
Simple Parsimonious Types and Logarithmic Space
Damiano Mazza

CNRS, LIPN UMR 7030 Université Paris 13, Sorbonne Paris Cité
F-93430, Villetaneuse, France
Damiano.Mazza@lipn.univ-paris13.fr

Abstract
We present a functional characterization of deterministic logspace-computable predicates based
on a variant (although not a subsystem) of propositional linear logic, which we call parsimonious
logic. The resulting calculus is simply-typed and contains no primitive besides those provided by
the underlying logical system, which makes it one of the simplest higher-order languages capturing
logspace currently known. Completeness of the calculus uses the descriptive complexity charac-
terization of logspace (we encode first-order logic with deterministic closure), whereas soundness
is established by executing terms on a token machine (using the geometry of interaction).

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.1.3 Complexity Measures and
Classes

Keywords and phrases implicit computational complexity, linear logic, geometry of interaction

Digital Object Identifier 10.4230/LIPIcs.CSL.2015.24

1 Introduction

Implicit computational complexity (ICC) is a research field at the intersection of logic,
computational complexity and the theory of programming languages, arising from the
seminal contributions of, among others, Bellantoni and Cook [3], Leivant and Marion [18],
and Jones [16]. ICC may be thought of as the proof-theoretic counterpart of descriptive
complexity [15], which is based on model theory instead. They both invoke logic as a guideline
for understanding the nature of complexity classes, seeking alternatives to the notion of
complete problem which is proper of structural complexity theory.

Linear logic has proved to be quite valuable for ICC, spurring a fruitful line of research
[12, 14, 25, 9] which we continue with the present paper: we show how an affine propositional
logical system characterizes in a natural way the class L of logspace computable predicates.
Such a logical system stems from previous work by the author on the infinitary affine
λ-calculus [19, 20]. In particular, the latter work introduced the so-called parsimonious
stratified λ-calculus, which was shown to capture (non-uniform) polytime computation.
In that paper, parsimony was considered merely as a restriction to be added on top of
stratification in order to keep the complexity under control. Later, the author realized that
parsimony has an independent logical meaning, i.e., it corresponds to a well-defined logical
system which is a variant (but not a subsystem) of linear/affine logic.

In its intuitionistic form, parsimonious logic is multiplicative affine logic (i.e., with linear
implication (, multiplicative conjunction ⊗ and free weakening; categorically, the free
SMCC with terminal unit) endowed with an exponential modality satisfying what we call
Milner’s law !A ∼= A⊗ !A. The implication !A(A⊗ !A, sometimes called absorption, holds
in linear logic but its converse, which we deem co-absorption, does not.1 It does hold in

1 To be fair, in linear logic one should look for !A ∼= (A& 1) ⊗ !A. Nevertheless, although implications in

© Damiano Mazza;
licensed under Creative Commons License CC-BY

24th EACSL Annual Conference on Computer Science Logic (CSL 2015).
Editor: Stephan Kreutzer; pp. 24–40

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D. Mazza 25

differential linear logic (it is the type of the derivative operator), but it is not the inverse of
absorption. Therefore, Milner’s law is not verified in any known variant of linear/affine logic.

From the computational point of view, Milner’s law asserts that !A is the type of
streams of type A: absorption is “pop” and co-absorption is “push”. The fact that these
operations are inverses of each other is why we speak of (infinite) streams rather than (finite)
stacks. Accordingly, the λ-calculus arising from parsimonious logic natively supports streams.
Remember that parsimony arises from an infinitary affine calculus, so we are in principle
capable of dealing with truly infinite streams. This yields non-uniform computation (in the
same sense as circuit families) and is the object of [20, 21]. However, in the present paper
we focus on uniform computation, which means that the streams will be morally finite: we
will consider only terms of the form u1 :: · · · :: un :: !t where !t ≡ t :: !t, i.e., the stream is
ultimately constant. In [21], it is proved that the non-uniform simply-typed parsimonious
λ-calculus captures L/poly (non-uniform logspace). Although closely related, this does not
imply the results presented here, it rather complements them.

The question we address here is: what is the expressive power of the simply-typed
parsimonious λ-calculus? More precisely, if Str := !(o (o) (!(o (o) (o (o is the
affine version of the type of Church binary strings and Bool := o⊗ o(o⊗ o is the affine
type of Booleans, what languages are decidable by simply-typed parsimonious terms of type
Str[A](Bool?2 If we call PL the class of such languages, as anticipated above we have:

I Theorem 1. PL = L.

By contrast, the analogous question for the usual simply-typed λ-calculus, or for propositional
linear logic, lacks to our knowledge such a straightforward, standard answer. This, we believe,
supports the claim that parsimony is an interesting and natural notion.

The proof of Theorem 1 is of course in two parts. Completeness (L ⊆ PL, Sect. 3) is shown
by programming in PL the descriptive complexity characterization of L (i.e., first-order logic
with deterministic transitive closure). The non-trivial part is, essentially, solving reachability
for directed forests, a paradigmatic L-complete problem.

The main ingredient of soundness (PL ⊆ L, Sect. 5) consists of proof nets. These allow
turning the normalization of terms into the execution of an automaton, Danos and Regnier’s
interaction abstract machine (IAM) [8], based on Girard’s geometry of interaction (GoI) [11].
In its IAM formulation, the GoI computes the normal form of a proof net π by considering a
token traveling through the nodes of π, instead of applying rewriting rules. To control the
movements of the token, the machine has to keep track of a certain amount of information,
consisting of two stacks S and B. The stack S is binary, and its length is bounded by the
height of the types of π. The length of B is bounded by the depth of π (the maximum number
of nested exponential modalities in the types of π) but, in linear logic, its elements may be
quite complex. In parsimonious logic, the elements of B are just integers: they correspond
to positions within streams. Therefore, running the IAM on a proof net π of size s, height h
and depth d needs space O(log s+ h+ d logm): log s is for the token’s position, h for the S
stack and d logm for the B stack, if m is the largest integer stored in it during execution.

The interesting case is when π is the translation of t w, with t : Str[A](Bool and w a
Church string. Then, s is O(|w|), whereas h and d are O(1) (they only depend on A, which
is fixed). Therefore, if we manage to prove that m is polynomial in s, we have a logarithmic

both directions are provable, they are not inverses of each other.
2 Str[A] denotes Str where the base type o is replaced by an arbitrary simple type A. In the absence of

polymorphism, it is common to allow such type expansions.

CSL 2015

26 Simple Parsimonious Types and Logarithmic Space

bound in |w|, as desired. Such a bound on m may be proved directly, as done in [21], or by
combining the bound we previously gave in [20] with a nice result of Gaboardi, Roversi and
Vercelli [10], which is the strategy we adopt here.

Related work

Implicit characterizations of L abound: of recursive-theoretic nature [22, 17], using imperative
languages [16, 4] and higher-order languages [24, 25, 6]. Of these, only the latter are immedi-
ately comparable to our work. Another paper explicitly relating streams and logarithmic
space is [23], which however does not have much of a connection with our work: the authors
consider there corecursive definitions, i.e., algorithms on infinite streams (as opposed to finite
strings) and the space complexity they refer to is not the usual decision problem complexity.

The GoI plays a key role in both [25, 6]. The difference here is not so much in the use
of the GoI, which is quite similar, but in the underlying programming language: in that
work, the author(s) take the standpoint that the fundamental primitive of sublinear space
computation is interaction (a point of view already taken in [24]) and forge their programming
language around this. This leads, for instance, to the use of non-standard types for encoding
strings, namely Nat(Three (a binary string x is seen as a function mapping i to xi or to
⊥ if i ≥ |x|), whereas the language of [24] has an explicit list type.

With respect to the above, we believe that the highlight of our characterization is that it
is closer to the original spirit of applying linear logic to ICC [12]: it is purely logical (there is
no primitive datatype) and employs standard types. Our characterization also improves on
previous ones in terms of simplicity: the types of [25] include full polymorphism and indexed
exponential modalities, whereas the categorical construction of [6], while elegant, also yields
a sort of indexed exponential modality in types, making type inference not straightforward
(see [7]). By contrast, our calculus is simply-typed, has only 9 typing rules (Fig. 1) which are
essentially syntax-directed, so type inference is easier. Programming is of course restricted
but, as hopefully showcased by Sect. 3, quite reasonably so if we consider that all programs
must run in logarithmic space.

2 The Parsimonious Lambda-Calculus

2.1 Terms and reduction
We let a (resp. x) range over a countably infinite set of affine (resp. exponential) variables. An
occurrence of exponential variable is of the form xi, where i ∈ N. Occurrences of exponential
variables are naturally ordered by xi ≤ yj whenever x = y and i ≤ j. Let Θ be a set of
occurrences of exponential variables. We write ↑Θ for the upward closure of Θ. We denote
by Θ \ {x} the set obtained from Θ by removing all occurrences of the form xi (if any).

Parsimonious terms belong to the grammar

t, u ::= a | λa.t | tu | let a⊗ b = u in t | t⊗ u | xi | let !x = u in t | !t | t :: u.

However, they obey several constraints on how variables may appear, so we introduce them
by means of a well-forming relation Θ; Φ B t, where t is a (parsimonious) term, Φ is the
set of its free affine variables and Θ is the set of its free virtual occurrences of exponential
variables (which may be infinite):
∅; {a} B a and {xi}; ∅ B xi always hold;
if Θ; Φ B t, then Θ; Φ \ {a} B λa.t;

D. Mazza 27

if Θ; Φ B t and Θ′; Φ′ B u and Θ ∩ Θ′ = Φ ∩ Φ′ = ∅, then Θ ∪ Θ′; Φ ∪ Φ′ B tu,
Θ ∪Θ′; Φ ∪ Φ′ B t⊗ u, Θ ∪Θ′; Φ ∪ Φ′ B t :: u, Θ ∪Θ′; Φ \ {a, b} ∪ Φ′ B let a⊗ b = u in t
and Θ \ {x} ∪Θ′; Φ ∪ Φ′ B let !x = u in t;
if Θ; ∅ B t and every exponential variable has at most one occurrence in Θ, then ↑Θ; ∅ B !t.

Let Θ; Φ B t. We denote by t++ the term obtained from t by substituting each free
occurrence xi with xi+1. We have Θ++; Φ B t++, where Θ++ is defined in the obvious way.

Terms of the form !t are called boxes. Apart from disallowing free affine variables, the
main purpose of the well-forming condition for boxes is to ensure that, if x occurs free in a
parsimonious term t, then it occurs free in at most one box and at most once therein and,
moreover, the index of such an occurrence, denoted by maxindx(t), is the greatest in t.

Streams are terms generated by u ::= !t | t :: u. Structural equivalence is the contextual
closure of the equation !t ≡ t :: !(t++). This justifies the name “stream”: the term
u := u1 :: · · · :: un :: !t is morally an infinite stream u1 :: · · · :: un :: t :: t++ :: (t++)++ :: · · · .
Accordingly, given i ∈ N, we define u(i) to be ui+1 if i < n and t++(i−n times) if i ≥ n. We
also define |u| := n.

We now define reduction. To avoid the commutative rules induced by the presence of let
binders, we use Accattoli’s contextual approach (see for instance [1]). We define let-contexts
as

L ::= [·] | let p = t inL,

where p stands for a⊗ b or !x. We denote by L[t] the substitution of the term t for the hole
[·] in the let-context L. We may now introduce the reduction rules:

L[(λa.t)]u →β L[t[u/a]]
let a⊗ b = L[u⊗ v] in t →⊗ L[t[u/a, v/b]]

let !x = L[u] in t →! L[t{u/x}]

Modulo the presence of let-contexts, the rules β and ⊗ are standard. In the ! rule, in case x
appears in a box in t, we require that maxindx(t) ≥ |u|. If x does not appear in a box, the
rule may always be applied. In any case, t{u/x} stands for t in which every xi is substituted
by u(i). All rules are readily verified to preserve parsimony.

One-step reduction, denoted by →, is defined as the contextual closure of the above rules,
plus closure under structural equivalence, i.e., t ≡ t′ → u′ ≡ u implies t→ u.

Reduction may be shown to be confluent. However, termination is not guaranteed: if
we let ∆ := λ!x.x0!x1 and Ω := ∆!∆, we have Ω ≡ ∆(∆ :: !∆) → Ω. In fact, the untyped
parsimonious λ-calculus is Turing-complete. This follows from observing that, although
parsimony seems to exclude general fixpoint combinators, we do have affine fixpoints and
these are enough to encode partial recursive functions, because the minimization scheme is
an affine recurrence.3

Note how the syntax allows one to recover unambiguously whether a variable is affine
or exponential. For this reason, we will occasionally use any letter to denote any kind of
variable. It will also be convenient to use the abbreviations

λa⊗ b.t := λc.let a⊗ b = c in t λ!x.t := λa.let !x = a in t,

as well as combinations such as λa⊗ !x.t := λc.let a⊗ d = c in let !x = d in t.

3 The function g(x) := (µy.f(x, y) = 0) may be defined as g(x) := h(0, x) where h(n, x) := if (f(x, n) =
0) thenn elseh(n+ 1, x). This recursive definition is affine because h appears only once on the right.

CSL 2015

28 Simple Parsimonious Types and Logarithmic Space

Γ; ∆, a : A ` a : A
ax

Γ; ∆, a : A ` t : B
Γ; ∆ ` λa.t : A(B

(I
Γ; ∆ ` t : A(B Γ′; ∆′ ` u : A

Γ,Γ′; ∆,∆′ ` tu : B
(E

Γ; ∆ ` t : A Γ′; ∆′ ` u : B
Γ,Γ′; ∆,∆′ ` t⊗ u : A⊗B

⊗I
Γ′; ∆′ ` u : A⊗B Γ; ∆, a : A, b : B ` t : C

Γ,Γ′; ∆,∆′ ` let a⊗ b = u in t : C
⊗E

; a : Γ ` t : A
x : Γ;` !t[x0/a] : !A

!I
Γ′; ∆′ ` u : !A Γ, x : A; ∆ ` t : C

Γ,Γ′; ∆,∆′ ` let !x = u in t : C
!E

Γ, x : A; ∆, a : A ` t : C
Γ, x : A; ∆ ` tx++[x0/a] : C

abs
Γ; ∆ ` t : A Γ′; ∆′ ` u : !A

Γ,Γ′; ∆,∆′ ` t :: u : !A
coabs

Figure 1 The simply typed parsimonious calculus PL.

2.2 Simple types
The simple types are the formulas of intuitionistic propositional linear logic, generated by

A,B ::= o | A(B | A⊗B | !A,

where o is a ground type (we consider only one, although of course our results hold for any
number of ground types). If A and B are types, we denote by A[B] the type obtained by
replacing every occurrence of o in A with B.

The type system we consider, which we call PL (for parsimonious logic), is defined in
Fig. 1. In the abs rule, tx++ is defined like t++ but only the free occurrences of x are
re-indexed. A straightforward induction on the last rule of the derivation gives

I Lemma 2. Let Γ; ∆ ` t : A. Then:
parsimony: t is parsimonious;
typical ambiguity: for any type B, Γ[B]; ∆[B] ` t : A[B].

In fact, the type assignment is an instance of the Curry-Howard correspondence: if we
forget term annotations, the type derivations are proofs in natural deduction and reduction
of terms corresponds to normalization. The underlying logical system is the parsimonious
logic mentioned in the introduction. The isomorphism !A ∼= A⊗ !A is realized by the terms

λ!x.x0 ⊗ !x1 : !A(A⊗ !A λa⊗ !x.a :: !x0 : A⊗ !A(!A,

which use absorption and co-absorption, respectively.
In the sequel, we will sometimes write A[] for A[B] when the type B 6= o is unimportant.

This lack of information is harmless for composition: point 2 of Lemma 2 guarantees that
terms of type A[X](B and B[Y](C may be composed to yield A[X[Y]](C. The only
delicate point is iteration (see below), which requires a flat typing, i.e., of the form A(A.

3 Simply-typed Parsimonious Programming

3.1 Basic data types
The types Nat, Bool and Str of unary (Church) integers, Booleans and binary strings,
respectively, are defined in Fig. 2, together with the encoding of integers and Booleans. For
binary strings, the encoding is similar: if w = w1 · · ·wn ∈W, we have

w := λ!s0.λ!s1.λz.sw1
0 (. . . swn

i z . . .),

D. Mazza 29

Nat := !(o(o)(o(o, Bool := o⊗ o(o⊗ o, Str := !(o(o)(!(o(o)(o(o

n := λ!s.λz.s0(. . . sn−1z . . .) : Nat
succ := λn.λ!s.λz.s0(n !(s1) z) : Nat(Nat
pred := λn.λ!s.λz.n ((λa.a) :: !s0) z : Nat(Nat
dup := λn.It(n, λm1 ⊗m2.(succ m1)⊗ (succ m2), 0⊗ 0) : Nat[](Nat⊗ Nat
store := λn.It(n, λ!x.!(succ x0), !0) : Nat[](!Nat
tt := λc⊗ d.c⊗ d, ff := λc⊗ d.d⊗ c : Bool
not := λb.λc⊗ d.b(d⊗ c) : Bool(Bool
xor := λb.λb′.λc.b(b′c) : Bool(Bool(Bool
and := λb.λb′.let c⊗ d = b(b′ ⊗ ff) in c : Bool[](Bool(Bool
len := λw.It(w, succ, succ, 0) : Str[](Nat
shift := λ!x.!x1 : !A(!A
toStrm := λw.It(w, λs.(ff :: s), λs.(tt :: s), !ff) : Str[](!Bool
leq := λm.λn.let !x = It(n, shift, It(m,λs.(ff :: s), !tt)) inx0 : Nat[](Nat[](Bool
isOne := λw.λn.let !x = It(n, shift, toStrmw) inx0 : Str[](Nat[](Bool

Figure 2 Data types, encodings and basic functions.

where the j-th occurrence of s0 from the left has index j − 1, and similarly for s1. For
instance, 001 = λ!s0.λ!s1.λz.s0

0(s0
1(s1

0z)).
The type Nat supports iteration It(n, step, base) := n !(step′) base, typed as:

; ∆ ` step : A(A Γ; Σ ` base : A
Γ,∆′; Σ, n : Nat[A] ` It(n, step′, base) : A

where ∆′ and step′ are the results of systematically replacing linear variables by exponential
ones. Note that the type of step must be flat.

Unary successor and predecessor are implemented as in Fig. 2. Since their types are
flat, they may be iterated to obtain addition and subtraction, of type Nat[](Nat(Nat.
This is again flat with respect to the second argument, so a further iteration on addition
leads to multiplication, of type Nat[] (Nat[] (Nat. Unary integers are duplicable and
storable as shown in Fig. 2. Using addition, multiplication, subtraction and duplication we
may represent any polynomial with integer coefficients as a closed term of type Nat[](Nat.

These constructions can all be extended to the type Str, which also supports iteration,
flat successors and predecessor, concatenation, and is duplicable and storable.

For the Booleans, we adopt the multiplicative type Bool used in [26]. This type too
is duplicable and storable. An advantage of multiplicative Booleans is that they support
flat exclusive-or in addition to flat negation (see Fig. 2). On the other hand, conjunction
(and disjunction) has one non-flat argument (see again Fig. 2). This would be the case
of exclusive-or too if we had chosen the traditional Boolean type o (o (o. We write
if b then t elseu for let c⊗_ = b (t⊗ u) in c, which has type A if t, u : A and b : Bool[A].

In the sequel we will abusively use affine variables of duplicable types non-linearly, e.g.,
if n : Nat[] we write n⊗ n meaning letn′ ⊗ n′′ = dup[n] inn′ ⊗ n′′. Similarly, if a term step
contains a free affine variable a of storable type A, we will abusively consider the result of its
iteration to still have a free variable a : A[] (instead of an exponential variable of type !A),
by implicitly composing with store.

It will be useful to consider for loops, derived from iteration. Given step[i] : A (A

containing a free affine variable i : Nat[], we define step+ := λ!j ⊗ a.!(succ j1)⊗ (step[j0/i] a) :

CSL 2015

30 Simple Parsimonious Types and Logarithmic Space

strmToW := λ!x.λm.m !(if x0 then succ1 else succ0) ε : !Bool[](Nat[](Str
forall := λw.It(w, λb.ff, λb.b, tt) : Str[](Bool
Univ := λ!R.λm.forall(strmToW(for k < m from !ff doλs.(Rmk) :: s))

mkDepR := if (Rmi j) thenλb⊗ !x⊗ !y.(xor b x0)⊗ !x1 ⊗ ff :: !y0

elseλb⊗ !x⊗ !y.b⊗ !x1 ⊗ x0 :: !y0

rev := λs.let s′ ⊗_ = It(m,λ!x⊗ !y.(y0 :: !x0)⊗ !y1, !ff ⊗ s) in s′ : !Bool(!Bool
mkFunR := λs.let s′ ⊗_ = for j < m from !ff ⊗ s do

λp⊗ q.let b⊗_⊗ q′ = (for i < m from (ff ⊗ q ⊗ !ff) do mkDepR[m, i, j]) in
(b :: p)⊗ (rev q′)

in rev s′

DTCR := λm.λn.λn′.for k < m from ff do
let !x = It(n′, shift, It(k,mkFunR[m], It(n, λp.ff :: p, tt :: !ff))) in
if x0 thenλb.tt elseλb.b

Figure 3 Encoding universal quantification and deterministic transitive closure.

!Nat[]⊗A(!Nat[]⊗A and, given base : A, we set

for i < n from base do step := It(n, step+, !0⊗ base).

3.2 Expressing logspace computation
The class L of languages decidable by deterministic Turing machines with a logarithmically
bounded work tape has a nice presentation in terms of descriptive complexity, due to
Immerman [15]: it corresponds to first-order logic over totally ordered finite structures
with the addition of a deterministic transitive closure operator. This may be equivalently
presented in recursion-theoretic terms, as we do below.

We consider the following set of basic functions: the constant 0 ∈ N; negation not : B→ B
and conjunction and : B2 → B; the functions leq : N2 → B, sum, times : N3 → B corresponding
to the integer relations m ≤ n, m+ n = k and m · n = k; the function len : W→ N returning
the length of a string and isOne : W × N → B s.t. isOne(w, i) = 1 iff the i-th bit of w is 1.
Now call L the smallest set of functions containing the above basic functions and closed by
composition and the following schemata:

universal quantification: if R : Γ × N2 → B ∈ L, then ∀R : Γ × N → B mapping
(γ,m) 7→ 1 iff R(γ,m, i) = 1 for all i < m is also in L;
deterministic transitive closure: let R : Γ× N2k+1 → B ∈ L. This induces a partial
map R∗ : Γ× Nk+1 → Nk mapping (γ,m, n) 7→ n′ if n′ is unique s.t. R(γ,m, n, n′) = 1,
or undefined otherwise. Then, L also contains DTC(R) : Γ × N2k+1 → B mapping
(γ,m, n, n′) 7→ 1 iff there exist n0, . . . , nl ∈ Nk, with n0 = n, nl = n′ and ni ∈ {0, . . . ,m−
1}k for all 0 < i ≤ l, such that R∗(γ,m, ni) = ni+1 for all 0 ≤ i < l.

The class L corresponds exactly to the predicates W→ B in L.
We have already seen that the basic functions are representable in PL: they are either

in Fig. 2 or were discussed in the previous section. The universal quantification schema
is represented by the higher order term Univ : !(Nat[] (Nat[] (Bool[]) (Nat[] (Bool
defined in Fig. 3. The idea is the following: given R : N2 → B and m ∈ N, we use iteration

D. Mazza 31

to build a stream of Booleans whose first m bits contain R(m, 0), . . . , R(m,m− 1); then, we
use strmToW to convert this into a string and we check that it consists entirely of ones.

Note that the variable !R representing the relation on which universal quantification
is applied is exponential because it appears free in the subterm λs.(Rmk) :: s, which is
iterated. This means that, when we want to apply universal quantification to t : Γ (
Nat[] (Nat[] (Bool representing a function in L, we will first have to convert it to a
term of type !Γ(!(Nat[](Nat[](Bool) and then apply Univ to obtain a term of type
!Γ(Nat[](Bool. The extra modalities in !Γ may then be removed because all types in Γ
are storable (they are either Nat, Bool or Str). The same remark applies below.

Let us turn to representing DTC(R) with R : Γ → N2k+1 → B. First of all, we will
restrict to the case k = 1. The general case may be treated by encoding a pairing function,
which we omit here for briefness. Second, we observe that the particular determinization R∗
of R used in the definition of DTC is inessential: we may as well define R∗(γ,m, i) to be the
smallest j such that R(γ,m, i, j) = 1, or undefined otherwise. Indeed, the important case is
when R is already deterministic (i.e., a partial function), in which the determinization is
irrelevant. We will adopt the second definition here; it is possible to deal with the first at
the expense of a more complex encoding.

The representation DTCR : Nat[](Nat[](Nat[](Bool is given in Fig. 3, which we
now explain. If R : N3 → B, computing DTC(R)(m,n, n′) amounts to determining whether
there is a path from n to n′ in a graph G whose nodes are [m] := {0, . . . ,m − 1} and s.t.
there is an edge (n, n′) iff R∗(m,n) = n′, so the out-degree of G is at most 1. To do this,
we imagine a token traveling in G, its position being represented by a stream of type !Bool
which is ff everywhere except where the token is. The edges of G may now be seen as a
stream transformation ϕ : !Bool(!Bool. Initially, the stream is tt at position n; applying ϕ
will make the token move, and we may determine the existence of a path by checking the
value at position n′ after at most m applications of ϕ.

The idea behind the definition of ϕ is best explained with an example. Suppose thatm = 4
and that the edges of G are {(0, 1), (1, 1), (3, 2)}. Then, ϕ = λ!x.ff :: (xor x0 x1) :: x3 :: ff :: !x4.
This works because the input stream !x contains exactly one bit set to tt, so at most one
of x0, x1 will be tt and exclusive-or is equivalent to disjunction. We cannot use disjunction
because it is not flat. Observe by the way that the simultaneous presence of flat disjunction
and flat duplication (i.e., if dup had type Bool (Bool ⊗ Bool instead of its present type
BoolBool⊗ Bool would allow this solution to work for arbitrary relations
(i.e., graphs of arbitrary out-degree) and we would be able to compute arbitrary transitive
closures, which is impossible unless L = NL.

The tricky task now is to compute ϕ from R. This is realized by mkFunR : !Bool(!Bool,
which operates by manipulating two streams p and q, the latter being initialized as the
input stream s. For each j ∈ [m], we determine its dependencies, i.e., those i ∈ [m] s.t.
R(m, i, j) = 1. This is done by iterating over all i ∈ [m] the term mkDepR : C (C (where
C := Bool⊗ !Bool⊗ !Bool): if R(m, i, j) = 0, the i-th element is saved in an auxiliary stream
(it may contain the token, so we must preserve it); otherwise, we xor the current result with
the i-th element and set this element to ff, so that it won’t be considered later (if the token
was there, it has now moved). This yields the determinization of R we defined above. At
the end of this, the result is pushed to p and we start over with the (possibly) modified q (q
also needs to be reversed because traversing it and pushing its elements into an auxiliary
stream reversed their order). When we exit the outer loop, p contains the desired stream
(but, again, in reverse order).

Finally, the term DTCR does nothing but looping through all 0 ≤ k < m to determine

CSL 2015

32 Simple Parsimonious Types and Logarithmic Space

!
. . .
?Γ !A

!
Γ A
π

o⊥ o

A B

A⊗B

A B

A`B
ax cutA⊥ A

⊗ `
A !A A ?A

!A ?A A

? w

Figure 4 Cells for building nets, with their typing annotations.

→ →• ◦

!

π π

??
?

π
!

. . .

. . .

. . .→
. . .

Figure 5 Cut-elimination steps on nets. On the top, • = ⊗ and ◦ = `, or • = ! and ◦ = ?.

whether, after k iterations of mkFunR, the token has moved from n to n′.

4 Upper Bounds

4.1 Nets and cut-elimination (via stratification)

We will consider here classical simple types, generated by:

A,B ::= o | o⊥ | A⊗B | A`B | !A | ?A.

Linear negation A⊥ is defined as usual via De Morgan.
We use the standard definition of net, which is a labelled graph built by connecting the

cells given in Fig. 4, respecting the orientation given therein. Each cell has a number of
ports depending on the symbol it carries; the incoming are called premises and the outgoing
conclusions. The conclusions which are not premise of any cell are called conclusions of
the net, and so are their types. The rightmost cell in Fig. 4 is called a box; the conclusion
labelled by !A is called its principal port, the other are the auxiliary ports. A box contains a
net π, whose conclusions are in bijection with the conclusions of the box itself.

The size of a net π is the number of its cells. Its height is the maximum height of its
types (as trees). The depth of a cell or port of π is the number of nested boxes it is contained
in. The depth of π is the maximum depth of its cells.

Nets are usually required to satisfy some form of correctness, yielding proof nets. We will
not specify any correctness criterion here, we will rather take “proof net” as a synonym of
sequentializable net, i.e., corresponding to a sequent calculus proof (or to a typing derivation
of PL, which will be our case).

Cut-elimination steps are defined in Fig. 5. Types (and orientations) are omitted because
they can be recovered without ambiguity from Fig. 4. We prove cut-elimination for our nets
using an idea of Gaboardi, Roversi and Vercelli [10] and which resorts to stratification.

We add the formula §A to our classical types and a corresponding cell in nets, with
premise A and conclusion §A, with the following cut-elimination step:

D. Mazza 33

→§ §

In this context, we call plain a net which contains no § in its types.

I Definition 3 (Indexing, stratified net, level [2]). A weak indexing of a net π whose set of
ports is P is a function I : P −→ Z satisfying the following:

if p, p′ are the conclusions (resp. premises) of an ax (resp. cut) cell of π, then I(p) = I(p′);
if p is the conclusion of a ⊗ or ` cell whose premises are q, q′, then I(p) = I(q) = I(q′);
if p is the conclusion of a ! or ? cell whose left and right premises are l and r, then
I(p) = I(r) = I(l)− 1;
if p is the conclusion of a box containing π and q is the conclusion of π corresponding to
p, then I(p) = I(q)− 1;
if p is the conclusion of a § cell whose premise is q,then I(p) = I(q)− 1.

An indexing for π is a weak indexing I further satisfying that, for any two conclusions p, p′
of π, I(p) = I(p′). A stratified net is a net admitting an indexing.

Note that, if I is a weak indexing, its range rgI is obviously a finite set. The level of I is
`(I) := max rgI −min rgI.

Of course, one may easily verify that cut-elimination preserves stratification [2].
Now, the calculus we introduced in [20] (where parsimony was first introduced) is also

stratified, i.e., its terms may be mapped to stratified proof nets, in a way entirely analogous
to the definitions we will give in Sect. 5.1 below. The polynomial-time normalization result
of [20] was proved using linear explicit substitutions (in the style of [1]), which essentially
amounts to using proof nets. Therefore, we have:

I Proposition 4. Let π be a stratified proof net of size s and level l. Then, π normalizes
while keeping the size of all reducts bounded by O(sk(l)), where k depends only on l.

Proof. The proof is similar to the usual normalization proofs for stratified systems of linear
logic, such as those in [12, 2]. It actually gives a polynomial bound also on the length of the
reduction and holds even in absence of types, although we will not need this. See Lemma 5
of [20]. J

The discovery of [10] is that simply typed nets embed in stratified nets, in a way compatible
with cut-elimination.

I Proposition 5 (Embedding [10]). There is an embedding (−)§ of plain nets into stratified
nets such that, for all π of height h:
1. (π)§ is of level at most h;
2. π → π′ implies (π)§ →∗ (π′)§.

Proof. Part 1 follows from [10, Proposition 1] and part 2 is precisely [10, Proposition 2]. The
only delicate point is that those results are proved for linear logic and parsimonious logic is not
a subsystem of it, because of coabsorption (the other difference is linearity vs. affinity, but it
is inessential). The key observation is that indexings are oblivious to the distinction between
! and ?, so coabsorption behaves exactly as absorption, and coabsorption-free parsimonious
logic is a subsystem of linear logic.

More precisely, given a net π, we may consider the net π− in which all ! and ? are replaced
by a self-dual modality], with suitable links coming from those for ! and ?, and on which
indexings behave accordingly. This net will be well typed because] is self-dual. Then, one
may check that π is stratified iff π− is: an indexing of π induces an indexing of π− and vice

CSL 2015

34 Simple Parsimonious Types and Logarithmic Space

versa. Now, it is not hard to check that, because of the above obliviousness, the embedding
of [10, Proposition 1] works just as well for proof nets of the form π−. J

I Proposition 6. A plain proof net π of size s and height h normalizes while keeping the
size of all reducts bounded by O(k′(h) · sk(h)), where k, k′ depend solely on h.

Proof. A consequence of point 2 of Proposition 5 and Proposition 4. The only thing to check
is the size of (π)§. Let n be the maximum number of § cells added under a single axiom;
the number of axioms is bounded by s, so the size of (π)§ is bounded by (n+ 1)s. But n,
in turn, is bounded by h. Finally, what is the level of (π)§? Since § cells are only added to
balance out the presence of exponential cells in π, the level will not exceed the depth of π,
which is also bounded by h. So Proposition 4 gives us the size bound (h+ 1)k(h)sk(h) (k is
monotonic). J

4.2 Geometry of interaction
In the following definition, we use the wildcards • ∈ {⊗,`} and † ∈ {!, ?}.
I Definition 7 (Interaction Abstract Machine). A stack is a finite string over {p, q} ∪ N. We
use S to range over stacks and write α · S for a stack whose first symbol is α. A stack S
matches a formula A if: S = ε and A = o or A = o⊥; S = m ·S′ with m ∈ {p, q}, A = A′ •A′′
and S′ matches one of A′, A′′; S = n · S′ for some n ∈ N, A = †A′ and S′ matches A′.

A box identifier is a finite string over N, ranged over by B. If B = n1 · · ·nk, we define
‖B‖ := max{n1, . . . , nk}.

Given a net π, we define an automaton IAM(π) as follows. Its states are tuples (d, p,B, S),
where d ∈ {↑, ↓} is a direction, p is a port of π, B is a box identifier and S is a stack. Such a
state is admissible if the length of B equals the depth of p and S matches the type of p. The
transition relation is the smallest such that:
ax: (↑, p, B, ε) (↓, p′, B, ε) whenever p, p′ are the conclusions of an ax cell;
cut: (↓, p, B, S) (↑, p′, B, S) whenever p, p′ are the premises of a cut cell;
•: (↓, p, B, S) (↓, p′, B,m · S) whenever p is the left (resp. right) premise of a • cell and p′

its conclusion, in which case m = p (resp. m = q);
†l: (↓, p, B, S) (↓, p′, B, 0 ·S) whenever p is the left premise of a † cell and p′ its conclusion;
†r: (↓, p, B, n · S) (↓, p′, B, (n+ 1) · S) whenever p is the right premise of a † cell and p′

its conclusion;
†b: (↓, p, n ·B,S) (↓, p′, B, n · S) whenever q is the conclusion of a box containing π and

p is the conclusion of π corresponding to q;
∗: (d′∗, p′, B′, S′) (d∗, p, B, S) whenever (d, p,B, S) (d′, p′, B′, S′), with ↑∗:=↓ and
↓∗:=↑.

Observe that the transitions are deterministic and that they preserve admissible states.
We write π when we want to specify that the transition relation is that of IAM(π) (as

opposed to that induced by a different net).
A sequence of transitions s ∗ s′ of IAM(π) is maximal if s is admissible and the ports

of s and s′ are conclusions of π (not necessarily distinct). In that case, we write s max s′.

The following is a standard property of the GoI. It tells us that IAM(π) behaves identically
if we put π inside a box.

I Lemma 8. Let p, p′ be conclusions. Then, (↑, p, B, S) ∗ (↓, p′, B′, S′) implies B′ = B

and (↑, p, B0, S) ∗ (↓, p′, B0, S
′) for all B0.

Proof. Standard. J

D. Mazza 35

Note that cut-elimination steps preserve the number and ordering of conclusions. Hence,
in the following, when π → π′, we implicitly identify the conclusions of π′ with those of π.

I Proposition 9 (Soundness of the GoI). Let π be a net and let π → π′. Then, max
π′ = max

π .

Proof. The multiplicative steps are completely standard and pose no problem, so we assume
that the cut-elimination step applied is exponential.

Let s max
π s′. We need to show that s max

π′ s′. We say that the sequence crosses
the left hand side of the rule if it can be decomposed into s ∗π s1 ∗π s2 ∗π s

′ such that
the ports p1, p2 (not necessarily distinct) of the states s1, s2 belong to the interface of the
left hand side of the rule. We will show that each crossing s1 ∗π s2 induces a sequence
s1 ∗π′ s2. This is enough to conclude, because the segments which are not crossings also
exist in π′ for trivial reasons (they concern subnets in which π′ is identical to π).

We refer to Fig. 5, with the content of the box being renamed to ρ (since π is the proof
net being reduced). Let us fix some notation. In the left hand side, we call a1, . . . , an
the auxiliary ports and a∗ the principal port of the box, and b1, . . . , bn, b∗ the associated
conclusions of ρ; and q, q′, r the left and right premise and the conclusion, respectively, of
the ? cell. In the right hand side, we call b′1, . . . , b′n, b′∗ the conclusions of the copy of ρ which
is outside the box, while the other copy still has conclusions bi; the auxiliary ports of the
box are a′1, . . . , a′n; the ports at the interface, as well as the principal port, are called as in
the left hand side. We have three cases:
1. p1, p2 ∈ {q, q′};
2. p1, p2 ∈ {a1, . . . , an};
3. p1 ∈ {q, q′} and p2 ∈ {a1, . . . , an}.
Actually, case 3 has a symmetric version with the roles of p1, p2 exchanged, but one reduces
to the other thanks to the reversibility of transitions.

Case 1 works also in full linear logic. It is easy to see that we must have p1 = p2 and
that everything goes well.

For case 2, let s1 = (↑, ai, B, n · S). Then, we have s1 π (↑, bi, n · B,S) ∗ρ (↓
, bj , n · B,S′) π (↓, aj , B, n · S′) = s2. In π′, ai becomes the conclusion of a ? link,
so we have two cases: either n = 0, and then s1 π′ (↑, b′i, B, S) ∗ρ (↓, b′j , B, S′) π′ (↓
, aj , B, 0·S′) = s2; or n > 0, and then s1 π′ (↑, a′i, B, (n−1)·S) π′ (↑, bi, (n−1)·B,S) ∗ρ
(↓, bj , (n− 1) ·B,S′) π′ (↓, a′j , B, (n− 1) · S′) π′ (↓, aj , B, n · S′) = s2. In both cases we
used Lemma 8.

For case 3, suppose p1 = q. We have s1 = (↓, q, B, S) π (↓, r, B, 0 · S) π (↑, a∗, B, 0 ·
S) π (↑, b∗, 0 · B,S) ∗ρ (↓, bi, 0 · B,S′) π (↓, ai, B, 0 · S′) = s2. In π′, we have s1 π′

(↑, a′∗, B, S) ∗ρ (↓, b′i, B, S′) π′ (↓, ai, B, 0 · S′) = s2. Suppose now p1 = q′. Then,
s1 = (↓, q′, B, n·S) π (↓, r, B, (n+1)·S) π (↑, a∗, B, (n+1)·S) π (↑, b∗, (n+1)·B,S) ∗ρ
(↓, bi, (n+1) ·B,S′) π (↓, ai, B, (n+1) ·S′) = s2. In π′, we have s1 π′ (↑, a∗, B, n ·S) π′

(↑, b∗, n · B,S) ∗ρ (↓, bi, n · B,S′) π′ (↓, a′i, B, n · S′) π′ (↓, ai, B, (n+ 1) · S′) = s2. We
used again Lemma 8.

The above shows that max
π ⊆ max

π′ . The converse is entirely analogous. J

I Lemma 10. Let π be a proof net with no occurrence of ! in its conclusions, of size s and
height h, let p0 be a conclusion of π of type A containing no exponential modality and let
(↑, p0, ε, S0) ∗ (d, p1, B1, S1). Then, ‖B1‖ = O(k′(h) · sk(h)).

Proof. Before starting the proof, let us clarify on the restriction on A: we need it so that we
have no problem in eliminating all cuts, similarly to Proposition 11 below.

CSL 2015

36 Simple Parsimonious Types and Logarithmic Space

When visiting the ports of π via the execution of IAM(π), we may visit several times
the same port. It is well known (cf. [5]) that the box identifier tells us which “copy” of the
current port we are visiting (whence the name). For example, a box identifier of the form
3 · 0 · 1 tells us that π contains three nested boxes B1 ⊆ B2 ⊆ B3 and that we are now in copy
number 3 of B1, which is inside copy number 0 of B2, which is inside copy number 1 of B3
(in the usual GoI, box identifiers are more complex, in our nets they take this simple form).
Therefore, in order to bound the integers appearing in box identifiers, it is enough to bound
the number of times each box will be duplicated by an exponential rule while reducing π to
its normal form. But this is precisely what is given by Proposition 6. J

5 From Simply Typed Terms to Logspace Algorithms

5.1 Translating the calculus into nets
Simple intuitionistic types are mapped to classical types in the usual way: LoM := o; LA(
BM := LAM⊥ ` LBM; LA⊗BM := LAM⊗ LBM; and L!AM := !LAM.

Given a type derivation of Γ; ∆ ` t : A, we associate with it a net of conclusions
?LΓM⊥, L∆M⊥, LAM. The definition is by induction on the last rule of the type derivation.
The multiplicative cases are standard; η-expansion nets, defined as usual, are employed to
translate the ax rule. The exponential rules (except !E, which is just a cut) are given below:

L!uM :=
. . .

!

LuM
a

x

!

LtM LuM

Ltx++[x0/a]M :=

LtM

?
xa

x

Lt :: uM :=

To avoid cluttering the pictures, we only drew the conclusions corresponding to those types in
the context which play a role in the typing rules and we marked them with the corresponding
variable. Also, types are omitted as they may be inferred from Fig. 1. In the following, we
will abusively denote by LtM the translation of a typing derivation of a term t.

The cut-elimination rules we considered are not enough to simulate reduction in the
calculus. To obtain something intelligible, we must add garbage collection, i.e., elimination
of cuts on w cells. We define

. . .
π w

→
w w
. . .

as soon as π = LtM for some term t.

I Proposition 11. Let Γ; ∆ ` t : A contain no positive (resp. negative) occurrence of ! in
A (resp. Γ) and let t′ be the normal form of t. Then, LtM →∗ Lt′M (possibly with garbage
collection steps).

Proof. The fact that cut-elimination in proof nets simulates reduction in the λ-calculus is
standard, as is our translation. The type restriction here is necessary because, for conciseness,
we omitted the rules reducing cuts on the auxiliary ports of boxes. J

We may forget about garbage collection steps, because our real interest is the following:

I Corollary 12. Let Γ; ∆ ` t : A and t′ be as in Proposition 11 and let s max
Lt′M s′. Then, we

also have s max
LtM s′.

D. Mazza 37

Proof. We know that LtM →∗ Lt′M by possibly using garbage collection steps. Now, it is a
standard and easy fact (see for instance [5]) that these may always be postponed, i.e., we
have a net π such that LtM→∗ π →∗gc Lt′M, where →∗gc denotes a reduction sequence consisting
entirely of garbage collection steps while the first sequence contains none. But garbage
collection does not alter maximal GoI transition sequences, because it substitutes “dead
ends”, i.e., subnets which no maximal transition sequence may use, with shorter dead ends.
Therefore, we already have s max

π s′ and we may conclude by Proposition 9. J

5.2 Synthesis of logspace algorithms
We are at last ready to prove the inclusion PL ⊆ L. Let t : Str[A] (Bool. We have to
synthesize a deterministic logspace algorithm which, on input w ∈ W, decides whether
t w →∗ tt. In the following, every dependency (or lack thereof) is expressed w.r.t. |w|.

By looking at the net translation of the Boolean tt and using Corollary 12, we know that
the above problem is equivalent to determining whether (↑, p, ε, pp) max

π (↓, p, ε, qp), where
p is the only conclusion of the net π := Lt wM. As observed in the introduction, the size of π
is O(|w|): LtM is constant and the size of LwM is c(|w|+ 1) + 2|w|+ 4, where c is a constant
depending on A (it is the size of the η-expansion of A⊥, A). By Lemma 10, the greatest
integer that will ever appear in the B stack is bounded by k′(h)sk(h), where s and h are
the size and height of π, respectively. This is polynomial because h is constant (it depends
only on A). The depth of π is also constant: it is the maximum between the depth of LtM
(constant) and the depth of LwM (also constant, equal to the nesting of exponentials in A).
Therefore, by the space bound given in the introduction, we may seemingly conclude.

There is however a subtlety: while we may assume LtM to be wired into our algorithm, we
still need to build LwM from w. Actually, instead of building the net, it will be enough to
predict the behavior of IAM(LwM). In fact, the only conclusion of π is a conclusion of LtM, so
evaluation may start independently of w. At some point, the simulation of the automaton
will reach (after crossing a cut at depth 0) a state of the form (↑, q, ε, S), with q being where
the conclusion of LwM should be. Our algorithm will then compute a stack S1, according to
the following cases:
1. S = q · q · q ·S′: the automaton is asking for the first bit of w; if this is 1, S1 := q · p · 0 ·S′;

if this is 0, S1 := p · 0 · S′;
2. S = q·q·p·S′: the automaton is asking for the last bit of w; if this is 1, S1 := q·p·(n1−1)·S′,

where n1 is the number of 1’s in w; if this is 0, S1 := p · (n0 − 1) · S′, where n0 is the
number of 0’s in w;

3. S = q · p ·n ·m ·S′: the automaton is asking for the value of the neighbor of the (n+ 1)-th
bit of w whose value is 1, e.g., if w = 001101 and n = 1, the “second 1” is 001101, its left
neighbor is 1, which is the “first 1”, and its right neighbor is 0, which is the “third 0”). A
request for the right (resp. left) neighbor corresponds to m = p (resp. m = q). If there
is no “(n+ 1)-th 1”, the algorithm terminates immediately with a negative answer (the
transition sequence sought in IAM(π) does not exist). Otherwise, let b be the value of
the requested neighbor, and let n′ be its position (as the “(n′ + 1)-th 1 or 0”). If b = 1,
S1 := q · p · n′ · S′; if b = 0 and this is the m-th zero of w, S1 := p · n′ · S′;

4. S = p ·n ·m ·S′: the automaton is asking for the neighbor of the (n+ 1)-th bit of w whose
value is 0. The same procedure as above is applied, with the roles of 0 and 1 reversed.

After computing S1, the algorithm resumes the simulation of IAM(π) from the state (↓,
q, ε, S1).

To understand where the four cases above come from, it is enough to look at the type
of LwM, namely LStr[A]M = ?(A ⊗ A⊥) ` ?(A ⊗ A⊥) ` A⊥ ` A, which is composed of four

CSL 2015

38 Simple Parsimonious Types and Logarithmic Space

subformulas combined by `’s. The stack S must match that type; the cases correspond to the
four subformulas, from right to left. The last two cases, which are similar, correspond both
to ?(A⊗A⊥); the integer and the constant m in the stack are there to match this formula.
The stack S′ matches A, and is returned unchanged because in LwM there are η-expansions of
that type, acting as the identity on stacks.

The remaining details may be understood by looking at how the bits of w are represented
in LwM, but this is not really essential. What is important is to observe that predicting the
behavior of IAM(LwM) only requires inspecting w and updating counters bounded by |w|,
which is all doable in logarithmic space.

6 Discussion and Perspectives

As mentioned in the introduction, we believe that our system PL gives the simplest functional
characterization of L currently known. We also want to stress that parsimony offers a truly
novel approach to applying linear logic to ICC, which is not just a variant of existing “light
logics” (such as bounded, light or soft linear logic) or of systems such as those of [13, 14].
The most prominent difference with respect to “light logics” is the absence of stratification
or other structural principles enforcing bounded-time cut-elimination: as mentioned above,
the untyped parsimonious λ-calculus is Turing-complete, whereas light λ-calculi normalize
with the same runtime independently of types. This is because parsimony is not about the
global complexity of normalization but the local complexity of single reduction steps, via the
notion of continuous linear approximations originally introduced in [19]. This allows dealing
with non-uniform computation [20, 21], a perspective not offered by previous work on ICC.

If we add to PL the constant ⊥ (typable with all types), we obtain finitary terms as
terms whose boxes are all of the form !⊥. Essentially, these are purely multiplicative affine
terms, or multiplicative proof nets: their size bounds the number of steps to normal form
and they may be related to Boolean circuits [26]. A parsimonious term t induces a family of
finitary approximations (btcn)n∈N: btcn is defined by taking t and truncating all the streams
appearing in it to length n (“truncating” means replacing the tail of the stream with !⊥). We
know from [19] that reduction is continuous w.r.t. these approximations. Parsimony refines
this by giving a polynomial “modulus of continuity” [20]: if t w →∗ b with b a Boolean value,
then there exists m polynomial in |w| s.t. btcm w →∗ b, i.e., a polynomial-size approximation
of t is sufficient to compute the result.

Now, an arbitrary family of simply-typed finitary terms (un)n∈N : Str[](Bool decides a
language L in the same sense as a family of circuits. It is shown in [21] that, if the size of un
is polynomial in n, then L ∈ L/poly (and conversely). If the un happen to be approximations
of a generic PL term t : Str[](Bool, the family is uniform, and indeed we proved here that
L ∈ L. But how uniform is it? We can show that it is at least logspace-uniform, but we
suspect the uniformity to be stronger (e.g. UE-uniform) and plan to investigate further on
this.

Another interesting research direction is to consider second-order quantification, i.e.,
parsimonious system F. In [21], it is shown that linear polymorphism (i.e., comprehension
restricted to !-free formulas) yields P/poly (non-uniform polynomial time). In the uniform
case, we should of course obtain P, whereas we conjecture that the full parsimonious system
F captures exactly primitive recursion.

Acknowledgments. The present formulation of this work owes much to discussions with
Kazushige Terui, whom we wish to warmly thank here. We also acknowledge partial support

D. Mazza 39

of ANR projects Logoi ANR-2010-BLAN-0213-02, Coquas ANR-12-JS02-006-01 and Elica
ANR-14-CE25-0005.

References
1 Beniamino Accattoli and Ugo Dal Lago. Beta reduction is invariant, indeed. In Proceedings

of CSL-LICS, page 8, 2014.
2 Patrick Baillot and Damiano Mazza. Linear logic by levels and bounded time complexity.

Theor. Comput. Sci., 411(2):470–503, 2010.
3 Stephen Bellantoni and Stephen A. Cook. A new recursion-theoretic characterization of

the polytime functions. Computational Complexity, 2:97–110, 1992.
4 Guillaume Bonfante. Some programming languages for logspace and ptime. In Proceedings

of AMAST, pages 66–80, 2006.
5 Ugo Dal Lago. Context semantics, linear logic, and computational complexity. ACM Trans.

Comput. Log., 10(4), 2009.
6 Ugo Dal Lago and Ulrich Schöpp. Functional programming in sublinear space. In Proceed-

ings of ESOP, pages 205–225, 2010.
7 Ugo Dal Lago and Ulrich Schöpp. Type inference for sublinear space functional program-

ming. In Proceedings of APLAS, pages 376–391, 2010.
8 Vincent Danos and Laurent Regnier. Reversible, irreversible and optimal lambda-machines.

Theor. Comput. Sci., 227(1-2):79–97, 1999.
9 Marco Gaboardi, Jean-Yves Marion, and Simona Ronchi Della Rocca. An implicit charac-

terization of PSPACE. ACM Trans. Comput. Log., 13(2):18, 2012.
10 Marco Gaboardi, Luca Roversi, and Luca Vercelli. A by-level analysis of multiplicative

exponential linear logic. In Proceedings of MFCS, pages 344–355, 2009.
11 Jean-Yves Girard. Geometry of interaction I: Interpretation of system F. In Proccedings of

Logic Colloquium 1988, pages 221–260, 1989.
12 Jean-Yves Girard. Light linear logic. Inf. Comput., 143(2):175–204, 1998.
13 Martin Hofmann. A mixed modal/linear lambda calculus with applications to bellantoni-

cook safe recursion. In Proceedings of CSL, pages 275–294, 1997.
14 Martin Hofmann. Linear types and non-size-increasing polynomial time computation. Inf.

Comput., 183(1):57–85, 2003.
15 Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer,

1999.
16 Neil D. Jones. Logspace and ptime characterized by programming languages. Theor. Com-

put. Sci., 228(1-2):151–174, 1999.
17 Lars Kristiansen. Neat function algebraic characterizations of logspace and linspace. Com-

putational Complexity, 14(1):72–88, 2005.
18 Daniel Leivant and Jean-Yves Marion. Lambda calculus characterizations of poly-time.

Fundam. Inform., 19(1/2), 1993.
19 Damiano Mazza. An infinitary affine lambda-calculus isomorphic to the full lambda-

calculus. In Proceedings of LICS, pages 471–480, 2012.
20 Damiano Mazza. Non-uniform polytime computation in the infinitary affine lambda-

calculus. In Proceedings of ICALP, Part II, pages 305–317, 2014.
21 Damiano Mazza and Kazushige Terui. Parsimonious types and non-uniform computation.

In Proceedings of ICALP, Part II, pages 350–361, 2015.
22 Peter Møller Neergaard. A functional language for logarithmic space. In Proceedings of

APLAS, pages 311–326, 2004.
23 Ramyaa Ramyaa and Daniel Leivant. Ramified corecurrence and logspace. Electr. Notes

Theor. Comput. Sci., 276:247–261, 2011.

CSL 2015

40 Simple Parsimonious Types and Logarithmic Space

24 Ulrich Schöpp. Space-efficient computation by interaction. In Proceedings of CSL, pages
606–621, 2006.

25 Ulrich Schöpp. Stratified bounded affine logic for logarithmic space. In Proceedings of
LICS, pages 411–420, 2007.

26 Kazushige Terui. Proof nets and boolean circuits. In Proceedings of LICS, pages 182–191,
2004.

	Introduction
	The Parsimonious Lambda-Calculus
	Terms and reduction
	Simple types

	Simply-typed Parsimonious Programming
	Basic data types
	Expressing logspace computation

	Upper Bounds
	Nets and cut-elimination (via stratification)
	Geometry of interaction

	From Simply Typed Terms to Logspace Algorithms
	Translating the calculus into nets
	Synthesis of logspace algorithms

	Discussion and Perspectives

