1,273 research outputs found

    Ambulatory position and orientation tracking fusing magnetic and inertial sensing

    Get PDF
    This paper presents the design and testing of a portable magnetic system combined with miniature inertial sensors for ambulatory 6 degrees of freedom ( DOF) human motion tracking. The magnetic system consists of three orthogonal coils, the source, fixed to the body and 3-D magnetic sensors, fixed to remote body segments, which measure the fields generated by the source. Based on the measured signals, a processor calculates the relative positions and orientations between source and sensor. Magnetic actuation requires a substantial amount of energy which limits the update rate with a set of batteries. Moreover, the magnetic field can easily be disturbed by ferromagnetic materials or other sources. Inertial sensors can be sampled at high rates, require only little energy and do not suffer from magnetic interferences. However, accelerometers and gyroscopes can only measure changes in position and orientation and suffer from integration drift. By combing measurements from both systems in a complementary Kalman filter structure, an optimal solution for position and orientation estimates is obtained. The magnetic system provides 6 DOF measurements at a relatively low update rate while the inertial sensors track the changes position and orientation in between the magnetic updates. The implemented system is tested against a lab-bound camera tracking system for several functional body movements. The accuracy was about 5 mm for position and 3 degrees for orientation measurements. Errors were higher during movements with high velocities due to relative movement between source and sensor within one cycle of magnetic actuation

    Electromagnetic tracker feasibility in the design of a dental superstructure for edentulous patients

    Get PDF
    The success of the osseointegration concept and the Branemark protocol is highly associated to the accuracy in the production of an implant-supported prosthesis. One of most critical steps for long-term success of these prosthesis is the accuracy obtained during the impression procedure, which is affected by factors such as the impression material, implant position, angulation and depth. This paper investigates the feasibility of 3D electromagnetic motion tracking systems as an acquisition method for modeling full-arch implant-supported prosthesis. To this extent, we propose an implant acquisition method at the patient mouth and a calibration procedure, based on a 3D electromagnetic tracker that obtains combined measurements of implant's position and angulation, eliminating the use of any impression material. Three calibration algorithms (namely linear interpolation, higher-order polynomial and Hardy multiquadric) were tested to compensate for the electromagnetic tracker distortions introduced by the presence of nearby metals. Moreover, implants from different suppliers were also tested to study its impact on tracking accuracy. The calibration methodology and the algorithms employed proved to implement a suitable strategy for the evaluation of novel dental impression techniques. However, in the particular case of the evaluated electromagnetic tracking system, the order of magnitude of the obtained errors invalidates its use for the full-arch modeling of implant-supported prosthesis.This work has been supported by FCT – Fundação para a Ciência e Tecnologia in the scope of the Ph.D. grant SFRH/BD/68270/2010 and the project EXPL/BBB-BMD/2146/2013

    An electromagnetic tracker system for the design of a dental superstructure

    Get PDF
    Nowadays, different techniques are available for manufacturing full-arch implant-supported prosthesis, many of them based on an impression procedure. Nevertheless, the long-term success of the prosthesis is highly influenced by the accuracy during such process, being affected by factors such as the impression material, implant position, angulation and depth. This paper investigates the feasibility of a 3D electromagnetic motion tracking system as an acquisition method for modeling such prosthesis. To this extent, we propose an implant acquisition method at the patient mouth, using a specific prototyped tool coupled with a tracker sensor, and a set of calibration procedures (for distortion correction and tool calibration), that ultimately obtains combined measurements of the implant's position and angulation, and eliminating the use of any impression material. However, in the particular case of the evaluated tracking system, the order of magnitude of the obtained errors invalidates its use for this specific application.This work has been supported by FCT – Fundação para a Ciência e Tecnologia in the scope of the Ph.D. grant SFRH/BD/68270/2010 and the project EXPL/BBB-BMD/2146/2013

    Workshop on Advanced Technologies for Planetary Instruments, part 1

    Get PDF
    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments

    Navigated Ultrasound in Laparoscopic Surgery

    Get PDF

    Miniature wide field-of-view star trackers for spacecraft attitude sensing and navigation

    Get PDF
    Introducing a family of miniature, wide field-of-view star trackers for low cost, high performance spacecraft attitude determination and navigation applications. These devices, derivative of the WFOV Star Tracker Camera developed cooperatively by OCA Applied Optics and the Lawrence Livermore National Laboratory for the Brilliant Pebbles program, offer a suite of options addressing a wide range of spacecraft attitude measurement and control requirements. These sensors employ much wider fields than are customary (ranging between 20 and 60 degrees) to assure enough bright stars for quick and accurate attitude determinations without long integration intervals. The key benefit of this approach are light weight, low power, reduced data processing loads and high information carrier rates for wide ACS bandwidths. Devices described range from the proven OCA/LLNL WFOV Star Tracker Camera (a low-cost, space-qualified star-field imager utilizing the spacecraft's own computer and centroiding and position-finding), to a new autonomous subsystem design featuring dual-redundant cameras and completely self-contained star-field data processing with output quaternion solutions accurate to 100 micro-rad, 3 sigma, for stand-alone applications

    Assessment of Electromagnetic Tracking Accuracy for Endoscopic Ultrasound

    Get PDF
    Endoscopic ultrasound (EUS) is a minimally-invasive imaging technique that can be technically difficult to perform due to the small field of view and uncertainty in the endoscope position. Electromagnetic (EM) tracking is emerging as an important technology in guiding endoscopic interventions and for training in endotherapy by providing information on endoscope location by fusion with pre-operative images. However, the accuracy of EM tracking could be compromised by the endoscopic ultrasound transducer. In this work, we quantify the precision and accuracy of EM tracking sensors inserted into the working channel of a flexible endoscope, with the ultrasound transducer turned on and off. The EUS device was found to have little (no significant) effect on static tracking accuracy although jitter increased significantly. A significant change in the measured distance between sensors arranged in a fixed geometry was found during a dynamic acquisition. In conclusion, EM tracking accuracy was not found to be significantly affected by the flexible endoscope

    Aerospace medicine and biology. A continuing bibliography with indexes, supplement 195

    Get PDF
    This bibliography lists 148 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1979

    Space science/space station attached payload pointing accommodation study: Technology assessment white paper

    Get PDF
    Technology assessment is performed for pointing systems that accommodate payloads of large mass and large dimensions. Related technology areas are also examined. These related areas include active thermal lines or power cables across gimbals, new materials for increased passive damping, tethered pointing, and inertially reacting pointing systems. Conclusions, issues and concerns, and recommendations regarding the status and development of large pointing systems for space applications are made based on the performed assessments
    corecore