4 research outputs found

    Lagrangian Relaxation and Partial Cover (Extended Abstract)

    Get PDF
    Lagrangian relaxation has been used extensively in the design of approximation algorithms. This paper studies its strengths and limitations when applied to Partial Cover. We show that for Partial Cover in general no algorithm that uses Lagrangian relaxation and a Lagrangian Multiplier Preserving (LMP) alphaalpha-approximation as a black box can yield an approximation factor better than~frac43alphafrac{4}{3} alpha. This matches the upper bound given by K"onemann et al. (ESA 2006, pages 468--479). Faced with this limitation we study a specific, yet broad class of covering problems: Partial Totally Balanced Cover. By carefully analyzing the inner workings of the LMP algorithm we are able to give an almost tight characterization of the integrality gap of the standard linear relaxation of the problem. As a consequence we obtain improved approximations for the Partial version of Multicut and Path Hitting on Trees, Rectangle Stabbing, and Set Cover with ho ho-Blocks

    Scheduling with Outliers

    Full text link
    In classical scheduling problems, we are given jobs and machines, and have to schedule all the jobs to minimize some objective function. What if each job has a specified profit, and we are no longer required to process all jobs -- we can schedule any subset of jobs whose total profit is at least a (hard) target profit requirement, while still approximately minimizing the objective function? We refer to this class of problems as scheduling with outliers. This model was initiated by Charikar and Khuller (SODA'06) on the minimum max-response time in broadcast scheduling. We consider three other well-studied scheduling objectives: the generalized assignment problem, average weighted completion time, and average flow time, and provide LP-based approximation algorithms for them. For the minimum average flow time problem on identical machines, we give a logarithmic approximation algorithm for the case of unit profits based on rounding an LP relaxation; we also show a matching integrality gap. For the average weighted completion time problem on unrelated machines, we give a constant factor approximation. The algorithm is based on randomized rounding of the time-indexed LP relaxation strengthened by the knapsack-cover inequalities. For the generalized assignment problem with outliers, we give a simple reduction to GAP without outliers to obtain an algorithm whose makespan is within 3 times the optimum makespan, and whose cost is at most (1 + \epsilon) times the optimal cost.Comment: 23 pages, 3 figure

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..
    corecore