3 research outputs found

    Modelado matemático, simulación y control de una mini motocicleta autónoma con rueda de reacción

    Get PDF
    Se presenta el modelado, la simulación y el control de una mini motocicleta autónoma, estabilizada mediante rueda de reacción, que se utilizará para la enseñanza del diseño de sistemas de control. El modelo se construye a partir de un diseño CAD para posteriormente ser integrado en Simulink, junto con los módulos de control. Se realiza la modelización del sistema completo, incluyendo elementos mecánicos, sensores, actuadores, así como la dinámica de contacto de las ruedas con el suelo, consiguiéndose un comportamiento muy similar al de la motocicleta física. A partir del modelo matemático (ecuaciones diferenciales, funciones de transferencia y ecuación de estado), se diseñan un controlador PI para la velocidad, y varios controladores para la inclinación (PID, LQR y LQI). Los controladores han sido probados también en la motocicleta física.In this paper, the modelling and subsequent control of an autonomous mini motorcycle, which will be used to teach about control systems, is presented. The model is initially built from a CAD design and then integrated into Simulink, together with the control modules. The modelling of the complete system, including the mechanical parts, sensors, actuators and wheels behaviour with the ground is carried out, to achieve the same behaviour as the physical motorcycle. From the mathematical model (differential equations, transfer functions and state equation), a PI controller is designed for speed, and several controllers for inclination (PID, LQR and LQI). The controllers have also been tested on the physical motorcycle.Universidad de Granada: Departamento de Arquitectura y Tecnología de Computadore

    LQR and MPC controller design and comparison for a stationary self-balancing bicycle robot with a reaction wheel

    Get PDF
    summary:A self-balancing bicycle robot based on the concept of an inverted pendulum is an unstable and nonlinear system. To stabilize the system in this work, the following three main components are required, i. e., (1) an IMU sensor that detects the tilt angle of the bicycle robot, (2) a controller that is used to control motion of a reaction wheel, and (3) a reaction wheel that is employed to produce reactionary torque to balance the bicycle robot. In this paper, we propose three control strategies: linear quadratic regulator (LQR), linear model predictive control (LMPC), and nonlinear model predictive control (NMPC). Several simulation tests have been conducted in order to show that our proposed control laws can achieve stabilizaton and make the system balance. Furthermore, LMPC and NMPC controllers can deal with state and input constraints explicitly
    corecore