149 research outputs found

    Development of Maximum Power Extraction Algorithms for PV system With Non-Uniform Solar Irradiances

    Get PDF
    This thesis addresses the problem of extraction of maximum power from PV arrays subjected to non-uniform solar irradiances e.g partial shading. In the past, a number of maximum power point tracking algorithms (MPPTs) such as Perturb & Observe, Hill climbing, Incremental Conductance, etc. have been proposed. These are extensively used for obtaining maximum power from a PV module to maximize power yield from PV systems under uniform solar irradiance. However, these techniques have not considered partial shading conditions and the stochastic nature of solar insolation. In the event of non-uniform solar insolation, a number multiple maximum power points (MPPs) appear in the power-voltage characteristic of the PV module. In the present thesis, the stochastic nature of the solar insolation is considered to obtain the global MPP of a PV module with a focus on developing global optimization techniques for MPPT that would handle the multiple MPPs. Thus, the thesis will address the above problem by developing a number of global MPPT algorithms. In this thesis, an extensive review on MPPT algorithms for both uniform and non-uniform insolation levels is presented. Subsequently, an analysis with respect to their merits, demerits and applications have been provided in order to design new MPPTs to achieve higher MPPT efficiency under non-uniform solar irradiances. Firstly, PV modules are modelled with and without bypass diodes for handling Partial shading conditions (PSCs). Then, a new Ring pattern (RP) configuration has been proposed which is compared with different existing configurations such as Series parallel (SP), Total cross tied(TCT) and Bridge linked(BL) configurations on the basis of maximum power and fill factor. As described earlier, under non-uniform irradiances the MPPT problem boil down to determining the global MPP. Thus, the MPPT problem can be cast as a global optimization problem. It may be noted that evolutionary computing approaches are extensively used for obtaining global optimum solutions. One of the most recent evolutionary optimization techniques called grey wolf optimization technique has gained enormous popularity as an efficient global optimization approach. In view of this, Grey wolf optimization is employed to design a global MPPT such that maximum power from PV modules can be extracted which will work under partial shading conditions. Its performance has been compared with two existing MPPTs namely P&O and IPSO based MPPT methods. From the obtained simulation and experimental results, it was found that the GWO based MPPT exhibits superior MPPT performance as compared to both P&O and IPSO MPPTs on the basis of dynamic response, faster convergence to GP and higher tracking efficiency. Further, in order to scale down the search space of GWO which helps to speed up for achieving convergence towards the GP, a fusion of GWO-MPPT with P&O MPPT for obtaining maximum power from a PV system with different possible patterns is developed. An experimental setup of 600W solar simulator is used in the laboratory having characteristics of generating partial shading situation. Firstly, the developed algorithms were implemented for a PV system using MATLAB/SIMULINK. Subsequently, the aforesaid experimental setup is used to implement the proposed global MPPT algorithms. From the obtained simulation and experimental results it is observed that the Hybrid-MPPT converges to the GP with least time enabling highest possible maximum power from the solar PV system. In this thesis, analytical modeling of PV modules for handling non-uniform irradiances is pursued as well as a new RP configuration of PV modules is developed to achieve maximum power and fill factor. In order to extract maximum power from PV panels subjected to non-uniform solar irradiances, two new MPPT algorithms are developed namely Grey wolf optimization based MPPT (GWO-MPPT) and GWO assisted PO (GWO-PO)

    A novel modified sine-cosine optimized MPPT algorithm for grid integrated PV system under real operating conditions

    Get PDF
    This research work presents a modified sine-cosine optimized maximum power point tracking (MPPT) algorithm for grid integration. The developed algorithm provides the maximum power extraction from a photovoltaic (PV) panel and simplified implementation with a benefit of high convergence velocity. Moreover, the performance and ability of the modified sine-cosine optimized (MSCO) algorithm is equated with recent particle swarm optimization and artificial bee colony algorithms for comparative observation. Practical responses is analyzed under steady state, dynamic, and partial shading conditions by using dSPACE real controlling board laboratory scale hardware implementation. The MSCO-based MPPT algorithm always shows fast convergence rate, easy implementation, less computational burden and the accuracy to track the optimal PV power under varying weather conditions. The experimental results provided in this paper clearly show the validation of the proposed algorithm

    An intelligent controlling method for battery lifetime increment using state of charge estimation in PV-battery hybrid system

    Get PDF
    In a photovoltaic (PV)-battery integrated system, the battery undergoes frequent charging and discharging cycles that reduces its operational life and affects its performance considerably. As such, an intelligent power control approach for a PV-battery standalone system is proposed in this paper to improve the reliability of the battery along its operational life. The proposed control strategy works in two regulatory modes: maximum power point tracking (MPPT) mode and battery management system (BMS) mode. The novel controller tracks and harvests the maximum available power from the solar cells under different atmospheric conditions via MPPT scheme. On the other hand, the state of charge (SOC) estimation technique is developed using backpropagation neural network (BPNN) algorithm under BMS mode to manage the operation of the battery storage during charging, discharging, and islanding approaches to prolong the battery lifetime. A case study is demonstrated to confirm the effectiveness of the proposed scheme which shows only 0.082% error for real-world applications. The study discloses that the projected BMS control strategy satisfies the battery-lifetime objective for off-grid PV-battery hybrid systems by avoiding the over-charging and deep-discharging disturbances significantly

    Power Converters for Photovoltaic Energy Generation

    Get PDF

    Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications

    Get PDF
    This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators

    High efficient interleaved boost converter with novel switch adaptive control in photovoltaic application

    Get PDF
    PhD ThesisEnergy conversion efficiency is an important factor for the long-term feasibility of photovoltaic systems. Significant work has been carried out into improving the effectiveness of solar arrays in recent years. In addition, there has been substantial research into novel power converter topologies for maximum energy efficiency. However, in photovoltaic applications, even the most promising power converter topologies do not necessarily guarantee optimum performance under all operating conditions. For instance, the efficiency of the power conversion stage may be excellent during periods of high irradiance, but significantly lower in poorer light conditions. This work attempts to address this problem, by seeking to achieve higher energy conversion efficiency under sub-optimal conditions. In this thesis, stand-alone photovoltaic systems using DC-DC boost converters are considered. An interleaved boost converter with novel switch adaptive control scheme is designed to maximise system efficiency over a wider range of real-time operating atmospheric conditions and with different load conditions without incurring significant additional cost

    Real-time Modelling, Diagnostics and Optimised MPPT for Residential PV Systems

    Get PDF
    The work documented in the thesis has been focused into two main sections. The first part is centred around Maximum Power Point Tracking (MPPT) techniques for photovoltaic arrays, optimised for fast-changing environmental conditions, and is described in Chapter 2. The second part is dedicated to diagnostic functions as an additional tool to maximise the energy yield of photovoltaic arrays (Chapter 4). Furthermore, mathematical models of PV panels and arrays have been developed and built (detailed in Chapter 3) for testing MPPT algorithms, and for diagnostic purposes.In Chapter 2 an overview of the today’s most popular MPPT algorithms is given, and, considering their difficulty in tracking under variable conditions, a simple technique is proposed to overcome this drawback. The method separates the MPPT perturbation effects from environmental changes and provides correct information to the tracker, which is therefore not affected by the environmental fluctuations. The method has been implemented based on the Perturb and Observe (P&O), and the experimental results demonstrate that it preserves the advantages of the existing tracker in being highly efficient during stable conditions, having a simple and generic nature, and has the benefit of also being efficient in fast-changing conditions. Furthermore, the algorithm has been successfully implemented on a commercial PV inverter, currently on the market. In Chapter 3, an overview of the existing mathematical models used to describe the electrical behaviour of PV panels is given, followed by the parameter determination for the five-parameter single-exponential model based on datasheet values, which has been used for the implementation of a PV simulator taking in account the shape, size ant intensity of partial shadow in respect to bypass diodes.In order to eliminate the iterative calculations for parameter determinations, a simplified three-parameter model is used throughout Chapter 4, dedicated to diagnostic functions of PV panels. Simple analytic expressions for the model important parameters, which could reflect deviations from the normal (e.g. from datasheet or reference measurement) I −V characteristic, is proposed.A considerable part of the thesis is dedicated to the diagnostic functions of crystalline photovoltaic panels, aimed to detect failures related to increased series resistance and partial shadowing, the two major factors responsible for yield-reduction of residential photovoltaic systems.Combining the model calculations with measurements, a method to detect changes in the panels’ series resistance based on the slope of the I − V curve in the vicinity of open-circuit conditions and scaled to Standard Test Conditions (STC) , is proposed. The results confirm the benefits of the proposed method in terms of robustness to irradiance changes and to partial shadows.In order to detect partial shadows on PV panels, a method based on equivalent thermal voltage (Vt) monitoring is proposed. Vt is calculated using the simplified three-parameter model, based on experimental curve. The main advantages of the method are the simple expression for Vt, high sensitivity to even a relatively small area of partial shadow and very good robustness against changes in series resistance.Finally, in order to quantify power losses due to different failures, e.g. partial shadows or increased series resistance, a model based approach has been proposed to estimate the panel rated power (in STC). Although it is known that the single-exponential model has low approximation precision at low irradiation conditions, using the previously determined parameters it was possible to achieve relatively good accuracy. The main advantage of the method is that it relies on already determined parameters (Rsm, Vt) based on measurements, therefore reducing the errors introduced by the limitation of the single-exponential model especially at low irradiation conditions
    corecore