84 research outputs found

    A Proactive Approach for Coping with Uncertain Resource Availabilities on Desktop Grids

    No full text
    International audienceUncertainties stemming from multiple sources affect distributed systems and jeopardize their efficient utilization. Desktop grids are especially concerned by this issue as volunteers lending their resources may have irregular and unpredictable behaviors. Efficiently exploiting the power of such systems raises theoretical issues that received little attention in the literature. In this paper, we assume that there exist predictions on the intervals during which machines are available. When these predictions have a limited error, it is possible to schedule a set of jobs such that the effective total execution time will not be higher than the predicted one. We formally prove it is the case when scheduling jobs only in large intervals and when provisioning sufficient slacks to absorb uncertainties. We present multiple heuristics with various efficiencies and costs that are empirically assessed through simulations

    Measurement Based Reconfigurations in Optical Ring Metro Networks

    Get PDF
    Single-hop wavelength division multiplexing (WDM) optical ring networks operating in packet mode are one of themost promising architectures for the design of innovative metropolitan network (metro) architectures. They permit a cost-effective design, with a good combination of optical and electronic technologies, while supporting features like restoration and reconfiguration that are essential in any metro scenario. In this article, we address the tunability requirements that lead to an effective resource usage and permit reconfiguration in optical WDM metros.We introduce reconfiguration algorithms that, on the basis of traffic measurements, adapt the network configuration to traffic demands to optimize performance. Using a specific network architecture as a reference case, the paper aims at the broader goal of showing which are the advantages fostered by innovative network designs exploiting the features of optical technologies

    Project management under uncertainty: a study on solution methods

    Get PDF
    Project Management involves onetime endeavors that demand for getting it right the first time. On the other hand, project scheduling, being one of the most modeled project management process stages, still faces a wide gap from theory to practice. Demanding computational models and their consequent call for simplification, divert the implementation of such models in project management tools from the actual day to day project management process. Special focus is being made to the robustness of the generated project schedules facing the omnipresence of uncertainty. An "easy" way out is to add, more or less cleverly calculated, time buffers that always result in project duration increase and correspondingly, in cost. A better approach to deal with uncertainty seems to be to explore slack that might be present in a given project schedule, a fortiori when a non-optimal schedule is used. The combination of such approach to recent advances in modeling resource allocation and scheduling techniques to cope with the increasing flexibility in resources, as can be expressed in "Flexible Resource Constraint Project Scheduling Problem" (FRCPSP) formulations, should be a promising line of research to generate more adequate project management tools. In reality, this approach has been frequently used, by project managers in an ad-hoc way

    Project management under uncertainty: Solution methods revisited

    Get PDF
    Project Management involves onetime endeavors that demand for getting it right the first time. On the other hand, project scheduling, being one of the most modeled project management process stages, still faces a wide gap from theory to practice. Demanding computational models and their consequent call for simplification, divert the implementation of such models in project management tools from the actual day to day project management process. Special focus is being made to the robustness of the generated project schedules facing the omnipresence of uncertainty. An "easy" way out is to add, more or less cleverly calculated, time buffers that always result in project duration increase and correspondingly, an increase in its cost. A better approach to deal with uncertainty seems to be to explore slack that might be present in a given project schedule especially when a non-optimal schedule is used. The combination of such approach to recent advances in modeling resource allocation and scheduling techniques to cope with the increasing flexibility in resources, as can be expressed in "Flexible Resource Constraint Project Scheduling Problem" (FRCPSP) formulations, should be a promising line of research to generate more adequate project management tools. In reality this approach is frequently used by project managers in an ad-hoc way

    Robust job-sequencing with an uncertain flexible maintenance activity

    Get PDF
    In this study, the problem of scheduling a set of jobs and one uncertain maintenance activity on a single machine, with the objective of minimizing the makespan is addressed. The maintenance activity has a given duration and must be executed within a given time window. Furthermore, duration and time window of the maintenance are uncertain, and can take different values which can be described by different scenarios. The problem is to determine a job sequence which performs well, in terms of makespan, independently on the possible variation of the data concerning the maintenance. A robust scheduling approach is used for the problem, in which four different measures of robustness are considered, namely, maximum absolute regret, maximum relative regret, worst-case scenario, and ordered weighted averaging. Complexity and approximation results are presented. In particular, we show that, for all the four robustness criteria, the problem is strongly NP-hard. A number of special cases are explored, and an exact pseudopolynomial algorithm based on dynamic programming is devised when the number of scenarios is fixed. Two Mixed Integer Programming (MIP) models are also presented for the general problem. Several computational experiments have been conducted to evaluate the efficiency and effectiveness of the MIP models and of the dynamic programming approach

    TRADE-OFF BALANCING FOR STABLE AND SUSTAINABLE OPERATING ROOM SCHEDULING

    Get PDF
    The implementation of the mandatory alternative payment model (APM) guarantees savings for Medicare regardless of participant hospitals ability for reducing spending that shifts the cost minimization burden from insurers onto the hospital administrators. Surgical interventions account for more than 30% and 40% of hospitals total cost and total revenue, respectively, with a cost structure consisting of nearly 56% direct cost, thus, large cost reduction is possible through efficient operation management. However, optimizing operating rooms (ORs) schedules is extraordinarily challenging due to the complexities involved in the process. We present new algorithms and managerial guidelines to address the problem of OR planning and scheduling with disturbances in demand and case times, and inconsistencies among the performance measures. We also present an extension of these algorithms that addresses production scheduling for sustainability. We demonstrate the effectiveness and efficiency of these algorithms via simulation and statistical analyses

    A stochastic programming approach for chemotherapy appointment scheduling

    Get PDF
    Chemotherapy appointment scheduling is a challenging problem due to the uncertainty in pre-medication and infusion durations. In this paper, we formulate a two-stage stochastic mixed integer programming model for the chemotherapy appointment scheduling problem under limited availability and number of nurses and infusion chairs. The objective is to minimize the expected weighted sum of nurse overtime, chair idle time, and patient waiting time. The computational burden to solve real-life instances of this problem to optimality is significantly high, even in the deterministic case. To overcome this burden, we incorporate valid bounds and symmetry breaking constraints. Progressive hedging algorithm is implemented in order to solve the improved formulation heuristically. We enhance the algorithm through a penalty update method, cycle detection and variable fixing mechanisms, and a linear approximation of the objective function. Using numerical experiments based on real data from a major oncology hospital, we compare our solution approach with several scheduling heuristics from the relevant literature, generate managerial insights related to the impact of the number of nurses and chairs on appointment schedules, and estimate the value of stochastic solution to assess the significance of considering uncertainty

    Maintenance activities scheduling under competencies constraints.

    No full text
    International audienceCompetencies management in the industry is one of the most important keys in order to obtain good performance with production means. Especially in maintenance services field where the different practical knowledges or skills are their working tools. We propose here a methodology, which compares the human resource with parallel machine. As human resource competence levels of each are all differents, they are considered like unrelated parallel machines. Our aim is to assign tasks to the adequate resources by minimizing time treatment for each task and the makespan

    Project management under uncertainty: using flexible resource management to exploit schedule flexibility

    Get PDF
    Project management still faces a wide gap separating theory from practice, especially regarding the robustness of the generated project schedules facing the omnipresence of uncertainty. A new approach to deal with uncertainty is presented to explore slack that might exist in a given project schedule. We propose that renewable resources' capacity to perform work can be increased so that they can perform additional work in a time unit or can be decreased with the consequent reduction on the performed work. This possibility combined with the slack that some activities have in a specific schedule can be used to absorb deviations that might occur during a project's execution. When a critical activity is about to have its duration increased, slowing down other non-critical activities by putting their resources in a decreased work mode enables the activity to still be executed within time by using resources in an increased working mode. [Received: 14 February 2018; Revised: 2 January 2019; Revised: 8 June 2019; Accepted: 17 November 2019

    Real-Time Load and Ancillary Support for a Remote Island Power System Using Electric Boats

    Get PDF
    corecore