2,509 research outputs found

    Near-optimal adjacency labeling scheme for power-law graphs

    Get PDF
    An adjacency labeling scheme is a method that assigns labels to the vertices of a graph such that adjacency between vertices can be inferred directly from the assigned label, without using a centralized data structure. We devise adjacency labeling schemes for the family of power-law graphs. This family that has been used to model many types of networks, e.g. the Internet AS-level graph. Furthermore, we prove an almost matching lower bound for this family. We also provide an asymptotically near- optimal labeling scheme for sparse graphs. Finally, we validate the efficiency of our labeling scheme by an experimental evaluation using both synthetic data and real-world networks of up to hundreds of thousands of vertices

    Pruning based Distance Sketches with Provable Guarantees on Random Graphs

    Full text link
    Measuring the distances between vertices on graphs is one of the most fundamental components in network analysis. Since finding shortest paths requires traversing the graph, it is challenging to obtain distance information on large graphs very quickly. In this work, we present a preprocessing algorithm that is able to create landmark based distance sketches efficiently, with strong theoretical guarantees. When evaluated on a diverse set of social and information networks, our algorithm significantly improves over existing approaches by reducing the number of landmarks stored, preprocessing time, or stretch of the estimated distances. On Erd\"{o}s-R\'{e}nyi graphs and random power law graphs with degree distribution exponent 2<β<32 < \beta < 3, our algorithm outputs an exact distance data structure with space between Θ(n5/4)\Theta(n^{5/4}) and Θ(n3/2)\Theta(n^{3/2}) depending on the value of β\beta, where nn is the number of vertices. We complement the algorithm with tight lower bounds for Erdos-Renyi graphs and the case when β\beta is close to two.Comment: Full version for the conference paper to appear in The Web Conference'1

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Measuring Effectiveness of Address Schemes for AS-level Graphs

    Get PDF
    This dissertation presents measures of efficiency and locality for Internet addressing schemes. Historically speaking, many issues, faced by the Internet, have been solved just in time, to make the Internet just work~\cite{justWork}. Consensus, however, has been reached that today\u27s Internet routing and addressing system is facing serious scaling problems: multi-homing which causes finer granularity of routing policies and finer control to realize various traffic engineering requirements, an increased demand for provider-independent prefix allocations which injects unaggregatable prefixes into the Default Free Zone (DFZ) routing table, and ever-increasing Internet user population and mobile edge devices. As a result, the DFZ routing table is again growing at an exponential rate. Hierarchical, topology-based addressing has long been considered crucial to routing and forwarding scalability. Recently, however, a number of research efforts are considering alternatives to this traditional approach. With the goal of informing such research, we investigated the efficiency of address assignment in the existing (IPv4) Internet. In particular, we ask the question: ``how can we measure the locality of an address scheme given an input AS-level graph?\u27\u27 To do so, we first define a notion of efficiency or locality based on the average number of bit-hops required to advertize all prefixes in the Internet. In order to quantify how far from ``optimal the current Internet is, we assign prefixes to ASes ``from scratch in a manner that preserves observed semantics, using three increasingly strict definitions of equivalence. Next we propose another metric that in some sense quantifies the ``efficiency of the labeling and is independent of forwarding/routing mechanisms. We validate the effectiveness of the metric by applying it to a series of address schemes with increasing randomness given an input AS-level graph. After that we apply the metric to the current Internet address scheme across years and compare the results with those of compact routing schemes

    Compact routing in fault-tolerant distributed systems

    Full text link
    A compact routing algorithm is a routing algorithm which reduces the space complexity of all-pairs shortest path routing. Compact routing protocols in distributed systems have been studied extensively as an attractive alternative to the traditional method of all-pairs shortest path routing. The use of compact routing protocols have several advantages. Compact routing schemes are not only more memory-efficient, but provide faster routing table lookup, more efficient broadcast scheme, and allow for a more scalable network. These routing schemes still maintain optimal or near-optimal routing paths. However, most of the compact routing protocols are not fault-tolerant. This thesis will first report the recent developments in the compact routing research. Several new methods for compact routing in fault-tolerant distributed systems will be presented and analyzed. The most important feature of the algorithms presented in this thesis is that they are self-stabilizing. The self-stabilization paradigm has been shown to be the most unified and all-inclusive approach to the design of fault-tolerant system. Additionally, these algorithms will address and solve several problems left unsolved by previous works. Relabelable and non-relabelable networks will be considered for both specific and arbitrary topologies

    Self-stabilizing interval routing algorithm with low stretch factor

    Full text link
    A compact routing scheme is a routing strategy which suggests routing tables that are space efficient compared to traditional all-pairs shortest path routing algorithms. An Interval Routing algorithm is a compact routing algorithm which uses a routing table at every node in which a set of destination addresses that use the same output port are grouped into intervals of consecutive addresses. Self-stabilization is a property by which a system is guaranteed to reach a legitimate state in a finite number of steps starting from any arbitrary state. A self-stabilizing Pivot Interval Routing (PIR) algorithm is proposed in this work. The PIR strategy allows routing along paths whose stretch factor is at most five, and whose average stretch factor is at most three with routing tables of size O(n3/2log 23/2n) bits in total, where n is the number of nodes in the network. Stretch factor is the maximum ratio taken over all source-destination pairs between the length of the paths computed by the routing algorithm and the distance between the source and the destination. PIR is also an Interval Routing Scheme (IRS) using at most 2n( 1+lnn)1/2 intervals per link for the weighted graphs and 3n(1+ lnn)1/2 intervals per link for the unweighted graphs. The preprocessing stage of the PIR algorithm consists of nodelabeling and arc-labeling functions. The nodelabeling function re-labels the nodes with unique integers so as to facilitate fewer number of intervals per arc. The arc-labeling is done in such a fashion that the message delivery protocol takes an optimal path if both the source and the destination are located within a particular range from each other and takes a near-optimal path if they are farther from each other

    Simpler, faster and shorter labels for distances in graphs

    Full text link
    We consider how to assign labels to any undirected graph with n nodes such that, given the labels of two nodes and no other information regarding the graph, it is possible to determine the distance between the two nodes. The challenge in such a distance labeling scheme is primarily to minimize the maximum label lenght and secondarily to minimize the time needed to answer distance queries (decoding). Previous schemes have offered different trade-offs between label lengths and query time. This paper presents a simple algorithm with shorter labels and shorter query time than any previous solution, thereby improving the state-of-the-art with respect to both label length and query time in one single algorithm. Our solution addresses several open problems concerning label length and decoding time and is the first improvement of label length for more than three decades. More specifically, we present a distance labeling scheme with label size (log 3)/2 + o(n) (logarithms are in base 2) and O(1) decoding time. This outperforms all existing results with respect to both size and decoding time, including Winkler's (Combinatorica 1983) decade-old result, which uses labels of size (log 3)n and O(n/log n) decoding time, and Gavoille et al. (SODA'01), which uses labels of size 11n + o(n) and O(loglog n) decoding time. In addition, our algorithm is simpler than the previous ones. In the case of integral edge weights of size at most W, we present almost matching upper and lower bounds for label sizes. For r-additive approximation schemes, where distances can be off by an additive constant r, we give both upper and lower bounds. In particular, we present an upper bound for 1-additive approximation schemes which, in the unweighted case, has the same size (ignoring second order terms) as an adjacency scheme: n/2. We also give results for bipartite graphs and for exact and 1-additive distance oracles

    On the Scalability of Routing With Policies

    Get PDF
    • …
    corecore