
A Graph Semantics for a Variant of the Ambient Calculus
more Adequate for Modeling SOC

Nikos Mylonakis

Universitat Politècnica de Catalunya,
C. Jordi Girona Salgado 1-3, 08034 Barcelona, Spain

nicos@cs.upc.edu

Abstract. In this paper we present a graph semantics of a variant of the well known
ambient calculus. The main change of our variant is to extract the mobility commands of
the original calculus from the ambient topology. Similar to a previous work of ours, we
prove that our encoding have good properties. We strongly believe that this variant would
allow us to integrate our graph semantics of our mobile calculus with previous work of us
in service oriented computing (SOC). Basically, our work on SOC develops a new graph
transformation system which we call temporal symbolic graphs. This new graph formalism
is used to give semantics to a design language for SOC developed in an european project,
but it could also be used in connection with other approaches for modeling or specifying
service systems.

Keywords: mobile calculus, graph transformation, service oriented computing (SOC)

1 Introduction

Service Oriented Computing (SOC) is a software paradigm that uses services provided by exter-
nal sites distributed over the Internet to deliver services to client applications. Service-oriented
programs can decide at run time which services to select after a process of discovery and ranking
that takes into account how they meet required behavioural requirements and service-level con-
straints. A possible state model for SOC can be considered at two levels of abstraction. At the
lowest level, state configurations are graphs of interconnected components; at the highest level,
business configurations are graphs of interconnected activities, where an activity is a graph of com-
ponents. This definition at two levels of abstraction accounts for both state changes that result
from computations performed by components and configuration changes that result from dynamic
service discovery and binding. First partially in [1] and then completed in [2], we present a graph
transformation approach to formalize both kinds of changes in an uniform way. This approach is
used to give a semantics of the Sensoria Reference Modeling Language (SRML) [3], but it could
also be used in connection with other approaches for modeling or specifying service systems. The
work reported in our two papers ([1] and [2]) develops such an operational semantics using graph
transformation systems, a formalism for which several tools have been developed. For this purpose,
we define a graph transformation formalism that allows us to encode provides and requires inter-
face specifications in temporal logic as well as service-level agreements (SLA). This formalism is
based on symbolic graphs [5], the most expressive graph formalism for specifying attribute values,
which we extend with a temporal logic to obtain what we call temporal symbolic graphs. Using
this new formalism, we define a transformation system for business configurations. Our represen-
tation allows service modules to be connected with requires and provides specifications using the
temporal logic LTL [4] and to express service-level constraints using the propositional fragment of
that logic.

The running example of our two papers ([1] and [2]) is about a customer requesting a travel
booking service which also requests two more services for flight and hotel booking. If we want to
model a set of service companies providing and requiring services with the possibility to acquire
one company by another, or partition a company attaching its parts to different companies, we
need for example a topology with mobility similar to the ambient calculus which is a formalism

2 A variant of the ambient calculus

developed by Cardelli and Gordon [6]. The problem with this calculus is that it incorporates the
orders to perform the transformations of the ambient topology inside the ambient expressions
in forms of capability lists. In order to integrate our graph transformation approach for SOC
with a graph semantics of the ambient calculus we have to remove capability lists and develop
parameterised productions with labels and put them together in graph transformation units. Then
graph transformation units would be one additional possible transformation of an ambient topology
with service repositories and business configurations. You can have a look at [1] and [2] for a
formal definition of these concepts. It is out of the scope of the paper to give an integration of
the whole picture and therefore we just present a graph semantics of a variant of the ambient
calculus as we explained, and incorporating service repositories and business configurations as
just one black box associated to each ambient. These black boxes will be referred as business
repositories. Additionally, we also remove the restriction operator and add a new visibility policy
for ambients. Therefore, the relevance of this paper is not the very intuitive encoding of our variant
of the ambient calculus but the variant itself. The modifications that we propose are necessary
to make an application to our previous work on SOC. Although we appreciate all the work done
on graphical encodings on the original ambient calculus, we have not been able to apply it to our
SOC framework. Nevertheless, we relate our work with some work done on our area.

The representation of process calculi in terms of some form of graph transformation over dif-
ferent kinds of graphical structures has shown to be very successful for the study and analysis
of these calculi (see e.g., [10,11,12,8,7,9,13,16,15,14]). In the specific case of the Ambient calcu-
lus, Gadducci and Montanari [11], on one hand, and Ferrari, Montanari and Tuosto [12], on the
other, present a semantic definition of the Ambient calculus using graph transformation. In the
former case, the ambient expressions are encoded in terms of ranked term graphs with interfaces
and transformations are defined using the double-pushout (DPO) approach. In the latter case,
Ambient expressions are encoded as hypergraphs, defined in terms of syntactic judgments, and
transformations are defined as synchronized hyperedge replacements. Unfortunately, none of the
two approaches described above is fully adequate for our purposes. The problem with the approach
presented in [11] is the encoding of the Ambient expressions. In particular, in our view, ambient
expressions should describe transformations of the given ambient (hierarchical) structure where
the components are located. In this sense, we consider that the encoding of an Ambient expression
should embed faithfully the ambient structure underlying that expression, and the transformations
defined by the reduction of the expression should modify that structure accordingly. Unfortunately,
in [11] the encoding of Ambient expressions does not satisfy these aims. In the lines of this work,
there is a graphical implementation for finite processes of the original mobile ambient calculus in
[16]. Additionally, in [15] and [14] they develop label transition systems (LTS) also for the original
ambient calculus. In the case of the approach presented in [12] the situation is different. Ambient
expressions are encoded according to our aims. In this case, the problem is related with the kind of
transformations considered. In particular, we consider that synchronized hyperedge replacements
do not enjoy the simple algebraic formulation and properties of double pushouts. In particular, we
fear that using this kind of approach, our framework would be more involved. As a consequence,
in this paper we reuse the approach which is based on this paper [13]. In our formalism, ambient
expressions are encoded in terms of typed labeled graphs (with labels on the nodes) that, according
to our aims, embed the ambient structure underlying the expression. Then, transformations are
defined using the DPO approach. The original encoding is fully abstract and adequate and we use
the basic ideas of the paper to develop a fully abstract and adequate encoding of our new variant.
The encoded reduction relation in this paper is sound and complete.

The structure of the paper is as follows. In section 2 we present the variant of our ambient
calculus and in section 3 we present typed label graph transformation systems. Then in section 4
we present the graph semantics of the ambient topology and in section 5 the graph transformation
rule. Finally, in section 6 we give some examples and in section 7 we raise some conclusions and
future work.

A Variant of the Ambient Calculus 3

2 A Variant of the Ambient Calculus

The ambient calculus is a formalism developed by Cardelli and Gordon [6] for describing process
mobility. Intuitively, ambients are the locations where the processes or the computation live and
are hierarchically organized. The ambient topology can vary over time, having the possibility to
move an ambient inside another ambient, to move an ambient out of another ambient and to
dissolve or to open an ambient. These topological changes are performed by actions or capabilities
associated to a given ambient where the action has to express the ambient to move in, the ambient
to move out or the ambient to open. Additionally, in the calculus there exists a name restriction
operator to restrict the topological space in which an action or capability with the restricted name
can take place.

In the variant of the ambient calculus which we propose, we remove the capability lists as-
sociated to ambients but we can execute externally sequences of reduction rules with names and
parameter names. For example if we had an ambient expression with ambients with names an1
and an8, a possible sequence of reduction rules would be open an1; in an1 an8.These sequences
of rules transform the ambient topology if all the rules can be applied correctly, and if any rule
cannot be applied, they do not transform the ambient topology. Additionally, we do not have
either the restriction operator. Instead each ambient n can have a set of ambient names.This set
of ambients are the the ambients which can access ambient n. Alternatively an ambient n can be
public to all the ambients. In this case we use the reserved name pub. Visibility restrictions can be
considered. For example, we could consider that an ambient n can have a set of names which must
be embedded in the same ambient and they must be at the same level of the ambient hierarchy
as n.

Finally each ambient n has a name brn which represents a black box which contains a service
repository with a set of services which provides n and some processors to request and use the
different services which can access the ambient n in the ambient topology, and therefore perform
service oriented programming. In [1] and [2] these concepts are referred as service repositories and
business configurations.

The ambient calculus expressions are defined by the following grammar:

P ::= P |Q | 0 | n[V ; brn;P]
V ::= {} | vn.V

In this definition n,m, brn and vn ranges over names, P and Q over processes and V over
visibility sets. In the following, we will use the operator ∪ for the usual union of sets, and we will
also use − for the usual difference on sets.

The definition of the structural congruence between expressions of the calculus is the following:

(1)P ≡ P
(2)P ≡ Q⇒ Q ≡ P
(3)P ≡ Q, Q ≡ R⇒ P ≡ R
(4)P ≡ Q⇒ P |R ≡ Q |R
(5)P ≡ Q⇒ n[V ; brn;P] ≡ n[V ; brn;Q]
(6)P |Q ≡ Q|P
(7)(P |Q)|R ≡ P |(Q|R)
(8)P |0 ≡ P

The operational semantics of the ambient calculus consists first of the following five rules with
names and parameters:

(1)in n m n[V ; brn;P] |m[W ; brm;Q] → m[W ; brm;n[V ; brn;P] |Q]
(2)out n m[W ; brm;n[V ; brn;P] |Q] → n[V ; brn;P] |m[W ; brm;Q]
(3)openm n[V ; brn;P | m[W ; brm;Q]] → n[V ∪W ; brn;P | Q]
(4)addv vn n n[V ; brn;P] → n[V ∪ {vn}; brn;P]
(5)rmv vn n n[V ; brn;P] → n[V − {vn}; brn;P]

4 A variant of the ambient calculus

In these rules we have name parameters which can be used in the ambient expression. Therefore,
the ambient expression depends on the names previously defined. The first three rules, like the
original ambient calculus, are to move in an ambient n into m, to move out an ambient n from
the ambient which embeds n, and to dissolve an ambient n in the ambient which embeds n. The
main difference of these rule is in the open rule which after dissolution of ambient n, the ambient
which embeds n is enriched with the business repository and the visibility set of n. The last two
rules allows to add and remove a visibility name to a given ambient.

In order to define three more rules we have to define first sequences of rules which are a sequence
of rules names with all the parameters except the ambient expression. We gave an example below
with the rules in, out and open in this order. Sequences or rules can be applied to ambient
expressions and they are applied from right to left in a compositional way. If some rules of the
sequence can not be applied the result of the application is the initial ambient expression. If rule
sequences ranges over RS, then the remaining rules are the following:

(6)RS P → Q ⇒ n[V ; brn;P] → n[V ; brn;Q]
(7)RS P → Q ⇒ P |R → Q |R
(8)P ′ ≡ P, RS P → Q, Q ≡ Q′ ⇒ P ′ → Q′

3 Typed labeled graph transformation systems

Ambient calculus expressions are going to be encoded in terms of typed labeled graphs, which are
similar to the typed attributed graphs presented in [17], with the main difference that we do not
have a Σ-algebra with a set of operations to define the data attributes, but a sorted set to define
different sets of labels. In addition, in our graphs only nodes can have labels, i.e. we do not have
labels on the edges. In particular, the intuition is that an attributed graph (in our case a labeled
graph) is just a standard graph, where attributes (labels) are a special kind of nodes and where
we also have a special kind of edges to bind a label to a (regular) node.

Definition 1. A labeled graph AG = (V1, V2, E1, E2, (sourcei, targeti)i=1,2) consists of

– the set V1 called graph nodes.
– the sorted set V2 called label nodes.
– the sets E1,E2 called graph edges and node label edges, respectively.
– source functions source1 : E1 → V1, source2 : E2 → V1.
– and target functions target1 : E1 → V1, target2 : E2 → V2.

Remark: We denote by AGV 1, AGV 2, AGE1, AGE2, AGsource1 , AGsource2 , AGtarget1 , AGtarget2 ,
the different components of the labeled graph AG.

Now we present labeled graph morphisms. Since in our case labeled graph morphism must
preserve the values of the labels, the function fV 2 presented in [17] is the identity.

Definition 2. A labeled graph morphism f : AG1 → AG2 is a tuple (fV 1, fV 2, fE1, fE2), with
fV 1 : AG1V 1 → AG2V 1, fV 2 : AG1V 2 → AG2V 2, fE1 : AG1E1 → AG2E1 and fE2 : AG1E2 →
AG2E2, such that f commutes with the source1, source2, target1 and target2 functions, and such
that fV 2 is the identity.

As usual, typed graphs are defined as (standard) morphisms from a given graph into a type
graph.

Definition 3. A typed labeled graph (AG,t) over a type graph ATG consist of a labeled graph (AG)
together with a standard graph morphism (t : AG→ ATG).

A typed labeled graph morphism f : (AG1, t1) → (AG2, t2) is a labeled graph morphism f :
AG1 → AG2 such that t2 ◦ f = t1.

A Variant of the Ambient Calculus 5

Typed labeled graphs together with typed labeled graph morphisms form the category of typed
labeled graphs.

Our transformation rules are slightly more general than the standard rules for the double
pushout approach. In particular, for technical reasons related with our encoding, the morphism r :
K → R going from the context to the righ-hand side of a rule does not need to be a monomorphism.
Additionally we will add label parameters.

Definition 4. A production with labels p consists of a set of labels SL, a typed labeled graph L with
all the labels in SL, two more typed label graphs K and R together with a monomorphism l : K → L
and an arbitrary morphism r : K → R. The production p is represented as p l1 . . . ln : L← K → R
where li are the labels in SL.

A transformation system of typed labeled graphs GTS = (ATG,AG,P) consists of a labeled
type graph ATG, a typed labeled graph AG, and a set of productions with labels.

A direct transformation G ⇒ H via a left-linear production p l1 . . . ln :: L ← K → R with a
set of instantiation labels il1 . . . iln, and a match m which additionally matches every li in L with
its correspondent instantiation label ili in G is defined by the double pushout diagram of figure 1.

Given a transformation system GTS = (ATG,AG0, P) typed labeled graph derivation is a
sequence AG0 ⇒ . . .⇒ AGn of direct transformations, written AG0 ⇒∗,GTS AGn.

Graph transformation units encapsulates a set of rules with a control unit. Graph transforma-
tion units have a transactional semantics in the sense that in order to produce a transformation
all the rules of the transformation unit taking part in the transformation must be applied success-
fully. If some rule cannot be applied successfully no transformation is performed The control unit
specifies the order with which the rules must be applied. In our case the language of the control
unit consists only of a compositional sequential operator of the form np1; . . . ;npn where eah name
production has its set of instantiation names.

L

m

��

K

d

��

l
oo r // R

m∗
��

G D
l∗
oo r∗ // R

Fig. 1. Double pushout diagram

4 A graph semantics of our variant of the ambient calculus

In this section we present our encoding of our variant of the ambient calculus in terms of typed
label graphs. First we describe the type graph.

In addition to the nodes and edges to represent labels, we have four types of graph nodes:
nodes to denote ambients with a name label, nodes to denote interfaces between ambient nodes,
nodes to denote ambient visibility with name labels and nodes to associate business repositories.
Concerning the edges we also have three types: edges to define the hierarchy of ambients, edges
to associate visibility nodes to ambient nodes and edges to associate a business repository node
to each interface node.

Intuitively, our encoding includes a node (and the corresponding attribute) for each ambient
in the expression. Moreover, if an ambient a1 is inside the ambient a2 then we have an edge from
the node associated to a1 to an interface node and another edge from that interface node to the
node associated to a2 (we need these interface nodes for technical reasons). That is, the graph
associated to an expression can be considered to embed the topology of the ambients involved

6 A variant of the ambient calculus

in the expression. In addition, we have a visibility node associated to a given ambient and this
visibility node can have a set of visible ambients as attributes. Finally, we have to include business
repositories. It is out of the scope of the paper to give a representation of the business repository,
and therefore we represent it as a black box node.

Thus, ambient nodes will be represented in the graphs as ani where i is an index, interfaces
between ambient nodes as ini, visibility nodes as vni and business repository nodes as brni .All
type of edges will be represented in the same way as directed arrows.

An ambient graph has as labels Names where a name denotes the name of an ambient. We
have additionally a distinguished name pub to denote that the business repositories of an ambient
is public to all ambients embedded in the same ambient and at the same hierarchy level.

A symbolic graph of ambients SGA satisfies the following properties:

– for any pair nodes ani and ini there exists at most one edge between them.
– there are no cycles between nodes ani and ini.
– we have one visibility node vni associated to each ambient node with a set of ambient names

as attributes. In particular, this name may be a normal name or the distinguished name pub.
– Every ambient node has one and only one ambient name and every ambient name can be

targeted by different edges but it can appear just once in the graph.

An example of ambient graph is in Figure 2:

in0

an1

brn1

in1

vn1

pub

an2 an3 an4

in2 in3 in4

brn2 vn2 brn3 vn3 brn4 vn4

an3 an4 an4 an3

Fig. 2. An ambient graph

Because of reasons of figure space, we have not included ambient name attributes to the ambient
nodes. We assume that they are implicit and they all have the same name of the ambient node
ani. Additionally we repeat visibility names in the ambient graph for readability but in the formal
definition it is required that they have to appear just one in the whole ambient graph.

In this ambient graph we have just one top level ambient an1. This top level ambient has the
business repository node brn1 and it is visible to all ambients of the ambient graph because its
visibility node has the label pub. an1 has additionally three subambients an2, an3 and an4. There
are no more ambients, and each of these three ambients have their business repository and the
ambients which can access itself. For example, an3 and an4 can access an2.

In a similar and simpler way as in [13] we can define a semantic function JK which given a
correct ambient expression returns a typed label ambient graph. In this variant of the calculus is
very simple. The only important case which is different from [13] is the case n[V ; brn;P] which
requires to differentiate two cases like in the original ambient calculus. If the name n has already
appear in the encoding process in a visibility sequence we add an interface node in with an edge
to the existing label n in the encoded graph so far. If the name n has not appeared yet we add
a new interface node in with an edge to the new label n. The same happens with all the labels

A Variant of the Ambient Calculus 7

of V. So additionally we have from the interface node in an edge to a visibility node with all the
labels in V , an edge to a business repository node and an edge to an interface node ins which has
the encoding of P . The formal definition is the following:

Definition 5. The semantic function J K which given a correct ambient expression returns a typed
label ambient graph requires an auxiliary function with a graph G and a set of attribute nodes
(names) Γ as parameters, and it returns a new graph, a set of names and a distinguished interface
ambient node. It is inductively defined as follows:

– JP K = JP K(∅,∅)
– J0KG,Γ = (G′, Γ, iv) where G′ is G with an additional fresh interface graph node iv.
– Jn[V ; brn;P]KG,Γ = (G′, Γ ′ ∪ {n} ∪ V, iv′) where (H,Γ ′, iv) = JP KG,Γ . The construction of G′

has to add all the names of {n} ∪ V which are not in H and pend from iv′ a fresh ambient
node with name n, from which pends the interface node iv which has the encoding of P .
Additionally, from iv′ pends a business repository nodes brn and a fresh visibility node vn with
all the visibility names of V .

– JP |QKG,Γ = (G2′, Γ2, iv2) where (G1, Γ1, iv1) = JP KG,Γ and (G2, Γ2, iv2)JQKG1,Γ and the
construction of G2′ is just G2 where the distinguished nodes iv1 and iv2 are identified as iv2.

The associated ambient expression of the ambient graph of Figure 2 is the following:

an1[{pub}, brn1, an2[{a3, an4}, brn2, 0] | an3[{an4}, brn3, 0] | an4[{a3}, brn4, 0]]

Since the encoding of the expression 0 is an interface node, we should have put additional inter-
face nodes inside an2, an3 and an4 in Figure 2 but we have omitted them because of presentation
purposes.

Now it is easy to prove that our encoding is fully abstract with respect to the congruence
relation:

Proposition 1. If P ≡ Q then JP K is isomorphic to JQK

Actually, we can additionally prove that the encoding is adequate:

Theorem 1. The semantic function that maps each congruence class of ambient expressions into
its representation is injective and surjective.

5 The transformation system

The transformation system will consist of five transformation rules on our variant of ambients: a
rule to move one ambient inside another ambient, a rule to move out an ambient from another
ambient, a rule to open an ambient, and to rules to add and delete visible ambient names associated
to an ambient.

The rule to move in one ambient n inside another ambient m will be referred as in n m and it
is defined in Figure 3.

The rule to move out ambient n from the ambient which embeds n will be referred as out n
and it is defined in Figure 4. The rule in is the inverse of rule out and viceversa.

The rule to open an ambient n will be referred as open n and it is defined in Figure 5.
This rule is not easy to interpret and we give an explanation. The interface node in2 is identified

with in1 and therefore it is added to in1 all what it was pending in in2. On the other hand vn2
is identified also with vn1, and therefore all its visibility labels of vn2 are moved to vn1.

The rule to remove the visibility name m from the visibility set of ambient n will be referred
as rmv m n and it is defined in Figure 6.

Finally, the rule to add the visibility name m to the visibility set of ambient n will be referred
as addv m n and it is defined in Figure 7.

Graph transformation units contains a sequence of different instantiation of the parameterised
rules, and these rules are applied compositionally to the initial ambient expression. If all the rules

8 A variant of the ambient calculus

in1

an1n an2

in2

m

in1

an1n

an2

in2

m

Fig. 3. The transformation rule in n m

in1

an2n

an1

in2

m

in1

an1n an2

in2

m

Fig. 4. The transformation rule out n

in1

an1

in2

n

in1

vn1

vn2

vn1

Fig. 5. The transformation rule open n

A Variant of the Ambient Calculus 9

in1

an1

vn2

n

m

in1

an1

vn2

n

Fig. 6. The transformation rule rmv m n

in1

an1

vn2

n

m

in1

an1

vn2

n

Fig. 7. The transformation rule addv m n

10 A variant of the ambient calculus

apply correctly we usually obtain a different ambient expression from the initial one, and if one
rule does not apply correctly we obtain the initial ambient expression.

Now we present the concept of transformation system for our variant of the ambient calculus:

Definition 6. A transformation system for business configurations consists of:

– an ambient expressions
– the five parameterised rules in, out, open, rmv, addv
– a graph transformation unit.

Sequences of rules which apply to an ambient expression have the same syntax as graph trans-
formation units. From now on, graph transformation units will range over GTU

It is not difficult to prove soundness and completeness of the reduction process via the encoding
function of ambient expressions:

Theorem 2. Given two ambient expressions P and Q, and the sequence of rules RS and the
equivalent graph transformation unit GTU , RS P → Q if and only if GTU JP K⇒ JQK

6 An example

In this example we give an ambient topology with visibility restrictions to access services in the
internet. Services can have free access to the whole internet or can be accessed by a set of sites.

To show how the transformation system works, we extend the example of previous section in
Figure 2 with three additional ambients at the top level: an5, an8 and an9. The extension is in
Figure 8:

in1

an5 an8 an9

in5 in9

brn5 vn5 brn8 vn8 brn9 vn9

an1 an8 an5 pub

an6 an7

in8

brn6 vn6 brn7 vn7

an6 an7

Fig. 8. An extension of the first ambient graph presented

So we have the initial ambient expression presented in two figures with top level ambients
an1, an5, an8 and an9 and the graph transformation unit is the following sequence of rule
applications:

in an4 an9; out an4; open an1; rmv pub an1; in an1 an8

After applying the first three rules of the sequences open an1; rmv pub an1; an8 acquires an1
removing its public access and dissolving it. The resulting top level ambient an8 is in Figure 9.

And the rest of the actual top level ambients an5 and an9 are now in Figure 10.
Finally, with the last two rules an9 acquires a partition of the dissolved a1 which is a4. The

final ambient graph is in Figures 11 (top level ambients an5 and an9) and in Figure 12 (top level
ambient an8).

A Variant of the Ambient Calculus 11

in0

an8

brn8 vn8

an5

in8

an2 an3

an4

in2 in3

in4

brn2 vn2 brn3 vn3

brn4 vn4

an3 an4 an4

an3

Fig. 9. The top level ambient an8 after removing a public visibility and dissolving an1

in0

an5 an9

in5
in9

brn5 vn5
brn9 vn9

an1 an8
pub

an6 an7

brn6 vn6 brn7 vn7

an6 an7

Fig. 10. The rest of the ambients after applying an in rule

in0

an5 an9

in5
in9

brn5 vn5
brn9 vn9

an1 an8
pub

an6 an7

brn6 vn6 brn7 vn7

an6 an7

an4

in4

brn4 vn4

an3

Fig. 11. Final ambient graph with just the top level ambients an5 and an9

12 A variant of the ambient calculus

in0

an8

brn8 vn8

an5

in8

an2 an3

in2 in3

brn2 vn2 brn3 vn3

an3 an4 an4

Fig. 12. Final ambient graph with just top level ambient an8

7 Conclusions and Future Work

In this paper we have presented a fully abstract and adequate graph semantics of a variant of
the ambient calculus more adequate for an application to our model of SOC. Basically, we have
removed the capability lists and the restriction operator of the ambient calculus, and we have
added compositional application of parameterised rules, and a new visibility policy. We think that
this would allow us to integrate our current work of SOC with the graph semantics of the variant
of the ambient calculus developed in this paper. More precisely, we would develop a transformation
system for an ambient topology with business configurations and service repositories. Then the
transformations of the ambient topology would be one more of the possible transformation steps
of the transformation steps. The other two possibilities were included in our previous work and
they are also necessary in the integrated approach and they are the following:

– An application of a state transformation rule of an ambient to the current business activity of
the same ambient. The result updates the business activity of the ambient.

– After a process of selection of a visible service by an ambient request, the binding of the chosen
service to the current business configuration of the same ambient.

The most important goal of this work is starting with research and development of a real
application on service oriented computing. Our work so far was independent of the middleware,
to which the processes of service discovery, ranking and selection of services was delegated. From
now on, I plan to do research and development to these delegated processes to the middleware,
and work for example in recommender systems for services in the internet.

Acknowledgment

This work has been partially supported by funds from the Spanish Ministry for Economy and
Competitiveness (MINECO) and the European Union (FEDER funds) under grant COMMAS
(ref. TIN2013-46181-C2-1-R). I would like to thank also Fernando Orejas for the idea of extracting
capability lists from the ambient topology, and Hartmut Ehrig for hosting me during some months
in Berlin during 2006, and for his help in our first graph semantics of the ambient calculus. RIP.

References

1. Nikos Mylonakis and Fernando Orejas and José Fiadeiro A semantics of Business Configurations Using
Symbolic Graphs, IEEE International Conference on Services Computing (SCC 2015) New York (USA)

A Variant of the Ambient Calculus 13

2. Nikos Mylonakis and Fernando Orejas and José Fiadeiro Modeling service-oriented computing with
temporal symbolic graph transformation systems, Research Report 2015 and submitted to International
Journal of Services Computing (IJSC)

3. José Luiz Fiadeiro and Antónia Lopes and Laura Bocchi and João Abreu, The Sensoria Reference Mod-
eling Language, Rigorous Software Engineering for Service-Oriented Systems - Results of the SENSO-
RIA Project on Software Engineering for Service-Oriented Computing, http://dx.doi.org/10.1007/
978-3-642-20401-2_5,

4. Zohar Manna and Amir Pnueli, The temporal logic of reactive and concurrent systems - specification,
Springer 1992

5. Fernando Orejas and Leen Lambers, Symbolic Attributed Graphs for Attributed Graph Transformation,
Int. Coll. on Graph and Model Transformation. On the occasion of the 65th birthday of Hartmut Ehrig,
Comm. of the EASST 2010

6. L. Cardelli and A. D. Gordon, Mobile Ambients, In Maurice Nivat, editor, Proc. FOSSACS’98, Inter-
national Conference on Foundations of Software Science and Computation Structures, volume 1378 of
Lecture Notes in Computer Science, pages 140–155. Springer-Verlag, 1998

7. H. Ehrig and B. Koenig, Deriving Bisimulation Congruences in the DPO Approach to Graph Rewriting,
Foundations of Software Science and Computation Structures, FoSSaCS ’04, LNCS 2987

8. S. Lack and P. Sobociński, Adhesive Categories, FOSSACS 2004, LNCS 2987
9. P. Baldan and A. Corradini and T. Heindel and B. Koenig and P. Sobociński, Processes for Adhesive

Rewriting Systems, Foundations of Software Science and Computation Structures, FoSSaCS ’06, lncs
3921, 2006

10. Ole Jensen and Robin Milner, Bigraphs and mobile processes, University of Cambridge, UCAM-CL-
TR-57,

11. Fabio Gadducci and Ugo Montanari, A Concurrent Graph Semantics for Mobile Ambients, Electronic
Notes of Theoretical Computer Science, 2001

12. Gian Luigi Ferrari and Ugo Montanari and Emilio Tuosto, A LTS Semantics of Ambients via Graph
Synchronization with Mobility, ICTCS, 2001

13. Nikos Mylonakis and Fernando Orejas, Another fully abstract graph semantics for the ambient calcu-
lus, futur.upc.edu, presented at Graph Transformation for Verification and Concurrency(2007)

14. Filippo Bonchi and Fabio Gadducci and Giacoma Valentina Monreale, RPO semantics for mobile
ambients, Mathematical Structures in Computer Science 2014

15. Julian Rathke and Pawel Sobocinski, Deriving Structural Labelled Transitions for Mobile Ambi-
ents, CONCUR 2008 - Concurrency Theory, 19th International Conference, CONCUR 2008, Toronto,
Canada, August 19-22, 2008. Proceedings,

16. Fabio Gadducci and Giacoma Valentina Monreale, A Decentralized Implementation of Mobile Ambi-
ents, Graph Transformations, 4th International Conference, ICGT 2008, Leicester, United Kingdom,
September 7-13, 2008. Proceedings,

17. Hartmut Ehrig and Ulrike Prange and Gabriele Taentzer, Fundamental Theory for Typed Attributed
Graph Transformation, ICGT 2004, LNCS 3256

18. H. Ehrig and K. Ehrig and U. Prange and G. Taentzer, Fundamentals of Algebraic Graph Transfor-
mation, EATCS Monographs of Theoretical Computer Science, Springer 2006

http://dx.doi.org/10.1007/978-3-642-20401-2_5
http://dx.doi.org/10.1007/978-3-642-20401-2_5

	Lecture Notes in Computer Science
	Introduction
	A Variant of the Ambient Calculus
	Typed labeled graph transformation systems
	A graph semantics of our variant of the ambient calculus
	The transformation system
	An example
	Conclusions and Future Work

