity and diversity of samples can
be ascertained; it is used generally in image process-
ing as a method to measure how far pixels match be-
tween two images. Its specific application is in image
segmentation and classification. Hence, this is a suit-
able evaluation metric for the problem addressed in
this study. The formula for calculating this metric is
represented below:

1 fA=B=10
J(A,B) = (%)
Iﬁgi} otherwise
with
|ANB| |A N B

|AUB|  |A|+|B| —|AN B

where A and B are two intersecting sets. In our case,
the intersecting sets are the pixels of the ground truth
compared with the pixels of the prediction, comparing
the black/white pixel regions.

Finally, the Sgrensen-Dice Coefficient differs from
the previous metric in that IOU only counts true pos-
itives once in both the numerator and denominator. In
this way, S@rensen-Dice coefficient gives a more gen-
eral similarity measure. Its mathematical representa-
tion is shown below:

2-TP

DSC = S N ©)

where TP denotes true positive, FP denotes false posi-
tive and FN denotes false negative.

Two further important metrics which use these val-
ues and are themselves used in the calculation of
Serensen-Dice Coefficient, are Precision and Recall.
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(b) Ground truth.

(c) Ultraviolet — light. (d) Infrared — light.

(e) CNN prediction (UV).

(f) CNN prediction (IR).

Fig. 5. Predicted positions for the “light” scenario (a). The ground
truth is reported in (b) to compare with the CNN binarised outputs
obtained with the ultraviolet (c) and infrared (b) inputs, which are
displayed in (e) and (f) respectively. UV and IR are short for ultravi-
olet and infrared.

(a) RGB - overcast. (b) Ground truth.

(c) Ultraviolet — overcast. (d) Infrared — overcast.

(e) CNN prediction (UV) —
overcast.

(f) CNN prediction (IR).

Fig. 6. Predicted positions for the “overcast” scenario (a). The
ground truth is reported in (b) to compare with the CNN binarised
outputs obtained with the ultraviolet (c) and infrared (b) inputs,
which are displayed in (e) and (f) respectively. UV and IR are short
for ultraviolet and infrared.
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(a) Ground truth. (b) Deterministic.

(c) CNN - ultraviolet. (d) CNN - infrared.

Fig. 7. Comparison between the outputs obtained with the determin-

istic method (b) and the CNN approach, with ultraviolet (c) and in-
frared (d) outputs, for the “light” scenarios shown in figure[5al

These are defined as follows:

Procisi TP -
recision = ——;
TP + FP’
TP
Recall = —— 8
= TP AN ®)

from which it can be seen that Precision is a classifi-
cation of the proportion of correctly guessed positive
identification instances while Recall is a classification
of the total proportion of actual positives, which was

(a) Ground truth. (b) Deterministic.

(c) CNN - ultraviolet.

(d) CNN - infrared.

Fig. 8. Comparison between the outputs obtained with the determin-
istic method (b) and the CNN approach, with ultraviolet (c¢) and in-
frared (d) outputs, for the “overcast” scenarios shown in ﬁgure[@

identified correctly. In this light, the DSC coeffieint
can be expressed as the sum of the Precision and Re-
allmetrics.

4. Results

Graphical results are arranged as follows:

— figures [5] and [6] show the results of the CNN are
after binarisation and post-processing;

— figures[7]and[§|show the actual outputs of both the
CNN and deterministic algorithm respectively to
facilitate their comparison.



S. Colreavy-Donnelly, F. Caraffini, S. Kuhn, et al. / IED Detection Using CNNs 9

The proposed CNN generated these results in 11.10
seconds (CPU).

The images show the entire plot (terrain) and are ar-
ranged into samples under two different environmental
conditions, i.e. the light and overcast scenarios, shown
in separate figures. These are placed side by side to fa-
cilitate their comparison. Hence, both figures [5] and [¢]
as well as figures and@] share the same structure, and
show the same IEDs.

In the first case, the stitched RGB image of the
test terrain is shown next to the ground truth in the
top line to describe the experimental-setup. The cor-
responding ultraviolet and infrared filter images are
displayed below and their predicted outputs appear in
the bottom line of the figure. It must be clarified that
the CNN produces as an output a greyscale probabil-
ity map/distribution obtained from the input images
shown in figure [5] and [6] This is the result of the net-
work comparing and convolving the RGB input, the 2-
D grayscale probability map (of the ultraviolet/infrared
channel) and the black and white label mask.

Therefore, the predicted results from the CNN were
thresholded using a means-average method: if the grey
pixel-values fall below a prediction value of 28% they
are black, as can be seen in figure and (6f), other-
wise they are white, as shown in figure and (51).
The average of 28% was arrived at after the network
was trained and tested several times on different data
sets, using different metrics. All the results fell within a
one or two % margin of this (28%) value. Most impor-
tantly, all results provided in this study used this same
thresholding value for accuracy evaluation and com-
parison. We provisionally advise on using this value
while using this neural network in future works with
similar data sets. Further evaluation of the threshold,
depending on conditions like daylight, is needed.

It should also be stated that the authors tried using
the above thresholding value, i.e. 28%, to check if it
could be applied to the raw greyscale images of the UV
and IR channels, without having been processed by the
CNN to detect the mines. The results were predictably
inaccurate, achieving an accuracy significantly less
than the aforementioned deterministic methodology,
which was itself vastly inferior to the CNN.

In the second case, the ground truth is placed in the
top left corner of figure [/] for the light scenario, and
figure[8] for the overcast scenario. Next to it, the output
of the employed deterministic algorithm is displayed,
followed by the unprocessed (greyscale) outputs from
the CNN for the ultraviolet and infrared inputs.

Methods B/W (%)
IED CNN 98.7
CNN [39] 99.0
CNN [54] 95.0
CNN [58] 95.0
k-NN/Fuzzy [56] 98.0
GPR [4] 85.0
CNN-Fusion (AP) [64] 82.0
CNN-Fusion (AT) [64] 97.0

Table 1

Accuracy of the eight considered methods.

CNN-Fusion (AT) [64] 97
CNN-Fusion (AP) [64] 82
GPR [4] 85
k-NN/Fuzzy [44] o8
CNN[46] 95
CNN [10] 95
CNN [11] 99
IED CNN 98.7

0 20 40 60 80 100

Fig. 9. Accuracy barchart of the eight considered methods.

Using the Accuracy B/W measure described in sec-
tionthe CNN, used on the IED images, had an ac-
curacy of 98.7%, which currently represents a bench-
mark in this area. The results, compared to other meth-
ods, are reproduced in table [I] and figure [9] for an
overview.

As can be seen from the output, the CNN was clearly
able to identify the IED’s from surrounding regions,
while the deterministic algorithm had much less suc-
cess in this regard. It should be noted that these results
are taken from the light scenario (figure[5), the results
from the overcast scenario were much less conclusive,
although as can be seen in the output in figure [§] the
CNN could “see” the IED’s, but had more difficulty
distinguishing them from the surrounding terrain.

4.1. IED Dataset Comparative Analysis

The methods employed for comparison [4, 54, |59]
use subtly different evaluation methodology to assess
their accuracy. In [59] the accuracy was higher over-
all, at 99%, but this was for detecting mines in the sea,
rather than on land. The other Neural Network method
in [54] had an accuracy of 95%, as did in the one in
[58]. The most accurate machine learning method for
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land-based land mine detection was the “k-NN Fuzzy”
hybrid method in [56]], at 98.2%. However, this result
was obtained from “active” military-grade land mines,
rather than the more improvised materials examined
in this paper (military-grade mines have known and
consistent structure and materials so that sensors can
be specialised and tuned to detect these). Finally, the
method in [4] was a deterministic method, which is
difficult to compare to the method in this paper, as the
authors provide an accuracy ranging between 70% and
100% depending on the “noise” parameter in the GPR
cross-section. Given that the data set used in this pa-
per also contained significant amounts of noise (in the
roughness of the terrain used for evaluation), the re-
sults were determined to be roughly an average of the
“noisy” and “non-noisy” result, at 85%, though this
value is of course not thorough.

4.2. Further Comparative Analysis

To complete our comparative analysis the perfor-
mances of the proposed detection method are evalu-
ated over different data set from similar studies, i.e.
where CNN is used instead of a deterministic method.
Since only a little is done for the IED problem, we se-
lected two data sets, namely the indoor Anti-Personnel
(AP) and indoor Anti-Tank (AT) mines data set respec-
tively, from the study in [64]]. These data, compared
to our images, seem to be less challenging. First, the
considered mines are usually military and not impro-
vised. Secondly, a portion of the employed mines is of-
ten visible as the detonator cannot be completely hid-
den in the undergrowth. This is evident by inspecting
figure [I0a] which displays the type of mines used in
[64]. However, the two data sets from [64] looked ap-
propriate for our purpose since the methodology used
for detecting AP and AT mines shares similarities to
the one proposed in this article. Indeed, as graphically
shown in figure[I0} also in [64] labels of the mine posi-
tion were fed to a CNN, along with multi-spectral data.
We used the data from this study as the basis to do a
comparative analysis. We processed the data using our
CNN and then calculated the accuracy in terms of Ac-
curacy B/W, IOU and SDC performance indices. For
completeness, we have also used provided the Preci-
sion (Pr) and Recall (Re) metrics, used to calculate the
SDC value. The obtained numerical values are shown
in table [2] and in figure [TT] Note that the numbers are
shown correct to one decimal places and the values in
Precision and Recall were actually slightly less than
100%. Its important to note that Precision and Recall

(a) Mine Position and Layout.

90 [cm] 90 [em]
2 . 2
ObjectD ObjectA 3 ObjectF k]
3 E
ObjectC ObjectB Object E

(b) Mine Labels.

(c) Multi-spectral input to CNN.

Fig. 10. Overview of the methodology used in [64].

metrics are not particularly useful when considered on
their own merit and are only useful when used in con-
junction with SDC.

Dataset | B/W | IOU | SDC | Pr | Re
IED 98.7 | 77.7 | 89.0 | 100.0 | 100.0
AP [64] 987 | 96.0 | 98.0 | 93.0 | 100.0
AT [64] 99.7 | 989 | 99.0 | 100.0 | 100.0
Standard Deviation | 0.60 | 14.8 | 449 | 329 | 00

Table 2

Performance of the proposed CNN over multiple data sets. IED is the
proposed data set for improvised land mines available in the repos-
itory at [63]. AP and AT refer to the two data sets for military land
mine detection from [64]. The highest accuracy value is marked in
boldface and all values are given in per cent (%). The last line shows
the standard deviation for each metric over the three datasets.

As can be seen from the above results, the proposed
CNN performed significantly well when tested on the
AP and AT data sets in all metrics of evaluation (with
a better performance obtained over the AT data set).
This was expected as, unlike the IED data set generated
for this study [63], the indoor data sets in [64] are not
noisy and the AP/AT mines are visible. This is high-
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Fig. 11. Performance barchart of the proposed CNN on different
data.

lighted by the fact that IOU and SDC are nearly as high
as the B/W metric in these areas. As noted, the preva-
lence of noise in the IED data set may have been a fac-
tor in this. Finally, it is worth pointing out that the ac-
curacy values obtained in the original study in [64] are
82% (AP data set) and 87% (AT data set), as reported
in table[I] which means that our CNN implementation
is competitive and outperforms other approaches also
in the AP/AT application domain. Graphically, the ob-
tained outputs for AP and AT cases are depicted in fig-
ure [I2]and [[3]respectively.

It should be further emphasised that the methodol-
ogy used with the above data-set is to employ our own
CNN, trained with our data-set, on the other data-set,
using additional IOU and Sorenson metrics: we are not
referencing their results, we are using their data-set
to test our system. In contrast, the numbers in table |I|
come from different studies, performed with different
methods on different data. We also observed a signif-
icantly low variance, across the IED, AP and AT por-
tions of the Silva et al. [64] dataset, making the total
std deviation quite low, though difficult to determine,
given the wide-ranging nature of the datasets.

5. Conclusions

In conclusion, this paper has explored several novel
techniques in detecting improvised explosive devices,
while putting forward its own new, enhanced IED
CNN method. This work is of great significance be-
cause of its potential for developments in machine
learning and for its humanitarian scope . This paper
proposes the use of a convolutional neural network, to
aid in discovery of IED’s, by examining and extrapo-
lating features like heat, shininess and shape from the

'

(a) RGB image. (b) Ground truth.

(d) Binarised output.

(c) Prediction output.

Fig. 12. Graphical experimental results obtained with the proposed
CNN over the AP data set from [64]]. The first row displays the origi-
nal RGB image and the corresponding ground truth in (a) and (b) re-
spectively. The second row displays the predicted and the binarised
outputs in (c¢) and (d) respectively.

infrared and ultraviolet channels of a digital image. To
complement an autonomous robot which surveys dan-
gerous terrains, the described CNN was successfully
trained to detect the IEDs. The system can accurately
distinguish the devices, by looking at heat markers and
specularity.

The resulting CNN can be deployed in a robot and
can be used for mine clearance, or removal of dan-
gerous objects. The results show that this CNN can
quickly and accurately distinguish between a potential
IED and the surrounding terrain. The system has an ac-
curacy of 98.7%, in non-overcast conditions, which is
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(a) RGB image. (b) Ground truth.

(c) Prediction output. (d) Binarised output.

Fig. 13. Graphical experimental results obtained with the proposed
CNN over the AT data set from [64]]. The first row displays the origi-
nal RGB image and the corresponding ground truth in (a) and (b) re-
spectively. The second row displays the predicted and the binarised
outputs in (c) and (d) respectively.

currently a bench-mark for land-based mine detection.
Significantly, the CNN was superior to the determinis-
tic approaches examined, while comparing favourably
with competing machine learning methods. It has to be
noted that it was difficult to find methods with which to
compare, as there is a limited number of Deep Learn-
ing based solutions to the real-time mine-detection
problem [4} 152, 154, |59]], but this is understandable,
given the appreciably dangerous nature of land-mine
detection and Deep Learning training in the field. The
system is also the most computationally efficient of the
methods examined, which is important when dealing

with live land mines in the field. As a means to ex-
tend and provide more accurate metrics for comparison
and analysis, we also employed the Intersection Over
Union and Sgrensen-Dice Coefficient methodologies
and a different data set, i.e. the one in employed in
[64], to perform further comparisons and validate the
potential of the proposed detection method. Results
show that our CNN compared favourably with this data
set. However, it is important to remark that [64] fo-
cuses on detecting military standard mines rather than
IED’s and this is an important difference, when taking
into account accuracy and performance metrics.
Given that the proposed method appears to be
promising, we intend to further investigate its use in
the proposed platform. We will collect more images
in different configurations of terrains and IED types to
have a larger training data set. In particular, since this
study is limited to the detection of shallow buried im-
provised mines (i.e. the detonator must be very close
to the ground surface), we intend to expand to detect
also improvised mines that can be buried deeper in
the ground, as e.g. those activated remotely. In these
cases, the denotation can occur when a remote detona-
tion system, placed on the ground inside e.g. a piece of
wood, is triggered by a pressure activated switch.
Furthermore, it must be remarked that due to the
dynamic and real-time nature of the application, the
purposed detection system will have to be usable on-
the-go and so the usual process of calibration, such
as determining std and mean results and fine-tuning
weights; or attempting to prevent overfitting, is diffi-
cult to standardise. However, when tested in such con-
ditions, we believe that the exceptionally high accu-
racy obtained in all metrics against the [64] dataset
(General B/W Accuracy, IOU, Sgrenson, low standard
deviation), warrants further research and development.
More standardising and analysis of the data-set will
therefore be taken into consider ion in future works.
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