438 research outputs found

    On tiered small jump operators

    Full text link
    Predicative analysis of recursion schema is a method to characterize complexity classes like the class FPTIME of polynomial time computable functions. This analysis comes from the works of Bellantoni and Cook, and Leivant by data tiering. Here, we refine predicative analysis by using a ramified Ackermann's construction of a non-primitive recursive function. We obtain a hierarchy of functions which characterizes exactly functions, which are computed in O(n^k) time over register machine model of computation. For this, we introduce a strict ramification principle. Then, we show how to diagonalize in order to obtain an exponential function and to jump outside deterministic polynomial time. Lastly, we suggest a dependent typed lambda-calculus to represent this construction

    Simple Parsimonious Types and Logarithmic Space

    Get PDF
    We present a functional characterization of deterministic logspace-computable predicates based on a variant (although not a subsystem) of propositional linear logic, which we call parsimonious logic. The resulting calculus is simply-typed and contains no primitive besides those provided by the underlying logical system, which makes it one of the simplest higher-order languages capturing logspace currently known. Completeness of the calculus uses the descriptive complexity characterization of logspace (we encode first-order logic with deterministic closure), whereas soundness is established by executing terms on a token machine (using the geometry of interaction)

    On Constructor Rewrite Systems and the Lambda Calculus

    Full text link
    We prove that orthogonal constructor term rewrite systems and lambda-calculus with weak (i.e., no reduction is allowed under the scope of a lambda-abstraction) call-by-value reduction can simulate each other with a linear overhead. In particular, weak call-by- value beta-reduction can be simulated by an orthogonal constructor term rewrite system in the same number of reduction steps. Conversely, each reduction in a term rewrite system can be simulated by a constant number of beta-reduction steps. This is relevant to implicit computational complexity, because the number of beta steps to normal form is polynomially related to the actual cost (that is, as performed on a Turing machine) of normalization, under weak call-by-value reduction. Orthogonal constructor term rewrite systems and lambda-calculus are thus both polynomially related to Turing machines, taking as notion of cost their natural parameters.Comment: 27 pages. arXiv admin note: substantial text overlap with arXiv:0904.412

    Elementary linear logic revisited for polynomial time and an exponential time hierarchy (extended version)

    Get PDF
    Nombre de pages: 20. Une version courte de ce travail est à paraître dans les actes de: Asian Symposium on Programming Languages and Systems (APLAS 2011).Elementary linear logic is a simple variant of linear logic, introduced by Girard and which characterizes in the proofs-as-programs approach the class of elementary functions (computable in time bounded by a tower of exponentials of fixed height). Our goal here is to show that despite its simplicity, elementary linear logic can nevertheless be used as a common framework to characterize the different levels of a hierarchy of deterministic time complexity classes, within elementary time. We consider a variant of this logic with type fixpoints and weakening. By selecting specific types we then characterize the class P of polynomial time predicates and more generally the hierarchy of classes k-EXP, for k>=0, where k-EXP is the union of DTIME(2_k^{n^i}), for i>=1

    Implicit complexity for coinductive data: a characterization of corecurrence

    Full text link
    We propose a framework for reasoning about programs that manipulate coinductive data as well as inductive data. Our approach is based on using equational programs, which support a seamless combination of computation and reasoning, and using productivity (fairness) as the fundamental assertion, rather than bi-simulation. The latter is expressible in terms of the former. As an application to this framework, we give an implicit characterization of corecurrence: a function is definable using corecurrence iff its productivity is provable using coinduction for formulas in which data-predicates do not occur negatively. This is an analog, albeit in weaker form, of a characterization of recurrence (i.e. primitive recursion) in [Leivant, Unipolar induction, TCS 318, 2004].Comment: In Proceedings DICE 2011, arXiv:1201.034
    • …
    corecore