120 research outputs found

    Adequacy Issues in Reactive Systems: Barbed Semantics for Mobile Ambients

    Get PDF
    Reactive systems represent a meta-framework aimed at deriving behavioral congruences for those specification formalisms whose operational semantics is provided by rewriting rules. The aim of this thesis is to address one of the main issues of the framework, concerning the adequacy of the standard observational semantics (the IPO and the saturated one) in modelling the concrete semantics of actual formalisms. The problem is that IPO-bisimilarity (obtained considering only minimal labels) is often too discriminating, while the saturated one (via all labels) may be too coarse, and intermediate proposals should then be put forward. We then introduce a more expressive semantics for reactive systems which, thanks to its flexibility, allows for recasting a wide variety of observational, bisimulation-based equivalences. In particular, we propose suitable notions of barbed and weak barbed semantics for reactive systems, and an efficient characterization of them through the IPO-transition systems. We also propose a novel, more general behavioural equivalence: L-bisimilarity, which is able to recast both its IPO and saturated counterparts, as well as the barbed one. The equivalence is parametric with respect to a set L of reactive systems labels, and it is shown that under mild conditions on L it is a congruence. In order to provide a suitable test-bed, we instantiate our proposal over the asynchronous CCS and, most importantly, over the mobile ambients calculus, whose semantics is still in a flux

    Encoding CSP into CCS

    Get PDF
    We study encodings from CSP into asynchronous CCS with name passing and matching, so in fact, the asynchronous pi-calculus. By doing so, we discuss two different ways to map the multi-way synchronisation mechanism of CSP into the two-way synchronisation mechanism of CCS. Both encodings satisfy the criteria of Gorla except for compositionality, as both use an additional top-level context. Following the work of Parrow and Sj\"odin, the first encoding uses a centralised coordinator and establishes a variant of weak bisimilarity between source terms and their translations. The second encoding is decentralised, and thus more efficient, but ensures only a form of coupled similarity between source terms and their translations.Comment: In Proceedings EXPRESS/SOS 2015, arXiv:1508.0634

    Structured Operational Semantics for Graph Rewriting

    Full text link
    Process calculi and graph transformation systems provide models of reactive systems with labelled transition semantics. While the semantics for process calculi is compositional, this is not the case for graph transformation systems, in general. Hence, the goal of this article is to obtain a compositional semantics for graph transformation system in analogy to the structural operational semantics (SOS) for Milner's Calculus of Communicating Systems (CCS). The paper introduces an SOS style axiomatization of the standard labelled transition semantics for graph transformation systems. The first result is its equivalence with the so-called Borrowed Context technique. Unfortunately, the axiomatization is not compositional in the expected manner as no rule captures "internal" communication of sub-systems. The main result states that such a rule is derivable if the given graph transformation system enjoys a certain property, which we call "complementarity of actions". Archetypal examples of such systems are interaction nets. We also discuss problems that arise if "complementarity of actions" is violated.Comment: In Proceedings ICE 2011, arXiv:1108.014

    Encoding Synchronous Interactions Using Labelled Petri Nets

    Get PDF
    International audienceWe present an encoding of (bound) CSP processes with replication into Petri nets with labelled transitions. Through the encoding, the firing semantics of Petri nets models the standard operational semantics of CSP processes, which is both preserved and reflected. This correspondence allows for describing by net semantics the standard CSP observational equivalences. Since the encoding is modular with respect to process syntax, the paper puts on a firm ground the technology transfer between the two formalisms, e.g. recasting into the CSP framework well-established results like decidability of coverability for nets. This work complements previous results concerning the encoding of asynchronous interactions, thus witnessing the expressiveness of (open) labelled nets in modelling process calculi with alternative communication patterns

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    A Logical Verification Methodology for Service-Oriented Computing

    Get PDF
    We introduce a logical verification methodology for checking behavioural properties of service-oriented computing systems. Service properties are described by means of SocL, a branching-time temporal logic that we have specifically designed to express in an effective way distinctive aspects of services, such as, e.g., acceptance of a request, provision of a response, and correlation among service requests and responses. Our approach allows service properties to be expressed in such a way that they can be independent of service domains and specifications. We show an instantiation of our general methodology that uses the formal language COWS to conveniently specify services and the expressly developed software tool CMC to assist the user in the task of verifying SocL formulae over service specifications. We demonstrate feasibility and effectiveness of our methodology by means of the specification and the analysis of a case study in the automotive domain

    A graph semantics for a variant of the ambient calculus more adequate for modeling SOC

    Get PDF
    In this paper we present a graph semantics of a variant of the well known ambient calculus. The main change of our variant is to extract the mobility commands of the original calculus from the ambient topology. Similar to a previous work of ours, we prove that our encoding have good properties. We strongly believe that this variant would allow us to integrate our graph semantics of our mobile calculus with previous work of us in service oriented computing (SOC). Basically, our work on SOC develops a new graph transformation system which we call temporal symbolic graphs. This new graph formalism is used to give semantics to a design language for SOC developed in an european project, but it could also be used in connection with other approaches for modeling or specifying service systems.Postprint (published version

    BProVe: A formal verification framework for business process models

    Get PDF
    Business Process Modelling has acquired increasing relevance in software development. Available notations, such as BPMN, permit to describe activities of complex organisations. On the one hand, this shortens the communication gap between domain experts and IT specialists. On the other hand, this permits to clarify the characteristics of software systems introduced to provide automatic support for such activities. Nevertheless, the lack of formal semantics hinders the automatic verification of relevant properties. This paper presents a novel verification framework for BPMN 2.0, called BProVe. It is based on an operational semantics, implemented using MAUDE, devised to make the verification general and effective. A complete tool chain, based on the Eclipse modelling environment, allows for rigorous modelling and analysis of Business Processes. The approach has been validated using more than one thousand models available on a publicly accessible repository. Besides showing the performance of BProVe, this validation demonstrates its practical benefits in identifying correctness issues in real models

    RPO Semantics for Mobile Ambients

    Get PDF
    The paper focuses on the synthesis of labelled transition systems (LTSs) for process calculi, choosing as testbed Mobile Ambients (MAs). The proposal is based on a graphical encoding: a process is mapped into a graph equipped with interfaces, such that the denotation is fully abstract with respect to the standard structural congruence. Graphs with interfaces are amenable to the synthesis mechanism based on borrowed contexts (BCs), an instance of relative pushouts (RPOs). The BC mechanism allows the effective construction of a LTS that has graphs with interfaces as states and labels, and such that the associated bisimilarity is a congruence. Our paper focuses on the analysis of a LTS over processes as graphs with interfaces: we use the LTS on graphs to recover a LTS directly defined over the structure of MAs processes, further defining a set of SOS inference rules capturing the same operational semantics
    corecore