123 research outputs found

    IEEE Transactions on Broadcasting Special Issue on: 5G for Broadband Multimedia Systems and Broadcasting

    Full text link
    [EN] The upcoming fifth-generation ( 5G ) of wireless communications technologies is expected to revolutionize society digital transformation thanks to its unprecedented wireless performance capabilities, providing speeds of several Gbps, very low latencies well below 5 ms, ultra-reliable transmissions with up to 99.999% success probability, while being able to handle a huge number of devices simultaneously connected to the network. The first version of the 3GPP specification (i.e., Release 15) has been recently completed and many 5G trials are under plan or carrying out worldwide, with the first commercial deployments happening in 2019."© 2019 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."Gomez-Barquero, D.; Li, W.; Fuentes, M.; Xiong, J.; Araniti, G.; Akamine, C.; Wang, J. (2019). IEEE Transactions on Broadcasting Special Issue on: 5G for Broadband Multimedia Systems and Broadcasting. IEEE Transactions on Broadcasting. 65(2):351-355. https://doi.org/10.1109/TBC.2019.2914866S35135565

    The state of broadband 2012: achieving digital inclusion for all

    Get PDF
    With this Report, the Broadband Commission expands awareness and understanding of the importance of broadband networks, services, and applications for generating economic growth and achieving social progress. High-speed affordable broadband connectivity to the Internet is essential to modern society, offering widely recognized economic and social benefits (Annex 1). The Broadband Commission for Digital Development promotes the adoption of broadband-friendly practices and policies for all, so everyone can take advantage of the benefits offered by broadband. With this Report, the Broadband Commission expands awareness and understanding of the importance of broadband networks, services, and applications for generating economic growth and achieving social progress. It has been written collaboratively, drawing on insightful and thought-provoking contributions from our leading array of Commissioners and their organizations, foremost in their fields

    Survey of IoT for developing countries : performance analysis of LoRaWAN and cellular NB-IoT networks

    Get PDF
    Recently, Internet of Things (IoT) deployments have shown their potential for aiding the realisation of the Sustainable Development Goals (SDGs). Concerns regarding how the IoT can specifically drive SDGs 6, 11 and 9 in developing countries have been raised with respect to the challenges of deploying licensed and unlicensed low-power wide area network (LPWAN) IoT technologies and their opportunities for IoT consumers and service providers. With IoT infrastructure and protocols being ubiquitous and each being proposed for different SDGs, we review and compare the various performance characteristics of LoRaWAN and NB-IoT networks. From the performance analysis of our networks, NB-IoT, one of the standardised promising cellular IoT solutions for developing countries, is more expensive and less energy-efficient than LoRaWAN. Utilising the same user equip-ment (UE), NB-IoT consumed an excess of 2 mAh of power for joining the network and 1.7 mAh more for a 44-byte uplink message compared to LoRaWAN. However, NB-IoT has the advantage of reliably and securely delivering higher network connection capacity in IoT use cases, leveraging existing cellular infrastructure. With a maximum throughput of 264 bps at 837 ms measured latency, NB-IoT outperformed LoRaWAN and proved robust for machine-type communications. These findings will help IoT consumers and service providers understand the performance differences and deployment challenges of NB-IoT and LoRaWAN and establish new research directions to tackle IoT issues in developing countries. With Nigeria as a case study, for consumers and organisations at a crossroads in their long-term deployment decisions, the proposed LPWAN integrated architecture is an example of the deployment opportunities for consumer and industrial IoT applications in developing countries

    A study of mobile VoIP performance in wireless broadband networks

    Get PDF
    Voice service is to date still the killer mobile service and the main source for operator revenue for years to come. Additionally, voice service will evolve from circuit switched technologies towards packet based Voice over IP (VoIP). However, using VoIP over wireless networks different from 3GPP cellular technologies makes it also a disruptive technology in the traditional telecommunication sector. The focus of this dissertation is on determining mobile VoIP performance in different wireless broadband systems with current state of the art networks, as well as the potential disruption to cellular operators when mobile VoIP is deployed over different access networks. The research method is based on an empirical model. The model and experiments are well documented and based on industry standards for voice quality evaluation. The evaluation provides results from both experiments in a controlled laboratory setup as well as from live scenarios. The research scope is first, evaluate each network technology independently; second, investigate vertical handover mobility cases; third, determine other aspects directly affecting end user experience (e.g., call setup delay and battery lifetime). The main contribution of this work is a systematic examination of mobile VoIP performance and end user experience. The research results point out the main challenges for achieving call toll quality, and how derive the required changes and technological performance roadmap for improved VoIP service. That is, investigate how the performance and usability of mobile VoIP can eventually be improved to be a suitable substitute for circuit switched voice. In addition, we evaluate the potential disruption to cellular operators that mobile VoIP brings when deployed over other access networks. This research extends the available knowledge from simulations and provides an insight into actual end user experience, as well as the challenges of using embedded clients in handheld devices. In addition, we find several issues that are not visible or accounted for in simulations in regard to network parameters, required retransmissions and decreased battery lifetime. The conclusion is that although the network performance of several wireless networks is good enough for near toll quality voice in static scenarios, there are still a number of problems which make it currently unfeasible to use as a primary voice service. Moreover, under mobility scenarios performance is degraded. Finally, there are other issues apart from network performance such as energy consumption, hardware limitations and lack of supporting business models (e.g., for WiFi mesh) that further limit the possibility of rolling out mobile VoIP services
    • …
    corecore