43 research outputs found

    A Cognitive Approach to Mobile Robot Environment Mapping and Path Planning

    Get PDF
    This thesis presents a novel neurophysiological based navigation system which uses less memory and power than other neurophysiological based systems, as well as traditional navigation systems performing similar tasks. This is accomplished by emulating the rodent’s specialized navigation and spatial awareness brain cells, as found in and around the hippocampus and entorhinal cortex, at a higher level of abstraction than previously used neural representations. Specifically, the focus of this research will be on replicating place cells, boundary cells, head direction cells, and grid cells using data structures and logic driven by each cell’s interpreted behavior. This method is used along with a unique multimodal source model for place cell activation to create a cognitive map. Path planning is performed by using a combination of Euclidean distance path checking, goal memory, and the A* algorithm. Localization is accomplished using simple, low power sensors, such as a camera, ultrasonic sensors, motor encoders and a gyroscope. The place code data structures are initialized as the mobile robot finds goal locations and other unique locations, and are then linked as paths between goal locations, as goals are found during exploration. The place code creates a hybrid cognitive map of metric and topological data. In doing so, much less memory is needed to represent the robot’s roaming environment, as compared to traditional mapping methods, such as occupancy grids. A comparison of the memory and processing savings are presented, as well as to the functional similarities of our design to the rodent’ specialized navigation cells

    Exploiting semantic information in a spiking neural SLAM system

    Get PDF
    To navigate in new environments, an animal must be able to keep track of its position while simultaneously creating and updating an internal map of features in the environment, a problem formulated as simultaneous localization and mapping (SLAM) in the field of robotics. This requires integrating information from different domains, including self-motion cues, sensory, and semantic information. Several specialized neuron classes have been identified in the mammalian brain as being involved in solving SLAM. While biology has inspired a whole class of SLAM algorithms, the use of semantic information has not been explored in such work. We present a novel, biologically plausible SLAM model called SSP-SLAM—a spiking neural network designed using tools for large scale cognitive modeling. Our model uses a vector representation of continuous spatial maps, which can be encoded via spiking neural activity and bound with other features (continuous and discrete) to create compressed structures containing semantic information from multiple domains (e.g., spatial, temporal, visual, conceptual). We demonstrate that the dynamics of these representations can be implemented with a hybrid oscillatory-interference and continuous attractor network of head direction cells. The estimated self-position from this network is used to learn an associative memory between semantically encoded landmarks and their positions, i.e., an environment map, which is used for loop closure. Our experiments demonstrate that environment maps can be learned accurately and their use greatly improves self-position estimation. Furthermore, grid cells, place cells, and object vector cells are observed by this model. We also run our path integrator network on the NengoLoihi neuromorphic emulator to demonstrate feasibility for a full neuromorphic implementation for energy efficient SLAM

    Cooperative Navigation for Low-bandwidth Mobile Acoustic Networks.

    Full text link
    This thesis reports on the design and validation of estimation and planning algorithms for underwater vehicle cooperative localization. While attitude and depth are easily instrumented with bounded-error, autonomous underwater vehicles (AUVs) have no internal sensor that directly observes XY position. The global positioning system (GPS) and other radio-based navigation techniques are not available because of the strong attenuation of electromagnetic signals in seawater. The navigation algorithms presented herein fuse local body-frame rate and attitude measurements with range observations between vehicles within a decentralized architecture. The acoustic communication channel is both unreliable and low bandwidth, precluding many state-of-the-art terrestrial cooperative navigation algorithms. We exploit the underlying structure of a post-process centralized estimator in order to derive two real-time decentralized estimation frameworks. First, the origin state method enables a client vehicle to exactly reproduce the corresponding centralized estimate within a server-to-client vehicle network. Second, a graph-based navigation framework produces an approximate reconstruction of the centralized estimate onboard each vehicle. Finally, we present a method to plan a locally optimal server path to localize a client vehicle along a desired nominal trajectory. The planning algorithm introduces a probabilistic channel model into prior Gaussian belief space planning frameworks. In summary, cooperative localization reduces XY position error growth within underwater vehicle networks. Moreover, these methods remove the reliance on static beacon networks, which do not scale to large vehicle networks and limit the range of operations. Each proposed localization algorithm was validated in full-scale AUV field trials. The planning framework was evaluated through numerical simulation.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113428/1/jmwalls_1.pd

    Robust Visual Self-localization and Navigation in Outdoor Environments Using Slow Feature Analysis

    Get PDF
    Metka B. Robust Visual Self-localization and Navigation in Outdoor Environments Using Slow Feature Analysis. Bielefeld: Universität Bielefeld; 2019.Self-localization and navigation in outdoor environments are fundamental problems a mobile robot has to solve in order to autonomously execute tasks in a spatial environ- ment. Techniques based on the Global Positioning System (GPS) or laser-range finders have been well established but suffer from the drawbacks of limited satellite availability or high hardware effort and costs. Vision-based methods can provide an interesting al- ternative, but are still a field of active research due to the challenges of visual perception such as illumination and weather changes or long-term seasonal effects. This thesis approaches the problem of robust visual self-localization and navigation using a biologically motivated model based on unsupervised Slow Feature Analysis (SFA). It is inspired by the discovery of neurons in a rat’s brain that form a neural representation of the animal’s spatial attributes. A similar hierarchical SFA network has been shown to learn representations of either the position or the orientation directly from the visual input of a virtual rat depending on the movement statistics during training. An extension to the hierarchical SFA network is introduced that allows to learn an orientation invariant representation of the position by manipulating the perceived im- age statistics exploiting the properties of panoramic vision. The model is applied on a mobile robot in real world open field experiments obtaining localization accuracies comparable to state-of-the-art approaches. The self-localization performance can be fur- ther improved by incorporating wheel odometry into the purely vision based approach. To achieve this, a method for the unsupervised learning of a mapping from slow fea- ture to metric space is developed. Robustness w.r.t. short- and long-term appearance changes is tackled by re-structuring the temporal order of the training image sequence based on the identification of crossings in the training trajectory. Re-inserting images of the same place in different conditions into the training sequence increases the temporal variation of environmental effects and thereby improves invariance due to the slowness objective of SFA. Finally, a straightforward method for navigation in slow feature space is presented. Navigation can be performed efficiently by following the SFA-gradient, approximated from distance measurements between the slow feature values at the target and the current location. It is shown that the properties of the learned representations enable complex navigation behaviors without explicit trajectory planning

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Towards topological mapping with vision-based simultaneous localization and map building

    Full text link
    Although the theory of Simultaneous Localization and Map Building (SLAM) is well developed, there are many challenges to overcome when incorporating vision sensors into SLAM systems. Visual sensors have different properties when compared to range finding sensors and therefore require different considerations. Existing vision-based SLAM algorithms extract point landmarks, which are required for SLAM algorithms such as the Kalman filter. Under this restriction, the types of image features that can be used are limited and the full advantages of vision not realized. This thesis examines the theoretical formulation of the SLAM problem and the characteristics of visual information in the SLAM domain. It also examines different representations of uncertainty, features and environments. It identifies the necessity to develop a suitable framework for vision-based SLAM systems and proposes a framework called VisionSLAM, which utilizes an appearance-based landmark representation and topological map structure to model metric relations between landmarks. A set of Haar feature filters are used to extract image structure statistics, which are robust against illumination changes, have good uniqueness property and can be computed in real time. The algorithm is able to resolve and correct false data associations and is robust against random correlation resulting from perceptual aliasing. The algorithm has been tested extensively in a natural outdoor environment

    Information-theoretic environment modeling for mobile robot localization

    Full text link
    To enhance robotic computational efficiency without degenerating accuracy, it is imperative to fit the right and exact amount of information in its simplest form to the investigated task. This thesis conforms to this reasoning in environment model building and robot localization. It puts forth an approach towards building maps and localizing a mobile robot efficiently with respect to unknown, unstructured and moderately dynamic environments. For this, the environment is modeled on an information-theoretic basis, more specifically in terms of its transmission property. Subsequently, the presented environment model, which does not specifically adhere to classical geometric modeling, succeeds in solving the environment disambiguation effectively. The proposed solution lays out a two-level hierarchical structure for localization. The structure makes use of extracted features, which are stored in two different resolutions in a single hybrid feature-map. This enables dual coarse-topological and fine-geometric localization modalities. The first level in the hierarchy describes the environment topologically, where a defined set of places is described by a probabilistic feature representation. A conditional entropy-based criterion is proposed to quantify the transinformation between the feature and the place domains. This criterion provides a double benefit of pruning the large dimensional feature space, and at the same time selecting the best discriminative features that overcome environment aliasing problems. Features with the highest transinformation are filtered and compressed to form a coarse resolution feature-map (codebook). Localization at this level is conducted through place matching. In the second level of the hierarchy, the map is viewed in high-resolution, as consisting of non-compressed entropy-processed features. These features are additionally tagged with their position information. Given the identified topological place provided by the first level, fine localization corresponding to the second level is executed using feature triangulation. To enhance the triangulation accuracy, redundant features are used and two metric evaluating criteria are employ-ed; one for dynamic features and mismatches detection, and another for feature selection. The proposed approach and methods have been tested in realistic indoor environments using a vision sensor and the Scale Invariant Feature Transform local feature extraction. Through experiments, it is demonstrated that an information-theoretic modeling approach is highly efficient in attaining combined accuracy and computational efficiency performances for localization. It has also been proven that the approach is capable of modeling environments with a high degree of unstructuredness, perceptual aliasing, and dynamic variations (illumination conditions; scene dynamics). The merit of employing this modeling type is that environment features are evaluated quantitatively, while at the same time qualitative conclusions are generated about feature selection and performance in a robot localization task. In this way, the accuracy of localization can be adapted in accordance with the available resources. The experimental results also show that the hybrid topological-metric map provides sufficient information to localize a mobile robot on two scales, independent of the robot motion model. The codebook exhibits fast and accurate topological localization at significant compression ratios. The hierarchical localization framework demonstrates robustness and optimized space and time complexities. This, in turn, provides scalability to large environments application and real-time employment adequacies

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore