
Computers & Industrial Engineering 185 (2023) 109610

A
0

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

Robust job-sequencing with an uncertain flexible maintenance activity
Paolo Detti a, Gaia Nicosia b,∗, Andrea Pacifici c

a Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Università di Siena, Via Roma 56, 53100, Italy
b Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche, Università degli Studi ‘‘Roma Tre’’, via della Vasca Navale 79, 00146 Rome, Italy
c Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università degli Studi di Roma ‘‘Tor Vergata’’, Via del Politecnico 1, 00133 Rome, Italy

A R T I C L E I N F O

Keywords:
Single-machine scheduling
Flexible maintenance
Robust optimization
Computational complexity

A B S T R A C T

In this study, the problem of scheduling a set of jobs and one uncertain maintenance activity on a single
machine, with the objective of minimizing the makespan is addressed. The maintenance activity has a given
duration and must be executed within a given time window. Furthermore, duration and time window of
the maintenance are uncertain, and can take different values which can be described by different scenarios.
The problem is to determine a job sequence which performs well, in terms of makespan, independently on
the possible variation of the data concerning the maintenance. A robust scheduling approach is used for the
problem, in which four different measures of robustness are considered, namely, maximum absolute regret,
maximum relative regret, worst-case scenario, and ordered weighted averaging. Complexity and approximation
results are presented. In particular, we show that, for all the four robustness criteria, the problem is strongly
NP-hard. A number of special cases are explored, and an exact pseudopolynomial algorithm based on dynamic
programming is devised when the number of scenarios is fixed. Two Mixed Integer Programming (MIP) models
are also presented for the general problem. Several computational experiments have been conducted to evaluate
the efficiency and effectiveness of the MIP models and of the dynamic programming approach.
1. Introduction

In this paper, the problem of scheduling a set of jobs and an
uncertain maintenance activity on a single machine with the objective
of minimizing the makespan is addressed. The maintenance activity
is flexible, that is, it must be executed within a given time window.
Furthermore, while the processing times of the jobs are deterministic,
the maintenance duration and the time window are uncertain, and can
take different values which can be described by various scenarios. The
problem consists of determining a job sequence which performs ‘‘well’’,
in terms of makespan, independently on the possible variation of the
data concerning the maintenance.

These types of problems arise in manufacturing plants when a work-
station has to process jobs in a given sequence and, concurrently, has
to perform a precautionary maintenance task in order to prevent major
failures. Maintenance activities are usually carried out by an external
party which gives rough estimates of the time required for this task and
the time-interval in which it would be executed. In these conditions,
duration and starting time of the maintenance are not exactly known
a-priori, while the job sequence must be decided before the information
about the maintenance is disclosed. Hence, the actual schedule will
depend on the starting time and length of the maintenance activity,
and thus it can be established only once the data become apparent. In

∗ Corresponding author.
E-mail addresses: paolo.detti@unisi.it (P. Detti), gaia.nicosia@uniroma3.it (G. Nicosia), andrea.pacifici@uniroma2.it (A. Pacifici).

such problems, the aim is to find a job sequence that is robust against
the uncertainties concerning the maintenance task. In general, robust
optimization deals with problems in which, due to uncertain input data,
a set of scenarios with possibly different optimal solutions exist. Most
of the approaches in the literature consist of trying to find a solution
satisfying given ‘‘robustness criteria’’, which may be associated to an
average or a worst-case solution performance over all scenarios. In
this context, the addressed problem can be defined as a robust flexible
maintenance single machine scheduling problem with the objective
of minimizing the makespan. In this work, different variants of the
problems are studied and different robustness criteria are analyzed.

A similar scheduling problem in which uncertainty only affects
maintenance duration has been addressed in Detti, Nicosia, Pacifici,
and de Lara (2019). In the current work, a more general setting is
considered: The maintenance time window in addition to its duration
are regarded as varying parameters in the different scenarios. The main
contributions of this work are: (𝑖) New complexity and approximation
results are provided for the general problem under four different robust-
ness criteria, namely, absolute and relative regret, worst case scenario,
and ordered weighted averaging. In particular, different from strictly
related problems previously addressed in the literature, we are able
to prove strong NP-hardness results for all the considered robustness
vailable online 19 September 2023
360-8352/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cie.2023.109610
Received 1 May 2023; Received in revised form 9 August 2023; Accepted 11 Septe
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mber 2023

https://www.elsevier.com/locate/caie
http://www.elsevier.com/locate/caie
mailto:paolo.detti@unisi.it
mailto:gaia.nicosia@uniroma3.it
mailto:andrea.pacifici@uniroma2.it
https://doi.org/10.1016/j.cie.2023.109610
https://doi.org/10.1016/j.cie.2023.109610
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2023.109610&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers & Industrial Engineering 185 (2023) 109610P. Detti et al.
criteria. Approximation results are also presented. (𝑖𝑖) Different variants
and special cases of the problem in which the uncertainty regards
one or both the extremes of the time window and/or the duration of
the maintenance activity are addressed and analyzed. (𝑖𝑖𝑖) An exact
pseudopolynomial dynamic programming algorithm for the case in
which the uncertainty can be described by a fixed number of scenarios
is devised, and two Mixed Integer Linear Programming (MIP) models
for the general case are proposed. (𝑖𝑣) A computational study on
randomly generated instances is presented, assessing the performance
of the above solution approaches.

The paper is organized as follows. In Section 2, a review of the lit-
erature is presented. Some preliminary concepts, definitions, a rigorous
statement of the problem together with a summary of the main theoret-
ical contributions are given in Section 3. Section 4 is devoted to present
the theoretical results on computational complexity and approximation
for all the considered robustness criteria, and to describe an exact
dynamic programming algorithm. In Section 5, some special cases,
which can be efficiently solved or that can be reduced to problems
already addressed in the literature, are investigated. In Section 6 two
MIP formulations are presented. The results of the computational ex-
periments on the MIP models, together with the dynamic programming
algorithm, are presented in Section 7. Finally, conclusions follow.

2. Literature review

In the literature, scheduling problems with maintenance activities
or unavailable periods have been addressed by several authors for the
deterministic case, i.e., in which the duration of the maintenance tasks
or unavailability periods are known. In Lee (1996) Lee considers several
deterministic scheduling problems with unavailability constraints both
in the resumable and in the nonresumable cases. (In the resumable
case it is possible to interrupt the processing of one job and resume
its execution after the completion of the maintenance activity. This is
not allowed in the nonresumable case.) In the resumable case many
single machine scheduling problems can be solved in polynomial time,
while the corresponding nonresumable versions of the same problems
often become NP-hard (Lee, 1996; Yang, Maa, Xu, & Yang, 2011). For
a survey of scheduling problems with availability constraints see Ma,
Chu, and Zuo (2010).

For the makespan objective function, the nonresumable determin-
istic non-flexible version (in which the maintenance must start at
a fixed given time) is proven to be binary NP-hard in Lee (1996).
Furthermore, Lee (1996) shows that the Longest Processing Time (LPT)
rule has a tight worst-case ratio of 4/3, and He, Ji, and Cheng (2005)
present a Fully Polynomial Time Approximation Scheme. Kacem and
Kellerer (2016) prove that a simple algorithm that schedules first the
longest job has a worst-case ratio of 3/2.

Yang, Hung, Hsu, and Chern (2002) address the problem of schedul-
ing jobs on a single machine with a flexible maintenance activity in
the nonresumable case, with the objective of minimizing the makespan.
They show that the problem is NP-hard and provide a heuristic algo-
rithm with complexity 𝑂(𝑛 log 𝑛). The variant of the problem, in which
maintenance must be periodically performed is addressed in Chen
(2008), Ji, Yong, and Cheng (2007), Lee (1996) and Xu, Yin, and Li
(2009). Lee (1996) proves that the problem is strongly NP-hard even
in the non-flexible case, and Ji et al. (2007) show that LPT has a
tight worst-case ratio of 2. Chen (2008) proposes two mixed integer
linear programming models and a heuristic algorithm. Xu et al. (2009)
show that the heuristic proposed in Chen (2008) is 2-approximate and
that the bound is tight. In Luo, Cheng, and Ji (2015), the authors
consider the single machine problem of scheduling jobs and a variable
maintenance, which has to start before a given deadline and whose
duration is increasing with its starting time. They provide polynomial
solution algorithms for a few classical objective functions. A similar
problem with different objective is addressed in Ying, Lu, and Chen
(2016).
2

In the literature, robust optimization problems have been addressed
in several fields by many authors, in order to take care of incomplete
or unreliable data. Mulvey, Vanderbei, and Zenios (1995) present a
general framework for addressing conflicting objectives and model
robustness, while Kouvelis and Yu (1997) propose different robustness
criteria. Robust scheduling problems have been addressed by different
works in the literature, too. Daniels and Kouvelis (1995) consider
single machine scheduling problems with the objective of minimiz-
ing total completion time, in which processing times may vary in a
given interval. They introduce different robustness criteria, measuring
worst-case absolute or relative deviation from the optimum over all
scenarios (i.e., maximum absolute or relative regrets), and establish
several properties of robust schedules. Lebedev and Averbakh (2006)
show that the problem of finding a schedule minimizing the maximum
regret on a single machine, with processing times varying in given
intervals, is NP-hard. For the same problem, Kasperski and Zielinski
(2014) propose an approximation algorithm, Pereira (2016) presents
an exact algorithm for the case with job weights and total weighted
completion time objective, and Wang, Cui, Chu, Yu, and Gupta (2020)
come up with an approximation algorithm and exact-solution methods
based on MIP formulations when the objective is total tardiness.

Robustness concepts have been also adopted in scheduling problems
with maintenance activities. For instance in Costa Souza, Ghasemi, Saif,
and Gharaei (2022), the authors study how machine unavailability,
due to a preventive maintenance with stochastic duration, affects the
performance of a job shop. The weighted sum of the expected values of
the makespan is used as a robustness criterion. In Golpîra and Tirkolaee
(2019), Golpîra and Tirkolaee present a bi-objective model which
incorporates the problem of scheduling a maintenance activity with
uncertain duration into a robust optimization framework. Different
solution techniques aiming at guaranteeing the stability of the output
schedule are proposed and evaluated. A recent survey by Shabtay
and Gilenson (2023) provides an interesting framework for scheduling
problems in which the multi-scenario approach is adopted to cope with
uncertain parameters or data.

Finally, in the above mentioned paper (Detti et al., 2019), the
authors investigate robust scheduling problems on a single machine
in presence of a flexible maintenance activity with uncertain dura-
tion: Four robustness criteria are analyzed when the objective is the
minimization makespan or total completion time.

3. Introductory concepts, definitions and notation

In the scheduling problem addressed in this paper, we are given a
set of 𝑛 jobs, 𝐽 = {1, 2,… , 𝑛}, and a maintenance activity 𝑀 , that must
be processed on a single machine. The jobs must be processed without
interruption, and the machine cannot process any of the jobs during
the execution of the maintenance activity. The maintenance 𝑀 has a
duration 𝑃 and must be performed within a time window [𝑟, 𝑑], and the
jobs have processing times 𝑝𝑗 , 𝑗 = 1,… , 𝑛. While the jobs processing
times 𝑝𝑗 are deterministic and known, the maintenance duration 𝑃 and
the interval [𝑟, 𝑑] are uncertain quantities, which take their values in a
finite and discrete set = {𝑠1, 𝑠2,… , 𝑠𝑘} of scenarios. For each scenario
𝑠 ∈ , we denote by 𝑟(𝑠) and 𝑑(𝑠) the realizations, i.e., the values, taken
by the extremes of the maintenance time window in 𝑠, and by 𝑃 (𝑠) the
realization of the maintenance duration. In the remainder of the paper,
it is always assumed that 𝑃 (𝑠) ≤ 𝑑(𝑠) − 𝑟(𝑠) for all 𝑠 ∈ .

In what follows, without loss of generality, let us assume that the
scenarios are ordered according to non-decreasing values of the latest
starting time of the maintenance 𝑀 . Hence,

𝑑(𝑠1) − 𝑃 (𝑠1) ≤ 𝑑(𝑠1) − 𝑃 (𝑠1) ≤ ⋯ ≤ 𝑑(𝑠𝑘) − 𝑃 (𝑠𝑘). (1)

The problem consists in determining a job sequence 𝜋 of the 𝑛 jobs
which performs well, in terms of makespan (i.e., the completion time of
the last job in the sequence), independently on the possible variation

of the data concerning the maintenance. Namely, we want to find a

Computers & Industrial Engineering 185 (2023) 109610P. Detti et al.
Fig. 1. The realization schedules 𝜎(𝜋1 , 𝑠1) and 𝜎(𝜋1 , 𝑠2) of the sequence 𝜋1 = ⟨3, 1, 2, 4⟩ under the two scenarios of Example 1.
sequence that is robust against the uncertainties of 𝑀 described by the
scenarios’ set . To this aim, different robustness criteria, which are
rigorously defined below, are studied.

Given a job-sequence 𝜋 = ⟨𝜋1, 𝜋2,… ,…𝜋𝑛⟩ and a scenario 𝑠 ∈
(defining the duration 𝑃 (𝑠) and the interval [𝑟(𝑠), 𝑑(𝑠)] of the main-
tenance), the makespan of the solution is evaluated in the so-called
realization schedule 𝜎(𝜋, 𝑠). Here, jobs are processed in the order spec-
ified by 𝜋 and 𝑀 is executed at the latest available time inside the
allotted time window so that unnecessary idle times are avoided (Detti
et al., 2019). More specifically, in a realization schedule 𝜎(𝜋, 𝑠), the
crossover job ℎ̄ is the first job in the sequence 𝜋 that could not be
completed before the maintenance period. Since jobs cannot be in-
terrupted,1 in 𝜎(𝜋, 𝑠), the crossover job is always scheduled after the
completion of 𝑀 and the maintenance activity is scheduled at the
earliest possible time between the (ℎ̄ − 1)-th and the ℎ̄-th jobs. The
resulting sequence is then ⟨𝜋1,…𝜋ℎ̄−1,𝑀, 𝜋ℎ̄,…𝜋𝑛⟩.

For the jobs scheduled before the crossover job, the completion time
of the ℎth job in 𝜎(𝜋, 𝑠) is 𝐶𝜋ℎ (𝜎(𝜋, 𝑠)) =

∑ℎ
𝓁=1 𝑝𝜋𝓁 , for ℎ = 1,… , ℎ̄ − 1.

For the other jobs, the completion time is the sum of the processing
times of preceding jobs, plus the maintenance duration, plus possible
unavoidable idle time. Then, for ℎ = ℎ̄,… , 𝑛, 𝐶𝜋ℎ (𝜎(𝜋, 𝑠)) =

∑ℎ
𝓁=1 𝑝𝜋𝓁 +

𝑃 (𝑠) + max
{

0, 𝑟(𝑠) −
∑ℎ̄−1

𝑖=1 𝑝𝜋𝑖
}

. If, in the latter term, 𝑟(𝑠) − ∑ℎ̄−1
𝑖=1 𝑝𝜋𝑖 is

positive we have an idle time before the earliest possible start 𝑟(𝑠) of
the maintenance activity. In the remainder of this paper, the makespan
of the realization schedule of a sequence 𝜋 in scenario 𝑠 ∈ is referred
to as 𝐶max(𝜋, 𝑠) = max𝑗∈𝐽 {𝐶𝑗 (𝜎(𝜋, 𝑠))}.

Example 1. Let us consider a problem instance with a set of four
jobs {1, 2, 3, 4}, with processing times 𝑝1 = 51, 𝑝2 = 73, 𝑝3 = 100, and
𝑝4 = 125, and two scenarios 𝑠1 and 𝑠2, with 𝑟(𝑠1) = 100, 𝑑(𝑠1) = 200,
𝑟(𝑠2) = 130, 𝑑(𝑠2) = 230, 𝑃 (𝑠1) = 𝑃 (𝑠2) = 80. Let us consider the
job sequence 𝜋1 = ⟨3, 1, 2, 4⟩. In Fig. 1, the two realization schedules
𝜎(𝜋1, 𝑠1) and 𝜎(𝜋1, 𝑠2) in the two scenarios are reported. Note that, job
1 is the critical job in both scenarios 𝑠1 and 𝑠2. Also observe that, while
𝜋1 is an optimal solution sequence in scenario 𝑠1 (producing no idle
time), it is not in 𝑠2, in which the optimal solution is 𝜋2 = ⟨4, 1, 2, 3⟩.

Note that, despite the ordering defined by Eq. (1), in general it is
not possible to establish domination criteria among the values of the job
completion times in different scenarios 𝑠 ∈ : For instance, sequence
𝜋1 of Example 1 obtains a worse makespan in the ‘‘ampler’’ scenario 𝑠2
(i.e., such that 𝑑(𝑠1) − 𝑃 (𝑠1) ≤ 𝑑(𝑠2) − 𝑃 (𝑠2)).

Robustness criteria. As already stated, for a certain scenario 𝑠, the
performance of a solution 𝜋 is measured by the makespan of the realiza-
tion schedule, i.e., the completion time of the last job in the schedule.
To assess whether a schedule is satisfactory in all the scenarios, four
robustness criteria have been considered (to be minimized). Namely,
min–max (𝑀𝑀), maximum absolute regret (𝐴𝐵𝑆) and relative regret
(𝑅𝐸𝐿), and ordered weighted averaging (𝑂𝑊𝐴), that are defined in the
following. Given a job sequence 𝜋, let 𝐶max(𝜋, 𝑠) be the makespan of the

1 This situation is referred to in the literature as ‘‘non-resumable’’ case.
3

realization schedule 𝜎(𝜋, 𝑠), and let 𝐶∗
max(𝑠) be the minimum makespan

value for scenario 𝑠 ∈ . Then:

𝑀𝑀(𝜋) = max
𝑠∈

𝐶max(𝜋, 𝑠) (𝑚𝑖𝑛 − 𝑚𝑎𝑥);

(2)
𝐴𝐵𝑆(𝜋) = max

𝑠∈
{𝐶max(𝜋, 𝑠) − 𝐶∗

max(𝑠)} (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑒𝑔𝑟𝑒𝑡);

(3)

𝑅𝐸𝐿(𝜋) = max
𝑠∈

𝐶max(𝜋, 𝑠)
𝐶∗
max(𝑠)

(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑔𝑟𝑒𝑡);

(4)

𝑂𝑊𝐴(𝜋) =
𝑘
∑

𝑖=1
𝛽𝑖𝐶max(𝜋, 𝑠[𝑖]) (𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔);

(5)

where, in (5), 𝑠[𝑖] ∈ is the scenario producing the 𝑖th largest value
of the makespan 𝐶max, i.e., 𝐶max(𝜋, 𝑠[𝑖]) ≥ 𝐶max(𝜋, 𝑠[𝑖+1]), 𝑖 = 1,… , 𝑘 − 1,
and 𝛽𝑖 is a given weight assigned to scenario 𝑠[𝑖].

The min–max and the maximum absolute and relative regret criteria
are widely used criteria in robust optimization (see Aissi, Bazgan, &
Vanderpooten, 2009) and have been also applied in the scheduling
literature, see e.g., Daniels and Kouvelis (1995). In the 𝑀𝑀 criterion,
one has to find a sequence whose maximum makespan among all
scenarios is minimum. 𝐴𝐵𝑆 and 𝑅𝐸𝐿 provide information on how a
given realization schedule is far from the optima of all the scenarios.
𝑂𝑊𝐴 has been introduced in Yager (1988) and it is a generalization
of the min–max criterion: In fact, 𝑂𝑊𝐴 with 𝛽1 = 1 and 𝛽𝑖 = 0 for
𝑖 = 2, 3,… , 𝑘 reduces to 𝑀𝑀 .

Given a job sequence, i.e., a solution 𝜋, and a certain criterion
𝑐 ∈ {𝐴𝐵𝑆,𝑅𝐸𝐿,𝑀𝑀,𝑂𝑊 𝐴} (defined in Eqs. (3)–(5)), we indicate by
𝑐(𝜋) the value of the robustness criterion 𝑐 associated to solution 𝜋. As a
consequence, we may rigorously define the addressed robust scheduling
problem as follows.

Robust single-machine Scheduling with Maintenance activity Problem
(𝑅𝑆𝑀𝑃 (𝑐)): Given a set 𝐽 of 𝑛 jobs with deterministic processing
times 𝑝𝑗 , 𝑗 = 1,… , 𝑛, and a set of discrete scenarios, corresponding
to || possible realizations of the triple (𝑟, 𝑑, 𝑃); find a sequence 𝜋
of the jobs such that 𝑐(𝜋) is minimized.

An optimal solution of the above problem 𝑅𝑆𝑀𝑃 (𝑐) is called a robust
solution.

Example 2. Let us consider the instance of Example 1. As we already
observed, the sequence minimizing the makespan for scenario 𝑠1 is 𝜋1 =
⟨3, 1, 2, 4⟩, providing 𝐶∗

max(𝑠1) = 𝐶max(𝜋1, 𝑠1) = 429 (with no idle time,
see Fig. 1), while the optimal solution for scenario 𝑠2 is 𝜋2 = ⟨4, 1, 2, 3⟩,
for which 𝐶∗

max(𝑠2) = 𝐶max(𝜋2, 𝑠2) = 434. Let us also consider a third
solution sequence 𝜋3 = ⟨2, 1, 3, 4⟩.

In this case, a robust solution under the min–max criterion 𝑀𝑀 is
not optimal in any of the two scenarios. In fact, we have:

𝐶max(𝜋1, 𝑠1) = 429, 𝐶max(𝜋1, 𝑠2) = 459, 𝑀𝑀(𝜋1) = 459,

𝐶 (𝜋2, 𝑠) = 529, 𝐶 (𝜋2, 𝑠) = 434, 𝑀𝑀(𝜋2) = 529,
max 1 max 2

Computers & Industrial Engineering 185 (2023) 109610P. Detti et al.

d
s
a
c

i
w
𝐸
s

i
t
p
o
(

𝑅
t
i
i
a
s
t
𝑟
f
𝑧
𝑟
t
i
𝑟
m
a

w
S
a
i
p
𝐵
𝑠
t
p

4

f
m
t

T

Table 1
Summary of used notation.
𝑛 Number of jobs
𝑝𝑗 Processing time of job 𝑗 = 1, 2,… , 𝑛
𝑘 Number of scenarios
 Set of 𝑘 scenarios
𝑀 Maintenance activity
𝑃 (𝑠) Duration of 𝑀 in scenario 𝑠
𝑟(𝑠) Release date of 𝑀 in scenario 𝑠
𝑑(𝑠) Due date of 𝑀 in scenario 𝑠
𝛥(𝑠) Window slack = 𝑑(𝑠) − 𝑃 (𝑠) − 𝑟(𝑠)
𝜋 Job sequence
𝜎(𝜋, 𝑠) Realization schedule of 𝜋 in 𝑠
𝐶max(𝜋, 𝑠) Makespan of schedule 𝜎(𝜋, 𝑠)
𝐶∗
max(𝑠) Opt. makespan in scenario 𝑠

𝑐 Generic robustness criterion
𝑐 = 𝑀𝑀 min–max
𝑐 = 𝐴𝐵𝑆 Maximum absolute regret
𝑐 = 𝑅𝐸𝐿 Maximum relative regret
𝑐 = 𝑂𝑊𝐴 Ordered weighted averaging
𝑐(𝜋) Criterion objective value of 𝜋
𝑅𝑆𝑀𝑃 (𝑐) Addressed robust problem

𝐶max(𝜋3, 𝑠1) = 456, 𝐶max(𝜋3, 𝑠2) = 435, 𝑀𝑀(𝜋3) = 456.

Considering that the only subsets of jobs which may be accommo-
ated before 𝑀 are {1}, {2}, {3}, {4}, and {1, 2}, the only sensible
equence beside 𝜋1, 𝜋2, and 𝜋3 is 𝜋0 = ⟨1, 2, 3, 4⟩. But 𝑀𝑀(𝜋0) = 478
nd hence 𝜋3 corresponds to a robust solution according the 𝑀𝑀
riterion.

Regarding the 𝐴𝐵𝑆 criterion, the robust solution is the optimal
solution for scenario 𝑠1, 𝜋1 = ⟨3, 1, 2, 4⟩. Indeed, for the three sequences
we have:

𝐴𝐵𝑆(𝜋1) = max{𝐶max(𝜋1, 𝑠1) − 𝐶∗
max(𝑠1);𝐶max(𝜋1, 𝑠2) − 𝐶∗

max(𝑠2)} =

= max{429 − 429; 459 − 434} = 25

𝐴𝐵𝑆(𝜋2) = max{𝐶max(𝜋2, 𝑠1) − 𝐶∗
max(𝑠1);𝐶max(𝜋2, 𝑠2) − 𝐶∗

max(𝑠2)} =

= max{529 − 429; 434 − 434} = 100

𝐴𝐵𝑆(𝜋3) = max{𝐶max(𝜋3, 𝑠1) − 𝐶∗
max(𝑠1);𝐶max(𝜋3, 𝑠2) − 𝐶∗

max(𝑠2)} =

= max{456 − 429; 435 − 434} = 27.

Analogously, for the 𝑅𝐸𝐿 criterion we have:

𝑅𝐸𝐿(𝜋1) = max{𝐶max(𝜋1, 𝑠1)∕𝐶∗
max(𝑠1);𝐶max(𝜋1, 𝑠2)∕𝐶∗

max(𝑠2)} =

= max{429∕429; 459∕434} = 1.057

𝑅𝐸𝐿(𝜋2) = max{𝐶max(𝜋2, 𝑠1)∕𝐶∗
max(𝑠1);𝐶max(𝜋2, 𝑠2)∕𝐶∗

max(𝑠2)} =

= max{529∕429; 434∕434} = 1.233

𝑅𝐸𝐿(𝜋3) = max{𝐶max(𝜋3, 𝑠1)∕𝐶∗
max(𝑠1);𝐶max(𝜋3, 𝑠2)∕𝐶∗

max(𝑠2)} =

= max{456∕429; 435∕434} = 1.063.

Hence, in this case 𝜋1 is the robust solution.
Finally, the solution for 𝑂𝑊𝐴 criterion depends on the weights 𝛽𝑖.

As an example, it can be easily verified that, when 𝛽1 = 1 and 𝛽2 = 10,
we have

𝑂𝑊𝐴(𝜋1) = 4749, 𝑂𝑊 𝐴(𝜋2) = 4869, 𝑂𝑊 𝐴(𝜋3) = 4806,

implying that 𝜋1 is the robust solution. While, if 𝛽1 = 10 and 𝛽2 = 1, we
have

𝑂𝑊𝐴(𝜋1) = 5019, 𝑂𝑊 𝐴(𝜋2) = 5724, 𝑂𝑊 𝐴(𝜋3) = 4995,

and, hence, 𝜋3 is the robust solution for 𝑂𝑊𝐴 criterion.

For the sake of clarity, in Table 1 some of the notation introduced
above is summarized.

In this work, for each of the four robustness measures (2)–(5), we
derive several complexity and approximation results. Table 2 reports a
4

summary of the main theoretical contributions presented in the paper. w
4. Complexity and approximation

The section is organized as follows. First (Section 4.1) we show
how to compute in pseudopolynomial time the optimal solutions of
𝑅𝑆𝑀𝑃 (𝑐) in each scenario of , while Section 4.2 is devoted to prove
the strong NP-hardness of 𝑅𝑆𝑀𝑃 (𝑐). On the other hand, in Section 4.3,
we show that 𝑅𝑆𝑀𝑃 (𝑐) can be solved in pseudopolynomial time by
dynamic programming when the number of scenarios || is fixed. In
the last part of this section we briefly discuss about a property called
scenario optimality (Detti et al., 2019) and present some approximation
results. More precisely, we extend a result presented in Detti et al.
(2019) to 𝑅𝑆𝑀𝑃 (𝑐) (Lemma 5), implying that the LPT rule is a 4

3 -
approximation algorithm for 𝑅𝑆𝑀𝑃 (𝑐) when 𝑐 ∈ {𝑅𝐸𝐿,𝑀𝑀,𝑂𝑊 𝐴}
(Theorem 6).

4.1. Computation of the optimal solutions of all scenarios

Hereafter, we show that the deterministic version of 𝑅𝑆𝑀𝑃 (𝑐),
.e., with a single scenario, is equivalent to the Subset Sum Problem (SSP)
hich can be stated as follows: Given a set of non-negative integers
= {𝑎1, 𝑎2,… , 𝑎𝑛} and an integer bound 𝐵, find a subset 𝐸∗ ⊆ 𝐸 whose

um is maximized and does not exceed 𝐵.
This equivalence implies that the deterministic version of 𝑅𝑆𝑀𝑃 (𝑐)

s NP-hard in the ordinary sense and can be solved in pseudopolynomial
ime. Furthermore, we prove that a single run of the standard dynamic
rogramming solution algorithm for SSP can be used to compute the
ptimal solution values 𝐶∗

max(𝑠) of all scenarios 𝑠 ∈ , for the general
i.e., multi-scenario) 𝑅𝑆𝑀𝑃 (𝑐).

Let us consider a deterministic (single-scenario) instance of
𝑆𝑀𝑃 (𝑐), and let 𝑃 and [𝑟, 𝑑] be the (deterministic) duration and the

ime window of the maintenance, respectively. As already observed
n Detti et al. (2019), in this case, any solution minimizing the idle time
s optimal. Then, a deterministic instance of 𝑅𝑆𝑀𝑃 (𝑐) can be solved
s a SSP by setting 𝑎𝑗 = 𝑝𝑗 for 𝑗 = 1,… , 𝑛 and 𝐵 = 𝑑 −𝑃 . If the optimal
olution value 𝑧𝐵 of this SSP instance has value greater or equal than 𝑟,
hen there is a subset 𝐸∗ of jobs with total processing time 𝑧𝐵 such that
≤ 𝑧𝐵 ≤ 𝑑−𝑃 . The job sequence in which the jobs in 𝐸∗ are scheduled

irst produces a realization schedules with no idle time. Otherwise, if
𝐵 < 𝑟, then the optimal realization schedule has an idle time equal to
−𝑧𝐵 and 𝐶∗

max =
∑

𝑗 𝑝𝑗 +𝑃 + 𝑟−𝑧𝐵 . On the other hand, it is easy to see
hat any SSP instance can be solved by considering a single-scenario
nstance of 𝑅𝑆𝑀𝑃 (𝑐) with 𝑛 jobs in which 𝑝𝑗 = 𝑎𝑗 for 𝑗 = 1,… , 𝑛,
= 𝐵 and 𝑃 = 𝑑 − 𝑟. The optimal solution of this 𝑅𝑆𝑀𝑃 (𝑐) instance
inimizes the idle time before the maintenance starting at 𝐵, providing

n optimal solution for the SSP instance.
In our robust optimization problem 𝑅𝑆𝑀𝑃 (𝑐), with 𝑐 ∈ {𝐴𝐵𝑆,𝑅𝐸𝐿}

e are interested in finding the optima 𝐶∗
max(𝑠) for all scenarios 𝑠 ∈ .

uch values can be found by applying a standard dynamic programming
lgorithm for SSP (Kellerer, Pferschy, & Pisinger, 2003) in which 𝐵
s set equal to max𝑠{𝑑(𝑠) − 𝑃 (𝑠)} = 𝑑(𝑠𝑘) − 𝑃 (𝑠𝑘). Since the dynamic
rogramming algorithm finds the optimal solutions for all integers 𝐵′ ≤
, it also gives the optimal solution values when 𝐵′ = 𝑑(𝑠)−𝑃 (𝑠) for all
∈ , corresponding to the optima of all scenarios in 𝑅𝑆𝑀𝑃 (𝑐). Hence,

he optima 𝐶∗
max(𝑠) of all scenarios in 𝑅𝑆𝑀𝑃 (𝑐) can be computed in

seudopolynomial time 𝑂(𝐵𝑛 + ||).

.2. Complexity results

The following theorems show that 𝑅𝑆𝑀𝑃 (𝑐) is strongly NP-hard
or 𝑐 ∈ {𝐴𝐵𝑆,𝑅𝐸𝐿,𝑀𝑀,𝑂𝑊 𝐴} even when the duration 𝑃 (𝑠) of the
aintenance is the same and equal to the time window length in all

he scenarios 𝑠 ∈ .

heorem 3. 𝑅𝑆𝑀𝑃 (𝑐) with 𝑐 ∈ {𝑀𝑀,𝑂𝑊𝐴} is strongly NP-hard even

hen 𝑑(𝑠) − 𝑟(𝑠) = 𝑃 (𝑠) = 𝑃 is constant in all scenarios 𝑠 ∈ .

Computers & Industrial Engineering 185 (2023) 109610P. Detti et al.

𝑅
d
𝑎
s
𝑇

T
s

Table 2
Summary of theoretical results.
𝑅𝑆𝑀𝑃 (𝑐) characteristics Complexity

𝑐 = 𝑀𝑀,𝑂𝑊𝐴, || arbitrary Strongly NP-hard (Theorem 3)
𝑐 = 𝐴𝐵𝑆,𝑅𝐸𝐿, || arbitrary Strongly NP-hard (Theorem 4)
𝑐 = 𝑀𝑀,𝐴𝐵𝑆,𝑅𝐸𝐿, || fixed Binary NP-hard (see Lee, 1996)
𝑐 = 𝑀𝑀,𝐴𝐵𝑆,𝑅𝐸𝐿,𝑂𝑊 𝐴, || fixed Pseudopolynomially solvable (Section 4.3)
𝑐 = 𝐴𝐵𝑆, || arbitrary Not approximable (Section 4.4)
𝑐 = 𝑀𝑀,𝑅𝐸𝐿,𝑂𝑊 𝐴, || arbitrary 4

3
-approximable (Theorem 6)

𝑐 = 𝑀𝑀,𝐴𝐵𝑆, || arbitrary, 𝑟 (or 𝑑) fixed Equivalent to both 𝑟 and 𝑑 fixed (Theorem 8)
𝑐 = 𝑀𝑀,𝐴𝐵𝑆, || arbitrary, 𝑟 (or 𝑑) fixed Pseudopolynomially solvable (Cor. 11)
𝑐 = 𝑀𝑀 || arbitrary, 𝑟 (or 𝑑) fixed 𝜀-approximable and admits FPTAS (Cor. 10)
)

Proof. Since 𝑂𝑊𝐴 generalizes 𝑀𝑀 , we prove the statement for 𝑐 =
𝑀𝑀 only. The proof is by reduction from 3-Partition. Given an instance
𝐼3𝑃 of 3-Partition, with 3𝑛 integers, 𝑎1,… , 𝑎3𝑛, such that ∑3𝑛

𝑗=1 𝑎𝑗 = 𝑛𝑇
and 𝑇 ∕4 < 𝑎𝑗 < 𝑇 ∕2 for 𝑗 = 1,… , 3𝑛, we generate an instance 𝐼 of
𝑆𝑀𝑃 (𝑀𝑀) in which, for all 𝑠 ∈ , 𝑃 (𝑠) = 𝑃 (i.e., the duration of 𝑀
oes not vary across the scenarios) with 3𝑛 jobs having processing times
1,… , 𝑎3𝑛, and with 𝑘 = 𝑛 − 1 scenarios = {𝑠1, 𝑠2,… , 𝑠𝑛−1}. For each
cenario 𝑠𝑖 ∈ , we have 𝑟(𝑠𝑖) = 𝑖𝑇 , 𝑑(𝑠𝑖) = (𝑖+1)𝑇 and 𝑃 = 𝑑(𝑠𝑖)−𝑟(𝑠𝑖) =
. We show that a solution to 𝐼3𝑃 exists, if and only if, in instance 𝐼 ,

there exists a job sequence 𝜋 such that 𝑀𝑀(𝜋) = 𝐶max(𝜋, 𝑠) = 𝑇 (𝑛 + 1),
for all scenarios 𝑠.

In fact, let 𝐼3𝑃 be a yes-instance of 3-Partition with solution 𝑋. We
build a job sequence 𝜋 in which the three jobs corresponding to each
triplet of 𝑋 are consecutive (no matter what the relative order of the
triplets is). So doing, it is easy to see that any realization schedule
𝜎(𝜋, 𝑠𝑖) schedules the jobs corresponding to the first 𝑖 triplets of 𝑋
before the maintenance 𝑀 , for all 𝑖 = 1, 2,… , 𝑘 = 𝑛. In fact, the
maintenance in scenario 𝑠𝑖 starts at time 𝑖𝑇 and ends at time (𝑖 + 1)𝑇 ,
allowing to schedule 𝑖 triplets of jobs before it. (Recall that the sum of
the processing times of the jobs in each triplet is exactly equal to 𝑇 .)
Then, 𝐶max(𝜋, 𝑠) = 𝑇 (𝑛 + 1) in all scenarios 𝑠 ∈ .

On the other hand, let us assume that 𝐼 has a robust solution 𝜋
such that 𝑀𝑀(𝜋) = 𝑇 (𝑛+1). Hence, for all 𝑠 ∈ , 𝐶max(𝜋, 𝑠) ≤ 𝑇 (𝑛+1).

his in turn implies that the set 𝐽 (𝑖) of jobs scheduled before 𝑀 in
cenario 𝑠𝑖 has total processing time equal to 𝑖𝑇 . For all 𝑖 = 1, 2,… , 𝑛,
𝐽 (𝑖) corresponds to the first 𝑖 triplets in the solution of 𝐼3𝑃 which is
therefore a yes-instance of 3-Partition. □

Theorem 4. Problem 𝑅𝑆𝑀𝑃 (𝑐) with 𝑐 ∈ {𝐴𝐵𝑆,𝑅𝐸𝐿}, is strongly
𝑁𝑃 -hard even when 𝑑(𝑠) − 𝑟(𝑠) = 𝑃 (𝑠) = 𝑃 is constant in all scenarios
𝑠 ∈ .

Proof. Also in this case, the proof is by reduction from 3-Partition.
Given an instance 𝐼3𝑃 of 3-Partition, with 3𝑛 integers, 𝑎1,… , 𝑎3𝑛, such
that ∑3𝑛

𝑖=𝑗 𝑎𝑗 = 𝑛𝑇 and 𝑇 ∕4 < 𝑎𝑗 < 𝑇 ∕2 for 𝑗 = 1,… , 3𝑛, we build an
instance 𝐼 of 𝑅𝑆𝑀𝑃 (𝑐) in which, for all 𝑠 ∈ , 𝑃 (𝑠) = 𝑃 , with 𝑐 = 𝐴𝐵𝑆
or 𝑐 = 𝑅𝐸𝐿, having 3𝑛 jobs plus one extra job, and 𝑘 = 𝑛 scenarios.
The 3𝑛 jobs have processing times 𝑎1,… , 𝑎3𝑛 and the extra job has
processing time 0 < 𝑏 < 1. Hence, the sum of all job processing times
is strictly larger than 𝑛𝑇 . For each scenario 𝑠𝑖 ∈ , we let 𝑟(𝑠𝑖) = 𝑖𝑇 ,
𝑑(𝑠𝑖) = (𝑖 + 1)𝑇 and 𝑃 = 𝑑(𝑠𝑖) − 𝑟(𝑠𝑖) = 𝑇 . We prove the thesis, by
showing that 𝐼3𝑃 is a yes-instance if and only if there exists a robust
solution sequence 𝜋 of 𝐼 such that, for each scenario 𝑠, the realization
schedule 𝜎(𝜋, 𝑠) has no idle time, i.e., 𝐶max(𝜋, 𝑠) = (𝑛+1)𝑇 +𝑏 and hence
𝐴𝐵𝑆(𝜋) = 0 and 𝑅𝐸𝐿(𝜋) = 1. Observe that 𝜋 must necessarily schedule
the extra job in the last position. In fact, in the last scenario 𝑠𝑛, at
least one job should be processed after the maintenance completing at
(𝑛+1)𝑇 . As all the jobs but the extra job have integer processing times
(strictly larger than 𝑏), any sequence that schedules last a job different
from the extra job has a makespan strictly larger than (𝑛 + 1)𝑇 + 𝑏.

Assume first that 𝐼3𝑃 is a yes-instance of 3-Partition with solution
𝑋. We build a job sequence 𝜋 in which the extra job is the last job and
the jobs corresponding to each triplet of 𝑋 are consecutive. It is easy to
5

see that the realization schedule 𝜎(𝜋, 𝑠) has no idle time in all scenarios
𝑠 ∈ and 𝜋 has an absolute regret equal to 0 and relative regret equal
to 1 in all scenarios and hence 𝜋 is a robust solution with 𝐴𝐵𝑆(𝜋) = 0
and 𝑅𝐸𝐿(𝜋) = 1.

Let us now assume that there exists a robust solution sequence 𝜋 of
𝐼 such that, for each scenario 𝑠, the realization schedule 𝜎(𝜋, 𝑠) has no
idle time, i.e., 𝐶max(𝜋, 𝑠) = (𝑛 + 1)𝑇 + 𝑏 and the extra job is scheduled
last. Again, this implies that the set 𝐽 (𝑖) of jobs scheduled before 𝑀
in scenario 𝑠𝑖, for all 𝑖 = 1, 2,… , 𝑛, corresponds to the first 𝑖 triplets in
the solution of 𝐼3𝑃 which is therefore a yes-instance of 3-Partition. This
completes the proof.

Note that, if the problem requires integer processing times, in
the above reduction, job processing times, 𝑟(𝑠𝑖), 𝑑(𝑠𝑖), and 𝑇 are all
multiplied by an integer factor 𝑚 ≥ 2, whereas the extra job processing
time 𝑏 is set equal to one. □

We now briefly discuss about the so-called scenario optimality
property. If a robust optimization problem has the scenario optimality
property, it means that a robust solution is always optimal in at least
one scenario. In Detti et al. (2019), it is proved that the special case
of 𝑅𝑆𝑀𝑃 (𝑐) in which 𝑟(𝑠) and 𝑑(𝑠) are fixed (and hence only the
maintenance duration varies across the scenarios) has the scenario
optimality property, for all considered robustness criteria 𝑐. However,
this is not true for 𝑅𝑆𝑀𝑃 (𝑐) in general, as multiple parameters vary
simultaneously in different scenarios. If scenario optimality held for
𝑅𝑆𝑀𝑃 (𝑐), then Section 4.1 would imply that 𝑅𝑆𝑀𝑃 (𝑐) could be solved
in pseudopolynomial time by computing the optimal solutions in all
scenarios. Nevertheless, Theorems 3 and 4, which state that 𝑅𝑆𝑀𝑃 (𝑐)
is strongly NP-hard, rule out this possibility.

Obviously, Theorems 3 and 4 do not rule out the existence of
polynomial or pseudopolynomial algorithms for some specific cases, as
shown in the following Section 4.3 and in Section 5.

4.3. A pseudopolynomial algorithm for 𝑅𝑆𝑀𝑃 (𝑐) with a fixed number of
scenarios

In this section, a dynamic programming algorithm (DP) for 𝑅𝑆𝑀𝑃 (𝑐
is presented. The proposed DP runs in pseudopolynomial time when a
fixed number of scenarios 𝑘 is considered, i.e., when = {𝑠1,… , 𝑠𝑘}
with 𝑘 fixed.

In the description of the algorithm, as stated in Expression (1), it is
important to recall that the scenarios 𝑠 in are sorted in non-decreasing
values of 𝑑(𝑠) − 𝑃 (𝑠).

Let 𝐹 (𝑗, 𝑤1, 𝑤2,… , 𝑤𝑘) be a boolean function equal to 1 if there
exists a schedule of the jobs {1,… , 𝑗} such that in each scenario 𝑠𝑖
the total processing time of the jobs scheduled before the maintenance
is exactly 𝑤𝑖, for all 𝑠𝑖 ∈ , and 0 otherwise. Note that, due to
Expression (1), we may restrict ourselves to consider 𝑤𝑖 values such
that 𝑤1 ≤ 𝑤2 ≤ … ≤ 𝑤𝑘. In fact, for a given schedule, the jobs
scheduled before the maintenance 𝑀 in scenario 𝑠𝑖 can be also sched-
uled before 𝑀 in scenarios 𝑠𝑖+1,… , 𝑠𝑘. As a consequence, we impose
that 𝐹 (𝑗, 𝑤1, 𝑤2,… , 𝑤𝑘) = 0 if there exists 𝑖 ∈ {1, 2,… , 𝑘 − 1} such
that 𝑤𝑖 > 𝑤𝑖+1. Furthermore, let 𝐹 (𝑗, 𝑤1, 𝑤2,… , 𝑤𝑘) = 0 if one of the
arguments 𝑤1, 𝑤2,… , 𝑤𝑘 is negative.

Consider any schedule of the jobs {1,… , 𝑗} such that the total

processing time of the jobs scheduled before 𝑀 in scenario 𝑠𝑖 ∈

Computers & Industrial Engineering 185 (2023) 109610P. Detti et al.

s
j

𝑐
w

𝑐

e
∑

𝑐

I
𝑐
h

a
o
t
d
(
a
t
f

T

is exactly equal to 𝑤𝑖, for 𝑖 = 1,… , 𝑘. Clearly, either there exists a
scenario 𝑠𝓁 (with 𝑤𝓁 ≥ 𝑝𝑗) in which the job 𝑗 is scheduled before 𝑀 ,
or 𝑗 is scheduled after the maintenance activity in all scenarios. Note
that, in the first case, due to (1), job 𝑗 is scheduled before 𝑀 in all
cenarios 𝑠𝓁 , 𝑠𝓁+1,… , 𝑠𝑘. Hence, the total processing time of the other
obs scheduled before the maintenance in scenarios 𝑠𝓁 ,… , 𝑠𝑘 is exactly
𝑤𝓁 − 𝑝𝑗 , 𝑤𝓁+1 − 𝑝𝑗 ,… , 𝑤𝑘 − 𝑝𝑗 , respectively. If, on the other hand, there
is no scenario in which 𝑗 can be processed before 𝑀 , then 𝑗 will be
scheduled after the maintenance in all scenarios.

As an example, let us consider a problem instance with two sce-
narios 𝑠1 and 𝑠2. Then, the computation of 𝐹 (𝑗, 𝑤1, 𝑤2) requires to
check 𝐹 (𝑗 − 1, 𝑤1, 𝑤2), 𝐹 (𝑗 − 1, 𝑤1, 𝑤2 − 𝑝𝑗), and 𝐹 (𝑗 − 1, 𝑤1 − 𝑝𝑗 , 𝑤2 −
𝑝𝑗), corresponding to the cases in which 𝑗 is scheduled after 𝑀 , 𝑗 is
scheduled before 𝑀 in 𝑠2, only, and 𝑗 is scheduled before 𝑀 in all the
scenarios, respectively. 𝐹 (𝑗, 𝑤1, 𝑤2) = 1 if and only if at least one of the
latter three quantities equals to one.

Hence, the computation of the value 𝐹 (𝑗, 𝑤1, 𝑤2,… , 𝑤𝑘) only re-
quires to check if at least one of the 𝑘 + 1 entries

𝐹0 = 𝐹 (𝑗 − 1, 𝑤1, 𝑤2,… , 𝑤𝑘−1, 𝑤𝑘),

𝐹1 = 𝐹 (𝑗 − 1, 𝑤1, 𝑤2,… , 𝑤𝑘−1, 𝑤𝑘 − 𝑝𝑗),

𝐹2 = 𝐹 (𝑗 − 1, 𝑤1, 𝑤2,… , 𝑤𝑘−1 − 𝑝𝑗 , 𝑤𝑘 − 𝑝𝑗),

…

𝐹𝑘 = 𝐹 (𝑗 − 1, 𝑤1 − 𝑝𝑗 , 𝑤2 − 𝑝𝑗 ,… , 𝑤𝑘−1 − 𝑝𝑗 , 𝑤𝑘 − 𝑝𝑗)

takes value 1. In conclusion, the following recursive formula holds

𝐹 (𝑗, 𝑤1, 𝑤2,… , 𝑤𝑘) = max
{

𝐹0, 𝐹1,… , 𝐹𝑘
}

. (6)

Recursion (6) must be initialized by setting 𝐹 (0, 0,… , 0) = 1.
Note that, if 𝐹 (𝑛,𝑤1, 𝑤2,… , 𝑤𝑘) = 1 for given 𝑤1, 𝑤2,… , 𝑤𝑘 and

a job sequence 𝜋, the makespan in the scenario 𝑠𝑖 is 𝐶max(𝜋, 𝑠𝑖) =
max{𝑟(𝑠𝑖), 𝑤𝑖}+𝑃 (𝑠𝑖)+(

∑

𝑗 𝑝𝑗)−𝑤𝑖, since the maintenance 𝑀 in scenario
𝑠𝑖 cannot start before time 𝑟(𝑠𝑖) or the completion time 𝑤𝑖 of all jobs
preceding it. Consequently, the total processing time of the job after 𝑀
is (

∑

𝑗 𝑝𝑗) −𝑤𝑖.
Once all the 𝐹 (⋅) values have been computed, in order to obtain the

optimal value for 𝑅𝑆𝑀𝑃 (𝑐), we use the following:

min
𝑤

𝛹 (𝑤) (7)

s.t. 𝐹 (𝑛,𝑤1, 𝑤2,… , 𝑤𝑘) = 1 (8)

𝑤𝑖 ∈ {0, 1,… , 𝑑(𝑠𝑖) − 𝑃 (𝑠𝑖)}, 𝑖 = 1, 2,… , 𝑘 (9)

in which, depending on the robustness criterion 𝑐, we have that 𝛹 (𝑤)
takes one of the expressions of Eqs. (2), (3), (4), and (5), where we plug
in 𝐶max(𝜋, 𝑠) = max{𝑟(𝑠), 𝑤𝑠} + 𝑃 (𝑠) + (

∑

𝑗 𝑝𝑗) −𝑤𝑠.
For the sake of clarity, consider as an example the robustness

criterion 𝑐 = 𝑀𝑀 , then the optimal solution value of 𝑅𝑆𝑀𝑃 (𝑀𝑀)
is given by (7), in which

𝛹 (𝑤) = max
𝑠𝑖∈

{max{𝑟(𝑠𝑖), 𝑤𝑖} + 𝑃 (𝑠𝑖) +
𝑛
∑

𝑗=1
𝑝𝑗 −𝑤𝑖}

Observe that each 𝐹 (𝑗, 𝑤1, 𝑤2,… , 𝑤𝑘) can be computed in time 𝑂(𝑘)
using expression (6). Since there are 𝑂(𝑛(

∑

𝑗 𝑝𝑗)𝑘) such values, then
all 𝐹 (𝑗, 𝑤1, 𝑤2,… , 𝑤𝑘) values can be computed in time 𝑂(𝑛𝑘(

∑

𝑗 𝑝𝑗)𝑘).
In conclusion, if 𝑐 = 𝑀𝑀,𝐴𝐵𝑆,𝑅𝐸𝐿, we infer that 𝑅𝑆𝑀𝑃 (𝑐) can
be solved in time 𝑂(𝑛𝑘(

∑

𝑗 𝑝𝑗)𝑘). While, for 𝑐 = 𝑂𝑊𝐴, in order to
compute the objective function value of Eq. (5), for each choice of
𝑤1, 𝑤2,… , 𝑤𝑘, the optimal makespan values in the different scenarios
are to be sorted. As a consequence the overall computational cost

2 ∑ 𝑘
6

becomes 𝑂(𝑛𝑘 log 𝑘(𝑗 𝑝𝑗)). w
4.4. Approximation

We now report on some approximation results for our problem
𝑅𝑆𝑀𝑃 (𝑐) with 𝑐 ∈ {𝑅𝐸𝐿,𝑀𝑀,𝑂𝑊 𝐴}. Note that, in general, if 𝑐 =
𝐴𝐵𝑆 and the deterministic (single-scenario) problem is 𝑁𝑃 -hard, the
corresponding robust version is not at all approximable unless 𝑃 =
𝑁𝑃 (Detti et al., 2019; Kasperski & Zielinski, 2014).

The following lemma extends an approximation result that was
shown in Detti et al. (2019) only for the special case of 𝑅𝑆𝑀𝑃 (𝑐) in
which 𝑟 and 𝑑 remain fixed in all scenarios.

Lemma 5. Let 𝑐 ∈ {𝑅𝐸𝐿,𝑀𝑀,𝑂𝑊 𝐴} be a robustness criterion. If
algorithm is an 𝜀-approximation algorithm for the (deterministic) single-
scenario version of 𝑅𝑆𝑀𝑃 (𝑐) that returns the same sequence �̄� for all
scenarios 𝑠 ∈ , then is also an 𝜀-approximate algorithm of the robust
problem 𝑅𝑆𝑀𝑃 (𝑐).

Proof. The proof follows the very same lines of that used in Detti et al.
(2019) for the special case with fixed interval [𝑟, 𝑑]. We report it for
completeness.

Let 𝜋∗ and 𝑐(𝜋∗) be the robust solution of an instance of 𝑅𝑆𝑀𝑃 (𝑐)
and its value, respectively, according to the considered robustness
criterion 𝑐 ∈ {𝑀𝑀,𝑅𝐸𝐿,𝑂𝑊 𝐴}. Let 𝜋 be a sequence (returned by the
algorithm) and 𝑐(�̄�) the corresponding value of the robustness criterion
𝑐. In the remainder of the proof, �̂� indicates the worst scenario for 𝜋
under a certain criterion.

Hereafter, we show that, if 𝜋 is an 𝜀 approximate solution in
scenario �̂�, then it is also an approximate solution for the (general)
robust problem 𝑅𝑆𝑀𝑃 (𝑐).

Let us first consider the min–max robustness criterion 𝑐 = 𝑀𝑀 . In
this case, 𝜋∗ = argmin𝜋

{

max𝑠∈
{

𝐶max(𝜋, 𝑠)
}}

and, 𝑐(𝜋∗) =
max𝑠∈

{

𝐶max(𝜋∗, 𝑠)
}

. Hence

𝑐(�̄�) = max
𝑠∈

{

𝐶max(�̄�, 𝑠)
}

=

= 𝐶max(�̄�, �̂�) ≤ 𝜀𝐶∗
max(�̂�) ≤ 𝜀𝐶max(𝜋∗, �̂�) ≤ 𝜀 max

𝑠∈

{

𝐶max(𝜋∗, 𝑠)
}

= 𝜀 𝑐(𝜋∗).

For the relative regret robustness 𝑐 = 𝑅𝐸𝐿, we have 𝜋∗ =
argmin𝜋 max𝑠∈

{

𝐶max(𝜋,𝑠)
𝐶∗
max(𝑠)

}

and 𝑐(𝜋∗) = max𝑠∈
{

𝐶max(𝜋∗ ,𝑠)
𝐶∗
max(𝑠)

}

. Clearly
(𝜋∗) ≥ 1 and therefore, if �̂� ∈ is a scenario corresponding to the
orst case objective ratio, the following inequalities hold:

(�̄�) = max
𝑠∈

{

𝐶max(�̄�, 𝑠)
𝐶∗
max(𝑠)

}

=
𝐶max(�̄�, �̂�)
𝐶∗
max(�̂�)

≤ 𝜀 ≤ 𝜀𝑐(𝜋∗).

Finally, when the robustness criterion is the ordered weighted av-
rage 𝑐 = 𝑂𝑊𝐴, then 𝜋∗ = argmin𝜋

{
∑

𝑠∈ 𝛽𝑠𝐶max(𝜋, 𝑠)
}

and 𝑐(𝜋∗) =
𝑠∈ 𝛽𝑠𝐶max(𝜋∗, 𝑠). Therefore

(�̄�) =
∑

𝑠∈
𝛽𝑠𝐶max(�̄�, 𝑠) ≤

∑

𝑠∈
𝛽𝑠𝜀𝐶

∗
max(𝑠) ≤ 𝜀

∑

𝑠∈
𝛽𝑠𝐶max(𝜋∗, 𝑠) = 𝜀𝑐(𝜋∗).

n conclusion, we have shown that for all three robustness criteria
= 𝑀𝑀,𝑅𝐸𝐿,𝑂𝑊 𝐴, if 𝐶max(�̄�, �̂�) ≤ 𝜀𝐶∗

max(�̂�) then 𝑐(�̄�) ≤ 𝜀𝑐(𝜋∗) and
ence the thesis holds. □

In what follows, approximation results for two simple ordering rules
re provided. Let us consider the deterministic (single scenario) version
f 𝑅𝑆𝑀𝑃 (𝑐), that is the problem of seeking a schedule 𝜎 minimizing
he objective 𝐶max(𝜎) in which the maintenance activity with a given
uration has to be scheduled in a certain given interval. Lee in Lee
1996) shows that the Longest Processing Time (LPT) rule provides
4∕3-approximation algorithm for this problem and also proves that

he bound is tight. Hence, this result and Lemma 5 directly imply the
ollowing statement.

heorem 6. The LPT rule is a 4
3 -approximation algorithm for 𝑅𝑆𝑀𝑃 (𝑐)

ith 𝑐 ∈ {𝑅𝐸𝐿,𝑀𝑀,𝑂𝑊 𝐴}.

Computers & Industrial Engineering 185 (2023) 109610P. Detti et al.

g
f

w

5

o
v
a
o
𝑅
I
d
s
a
1
h
N
a

5

a
c
p
i

r
a
I
𝐼
s
c

a
a
A
h

L
o
t
m
b
d
(

w

𝑃

H
a
f
T

a
i
l
a

L
r
(

P
o
w
r
b
a
𝑑
o
t
𝐼

a
t
t
p
v
a

𝐶

O
b

s
𝑠
r
t
i

m
h

T
i
a

a
𝑅
s
M
n
s

w

5

𝑅
(
C

w
(
o

In Kacem and Kellerer (2016), a very basic algorithm, called Al-
orithm 𝐴, is proposed. Algorithm 𝐴 simply consists in processing
irst the longest job with processing time 𝑝max = max𝑗 𝑝𝑗 . Kacem and

Kellerer (2016) prove that this algorithm provides a 3/2 approximation
for the deterministic version of 𝑅𝑆𝑀𝑃 (𝑐). Hence, one may want to
adopt this linear time algorithm, at the expense of a slightly worse
approximation, and thus obtaining a 3

2 -approximation for 𝑅𝑆𝑀𝑃 (𝑐),
ith 𝑐 ∈ {𝑅𝐸𝐿,𝑀𝑀,𝑂𝑊 𝐴}.

. Special cases

In this section we focus on different subproblems of 𝑅𝑆𝑀𝑃 (𝑐)
btained when some of maintenance parameters 𝑟, 𝑑 and 𝑃 do not
ary across the scenarios, i.e., they take the same fixed values in
ll the scenarios. For instance, recall that if 𝑟 and 𝑑 are fixed and
nly the duration of the maintenance varies across the scenarios, then
𝑆𝑀𝑃 (𝑐) is equivalent to the problem addressed in Detti et al. (2019).

f all the three quantities 𝑟, 𝑑, and 𝑃 are fixed, then 𝑅𝑆𝑀𝑃 (𝑐) is a
eterministic single-scenario problem in which we are seeking for a
chedule minimizing the makespan, and the maintenance activity with
given duration has to be scheduled in a certain given interval (Lee,

996). As we observed before, the latter problem is already binary NP-
ard. Furthermore, Theorems 3 and 4 prove that 𝑅𝑆𝑀𝑃 (𝑐) is strongly
P-hard for all the considered robustness criteria, when 𝑃 is fixed
cross all scenarios (i.e., only 𝑟 and 𝑑 vary).

.1. Problems with fixed 𝑟 or 𝑑

In this section, we show that when dealing with min–max and
bsolute regret robustness criteria i.e., 𝑐 = 𝑀𝑀 and 𝐴𝐵𝑆, the special
ases of 𝑅𝑆𝑀𝑃 (𝑐) in which 𝑟 or 𝑑 are fixed are equivalent to the
roblem in which both 𝑟 and 𝑑 are fixed, which is the problem studied
n Detti et al. (2019).

In the remainder of this section, we describe the procedure for
educing 𝑅𝑆𝑀𝑃 (𝑐) with fixed 𝑟 in all the scenarios, hereafter denoted
s , to the problem in which 𝑟 and 𝑑 are both fixed, indicated as .
n particular if 𝑐 = 𝑀𝑀 or 𝑐 = 𝐴𝐵𝑆, we show that, given an instance
 of , it is possible to build an instance 𝐼 of such that the robust
olution sequence for 𝐼 is also robust for 𝐼 . An analogous procedure
an be devised for 𝑅𝑆𝑀𝑃 (𝑐) with fixed 𝑑.

We assume that , the set of scenarios for problem , is discrete
nd contained in the Cartesian product of the two (discrete) sets 𝑃

nd 𝐷 of realizations of the variable quantities 𝑃 and 𝑑, respectively.
ssuming 𝑃𝑢 < 𝑃𝑢+1, 𝑢 = 1,… , 𝑞 − 1, and 𝑑𝑣 < 𝑑𝑣+1, 𝑣 = 1,… , 𝑡 − 1, we
ave:
𝑃 = {𝑃1 = 𝑃min, 𝑃2,… , 𝑃𝑞 = 𝑃max}, (10)
𝑑 = {𝑑1 = 𝑑min, 𝑑2,… , 𝑑𝑡 = 𝑑max}, (11)

⊆ 𝑃 × 𝑑 . (12)

et 𝐼 be any instance of with 𝑐 = 𝑀𝑀 or 𝑐 = 𝐴𝐵𝑆, and a set
f scenarios as in Eq. (12). Any possible scenario in is associated
o a pair of possible realizations (values) of the duration 𝑃 for the
aintenance activity 𝑀 and the due date 𝑑, respectively. We denote

y (𝑃𝑢, 𝑑𝑣) the scenario of in which the duration of 𝑀 and the due
ate 𝑑 take values 𝑃𝑢 and 𝑑𝑣, respectively. (Possibly, some given pairs
𝑃𝑢, 𝑑𝑣) are not part of , i.e., || = 𝑘 ≤ 𝑞𝑡.)

Now, starting from 𝐼 , we build the following instance 𝐼 of
ith the same set of jobs as in instance 𝐼 and a set of scenarios
̃ = {𝑃𝑢𝑣, 𝑢 = 1,… , 𝑞; 𝑣 = 1,… , 𝑡 ∶ (𝑃𝑢, 𝑑𝑣) ∈ } in which

̃𝑢𝑣 = 𝑃𝑢 + 𝑑max − 𝑑𝑣∀(𝑃𝑢, 𝑑𝑣) ∈ . (13)

ere 𝑃𝑢𝑣 indicates the value taken by the duration of maintenance
ctivity in the scenario of corresponding to realizations 𝑃𝑢 and 𝑑𝑣
or the maintenance activity duration and due date, respectively, in .

̃

7

he (fixed) extremes of the time window [𝑟, 𝑑] of 𝐼 are set equal to 𝑟 s
nd, respectively, to the largest realization 𝑑max of 𝑑 in 𝐼 . For example,
f scenarios 𝑃1𝑡 or 𝑃𝑞1 belong to , then they are the smallest and
argest realizations for 𝑃 in 𝐼, corresponding to scenarios (𝑃1, 𝑑max)
nd (𝑃max, 𝑑min) in 𝐼 , respectively.

emma 7. Given a sequence 𝜋 of the jobs, the idle time lengths in the
ealization schedules 𝜎(𝜋, (𝑃𝑢, 𝑑𝑣)) in instance 𝐼 of 𝑅𝑆𝑀𝑃 (𝑐) with fixed 𝑟
problem) and 𝜎(𝜋, 𝑃𝑢𝑣) in 𝐼 of 𝑅𝑆𝑀𝑃 (𝑐) with fixed 𝑟 and 𝑑 (problem
) are equal.

roof. Clearly, in any realization schedule, the idle time (if any)
ccurs before the execution of the maintenance activity which therefore
ould start at time 𝑟, the left extreme of the time window. In the two

ealization schedules, the maximum available time 𝜗 for processing jobs
efore 𝑀 is the same in the two corresponding scenarios (𝑃𝑢, 𝑑𝑢) of 𝐼
nd 𝑃𝑢𝑣 of 𝐼: In fact, in 𝐼, we have 𝜗 = 𝑑 − 𝑃𝑢𝑣. From (13), since
̃ = 𝑑max, we have that 𝜗 = 𝑑max − (𝑃𝑢 + 𝑑max − 𝑑𝑣) = 𝑑𝑣 − 𝑃𝑢 which is
bviously the 𝜗 value in scenario (𝑃𝑢, 𝑑𝑣) of instance 𝐼 . Since 𝑟 = 𝑟,
he idle time produced by a sequence 𝜋, would be the same in 𝐼 and
. □

Suppose that, in two interrelated scenarios 𝑠 = (𝑃𝑢, 𝑑𝑣) ∈ for 𝐼
nd �̃� = 𝑃𝑢𝑣 = 𝑃𝑢 + 𝑑max − 𝑑𝑣 ∈ ̃ for 𝐼, the maximum available
ime 𝜗 for processing jobs before the maintenance is strictly smaller
han ∑

𝑗∈𝐽 𝑝𝑗 , i.e., in both instances 𝐼 and 𝐼, there must be some jobs
rocessed after the maintenance. Lemma 7 implies that the makespan
alues of the realization schedules of a same sequence 𝜋 in 𝐼 and 𝐼
re such that:

max(𝜋, �̃�) = 𝐶max(𝜋, 𝑠) + 𝑑max − 𝑑𝑣. (14)

n the other hand, if 𝜗 ≥
∑

𝑗∈𝐽 𝑝𝑗 then the solution of the two instances
ecomes trivial and the two makespan values would be equal.

In any case, a sequence 𝜋 which is a makespan minimizer for
cenario 𝑠 of instance 𝐼 , is also optimal in the corresponding scenario
̃ of instance 𝐼. Furthermore, in these scenarios 𝑠 and �̃�, the absolute
egret of any solution sequence 𝜋 has the same value which implies
hat, if 𝜋 minimizes the maximum absolute regret in instance 𝐼, then
t does so in instance 𝐼 , as well.

The above discussion implies the equivalence, in terms of opti-
ality, of problems and . In conclusion the following theorem
olds:

heorem 8. For 𝑐 ∈ {𝐴𝐵𝑆,𝑀𝑀}, if 𝜋 is robust for the equivalent
nstance 𝐼 of 𝑅𝑆𝑀𝑃 (𝑐) with fixed 𝑟 and 𝑑 (problem), then 𝜋 is robust
lso for the original instance 𝐼 of 𝑅𝑆𝑀𝑃 (𝑐) with fixed 𝑟 (problem).

As we already noted, using arguments similar to those employed
bove, we can prove that, for 𝑐 ∈ {𝐴𝐵𝑆,𝑀𝑀}, given an instance 𝐼 ′ of
𝑆𝑀𝑃 (𝑐) in which 𝑑 is fixed, it is possible to define an instance 𝐼 ′ of

uch that a robust solution sequence for the two instances is the same.
oreover, it is important to point out that the result of Theorem 8 does

ot hold if 𝑐 = 𝑅𝐸𝐿 or 𝑐 = 𝑂𝑊𝐴 or if we are seeking for approximate
olutions instead of optimal ones.

In the next Section 5.1.1, we study a special case of 𝑅𝑆𝑀𝑃 (𝑐) in
hich we may adapt and use off-the-shelf approximation algorithms.

.1.1. Approximation results for a special case
In this section, we present approximation results for a special case of

𝑆𝑀𝑃 (𝑐) in which the following specific restrictions hold: (𝑖) 𝑐 = 𝑀𝑀 ,
𝑖𝑖) 𝑟 or 𝑑 are fixed; (𝑖𝑖𝑖) the set of possible scenarios, is exactly the
artesian product:

= 𝑃 × 𝑑 , (15)

here 𝑃 and 𝑑 are defined as in Eqs. (10) and (11), i.e., any pair
𝑃𝑢, 𝑑𝑣), 𝑢 = 1,… , 𝑞, 𝑣 = 1,… , 𝑡, is a possible scenario for our robust
ptimization problem. In the remainder of this section, we refer to this

pecial subproblem of 𝑅𝑆𝑀𝑃 (𝑐) as problem .

Computers & Industrial Engineering 185 (2023) 109610P. Detti et al.

P
i
b
G

a

S
S
a

{
𝑑
c
T

C

t

s
a
w

6

f
v
a
a
d
a
s

6

a
p
v
&
b
c
a
𝑥
c
w
t
𝑦

j
a
a
a
c
d
m

f

m

With such a scenario set , it is easy to see that the maximum
makespan of the realization schedules always occurs in scenario �̂� =
(𝑃max, 𝑑min) in which the maintenance activity has the largest duration
𝑃𝑞 and the due date takes its minimum value 𝑑1. In this case, for any
solution sequence 𝜋, we have max𝑠∈{𝐶max(𝜋, 𝑠)} = 𝐶max(𝜋, �̂�).

An obvious consequence is that, under the min–max robustness
criterion 𝑐 = 𝑀𝑀 , any solution sequence �̄� within a constant ratio
𝜀 > 1 from an optimal solution of scenario �̂� is also an 𝜀 -approximating
solution for , i.e., if 𝜋∗ is a robust solution, then

𝑀𝑀(�̄�) = 𝐶max(�̄�, �̂�) ≤ 𝜀 𝐶∗
max(�̂�) = 𝜀𝑀𝑀(𝜋∗). (16)

The following theorem shows how an approximation algorithm
devised for Subset Sum can be exploited to obtain an approximation
algorithm for .

Theorem 9. Any 𝜌-approximation algorithm for Subset Sum, can be
adapted to obtain an 𝜀-approximate solution algorithm for 𝑅𝑆𝑀𝑃 (𝑀𝑀)
with 𝑟 fixed (problem), where 𝜀 = 1 + (1−𝜌)(𝑑min−𝑃max)

∑

𝑗∈𝐽 𝑝𝑗+𝑃max
.

roof. The proof uses arguments similar to those of Theorem 18
n Detti et al. (2019). We report the details hereafter for the reader’s
enefit. In its optimization format, Subset Sum is defined as follows:
iven a set 𝐸 of 𝑛 positive integers 𝑎1, 𝑎2,… , 𝑎𝑛 and a bound 𝐵 > 0,

define a subset 𝐸∗ ⊆ 𝐸 of items whose sum is as large as possible
but not greater than 𝐵. Suppose there is an algorithm 𝐴 that, for any
instance of Subset Sum, always returns a subset 𝐸𝐴 ⊆ 𝐸 such that
∑

𝑗∈𝐸𝐴

𝑎𝑗 ≥ 𝜌
∑

𝑗∈𝐸∗
𝑎𝑗 (17)

for some fixed 𝜌 ≤ 1. Recall that, for , (𝑖) the worst scenario �̂�
corresponds to realizations 𝑃 = 𝑃max and 𝑑 = 𝑑min for the duration
of the maintenance activity and the due date, respectively; and (𝑖𝑖)
a solution sequence minimizing the makespan in scenario �̂� is also a
robust (optimal) solution of our problem.

Hereafter, given a subset of jobs 𝐽 ′ ⊆ 𝐽 , we indicate the total
processing time ∑

𝑗∈𝐽 ′ 𝑝𝑗 of all jobs in 𝐽 ′ as 𝑝(𝐽 ′). Let 𝜋∗ be a robust
(optimal) solution of a given instance of and denote by 𝐶∗

max =
𝐶max(𝜋∗, �̂�) the value of its (optimal) makespan. Let 𝐸∗ ⊆ 𝐽 be the set of
jobs which are scheduled before the maintenance activity 𝑀 in 𝜎(𝜋∗, �̂�).
Then, it is easy to see that 𝐸∗ corresponds to an optimal solution set of
a Subset Sum instance with 𝑎𝑗 = 𝑝𝑗 and 𝐵 = 𝑑min − 𝑃max. Moreover, we
have 𝐶∗

max = max{𝑟, 𝑝(𝐸∗)} + 𝑃max + (𝑝(𝐽) − 𝑝(𝐸∗)).
Now consider a solution 𝜋𝐴 obtained by sequencing first the jobs in

a set 𝐸𝐴 ⊆ 𝐽 corresponding to the set returned by Algorithm 𝐴 in the
instance where, again, 𝑎𝑗 = 𝑝𝑗 for all 𝑗 ∈ 𝐽 and 𝐵 = 𝑑min − 𝑃max. Let
𝐶𝐴
max be the makespan 𝐶max(𝜋𝐴, �̂�) of the realization schedule obtained

by 𝜋𝐴 in scenario �̂�. Clearly, 𝑝(𝐸𝐴) ≥ 𝜌 𝑝(𝐸∗) and 𝐶𝐴
max = max{𝑟, 𝑝(𝐸𝐴)}+

𝑃max + (𝑝(𝐽) − 𝑝(𝐸𝐴)). We have three possible cases.
Case 1: 𝑝(𝐸∗) < 𝑟. As 𝑝(𝐸𝐴) ≤ 𝑝(𝐸∗) then 𝐶𝐴

max − 𝐶∗
max = 𝑝(𝐸∗) −

𝑝(𝐸𝐴) ≤ (1 − 𝜌)𝑝(𝐸∗). As there exists 𝜃 ≤ 1 such that 𝑝(𝐸∗) ≤ 𝜃 𝐶∗
max, by

letting 𝜀 = 1 + 𝜃 − 𝜃𝜌, we have 𝐶𝐴
max ≤ (1 − 𝜌)𝑝(𝐸∗) + 𝐶∗

max ≤ 𝜀𝐶∗
max.

Case 2: 𝑝(𝐸𝐴) < 𝑟 ≤ 𝑝(𝐸∗). In this case, we have that 𝐶𝐴
max − 𝐶∗

max =
𝑟 − 𝑝(𝐸𝐴) ≤ 𝑝(𝐸∗) − 𝑝(𝐸𝐴) and 𝐶𝐴

max ≤ 𝜀𝐶∗
max still holds.

Case 3: 𝑟 ≤ 𝑝(𝐸𝐴) ≤ 𝑝(𝐸∗). No idle time is introduced in the sequence
𝜋𝐴 which is therefore an optimal solution.

In conclusion, due to (16), there is an 𝜀-approximation algorithm
for . In order to have a better approximation ratio 𝜀 = 1 + 𝜃 − 𝜃𝜌, we
would like a large 𝜌 ≤ 1 and a small 𝜃 ≥ 𝑝(𝐸∗)

𝐶∗
max

. For instance, we may
lways choose 𝜃 = 𝑑min−𝑃max

𝑃 (𝐽)+𝑃max
. □

Due to the above theorem and the fact that the Subset Sum prob-
lem admits a Fully Polynomial Time Approximation Scheme (FP-
TAS) (Kellerer, Pferschy, & Pisinger, 2003), the following corollary is
immediate.
8

Corollary 10. 𝑅𝑆𝑀𝑃 (𝑀𝑀) with 𝑟 fixed (problem) admits a FPTAS.
We point out that, Corollary 10 is also implied by the results
provided in the paper by He et al. (2005) (dealing with the deter-
ministic version of the problem). However our approach has a lower
computational complexity 𝑂(𝑛∕𝜖) (see Kellerer, Mansini, Pferschy, &
peranza, 2003) which is obtained by running the fastest FPTAS for
ubset Sum, as illustrated in the proof of Theorem 9. By Corollary 10, it
lso follows that , for 𝓁 = 𝑟, 𝑑 is pseudopolynomially solvable.

As proved in Detti et al. (2019), for any given criterion 𝑐 ∈
𝐴𝐵𝑆,𝑅𝐸𝐿,𝑂𝑊 𝐴}, the robust solution for 𝑅𝑆𝑀𝑃 (𝑐) with fixed 𝑟 and
(i.e. problem), satisfies the scenario optimality, that is it always

orresponds to an optimal solution for one of the scenarios. Hence, by
heorem 8, the following result holds:

orollary 11. If 𝑐 = 𝑀𝑀 or 𝑐 = 𝐴𝐵𝑆, the special case of 𝑅𝑆𝑀𝑃 (𝑐) with
fixed 𝑟 (above) is binary𝑁𝑃 -hard and can be solved in pseudopolynomial
ime, even for an arbitrary number of scenarios.

We conclude by stressing that all the properties presented in this
ection for (namely, approximation results, Theorem 9, Corollary 10,
nd Corollary 11) can be easily extended to the special case of 𝑅𝑆𝑀𝑃 (𝑐)
ith fixed 𝑑.

. Mixed integer linear programming models

In this section, we present two mathematical programming models
or 𝑅𝑆𝑀𝑃 (𝑐). The first one (𝑀𝐼𝑃1) uses assignment and positional
ariables. A similar model has been proposed in Detti, Nicosia, Pacifici,
nd de Lara (2016) where it turned out to the best performing model
mong a set of different integer programs. The second model (𝑀𝐼𝑃2)
isregards the actual sequencing of the jobs: it only considers whether
job is scheduled before or after the maintenance activity in each

cenario.

.1. 𝑀𝐼𝑃1: Assignment and positional-variable model

Among the classical MIP models for single machine scheduling,
nd differently from scheduling and transportation problems in which
recedence variables with disjunctive constraints and time-indexed
ariables yield better formulations (see, e.g., Agnetis, Cosmi, Nicosia,
Pacifici, 2023; Benini, Detti, & de Lara, 2022), in our case, a model

ased on assignment and positional-variables proves to be the best
hoice. In 𝑀𝐼𝑃1, two types of integer variables, denoted as 𝑥 and 𝑦, and
set of continuous variables denoted as 𝐶 are used. Positional variables
assign to each job a position in the job sequence. More precisely, we

onsider binary variables 𝑥𝑗ℎ, defined for all 𝑗, ℎ = 1,… , 𝑛, indicating
hether job 𝑗 is the ℎth job in the solution sequence 𝜋 (disregarding

he position of the maintenance activity in the sequence). We also let
ℎ(𝑠) be binary variables, defined for ℎ = 2,… , 𝑛, indicating whether

the maintenance activity is scheduled between the (ℎ − 1)-th and ℎth
ob in 𝜎(𝜋, 𝑠). Additionally, 𝑦1(𝑠) and 𝑦𝑛+1(𝑠) are binary variables which
re equal to 1 if the maintenance activity is scheduled before or after
ll the 𝑛 jobs, respectively. Moreover, 𝐶ℎ(𝑠) are variables, defined for
ll positions ℎ = 1,… , 𝑛 and all scenarios 𝑠 ∈ , representing the
ompletion time of the job in position ℎ in 𝜋. Similarly, variable 𝐶𝑀 (𝑠),
efined for all scenarios 𝑠 ∈ , indicates the completion time of the
aintenance activity in 𝜎(𝜋, 𝑠).

The model 𝑀𝐼𝑃1 for the robustness criterion 𝑐 = 𝑀𝑀 reads as
ollows:

inmax
𝑠∈

{

𝐶𝑛(𝑠)
}

(18)
𝑛
∑

ℎ=1
𝑥𝑗ℎ = 1 𝑗 ∈ 𝐽 (19)

∑

𝑗∈𝐽
𝑥𝑗ℎ = 1 ℎ = 1,… , 𝑛 (20)

𝑛+1
∑

𝑦ℎ(𝑠) = 1 𝑠 ∈ (21)

ℎ=1

Computers & Industrial Engineering 185 (2023) 109610P. Detti et al.

t
c
ℎ

d
t
a

e
t
c
i
w
f

m
𝑅

I
t
o
a

i
𝑖
e

𝜒

𝜒

B
o
r
e
v

w

m

6

a
𝑗
𝑀
t
t

𝑡

I
s
i
j
s
i

m

C
b
i
𝑀
𝑖
s
c

c

𝑧

m
t
a
n
i

7

c
t

𝐶ℎ(𝑠) ≥ 𝐶ℎ−1(𝑠) +
𝑛
∑

𝑗=1
𝑝𝑗𝑥𝑗ℎ ℎ = 1,… , 𝑛, 𝑠 ∈ (22)

𝐶ℎ(𝑠) ≥ 𝐶𝑀 (𝑠) +
𝑛
∑

𝑗=1
𝑝𝑗𝑥𝑗ℎ

−𝑁

(

1 −
ℎ
∑

𝑞=1
𝑦𝑞(𝑠)

)

ℎ = 1,… , 𝑛, 𝑠 ∈
(23)

𝐶𝑀 (𝑠) ≥ 𝐶ℎ(𝑠) + 𝑃 (𝑠)

−𝑁

(ℎ
∑

𝑞=1
𝑦𝑞(𝑠)

)

ℎ = 1,… , 𝑛, 𝑠 ∈
(24)

𝐶𝑀 (𝑠) ≥ 𝑟(𝑠) + 𝑃 (𝑠) 𝑠 ∈ (25)

𝐶𝑀 (𝑠) ≤ 𝑑(𝑠) 𝑠 ∈ (26)

𝑥𝑗ℎ ∈ {0, 1} 𝑗 ∈ 𝐽 , ℎ = 1,… , 𝑛 (27)

𝑦ℎ(𝑠) ∈ {0, 1} ℎ = 2,… , 𝑛, 𝑠 ∈ (28)

𝐶ℎ(𝑠) ≥ 0 ℎ = 1,… , 𝑛, 𝑠 ∈ (29)

𝐶𝑀 (𝑠) ≥ 0 𝑠 ∈ (30)

The expression ∑𝑛
𝑗=1 𝑝𝑗𝑥𝑗ℎ, in constraints (22) and (23) indicates

he processing time of the job in position ℎ of 𝜋 while, ∑ℎ
𝑞=1 𝑦𝑞(𝑠), in

onstraints (23) and (24) takes value 1 if the maintenance is before the
th job in 𝜎(𝜋, 𝑠).

The first three constraints are standard assignment constraints. Ad-
itional constraints define the values 𝐶ℎ(𝑠) of the completion times, in
he different scenarios. More precisely, constraints (22) and (23) define
lower bound on the completion times of the jobs (𝐶0 is set equal to

zero). In constraints (23), 𝑁 is a suitable large constant that can be set
qual to the total processing time of the jobs (including the processing
ime of the maintenance). Constraints (24) define a lower bound on the
ompletion time of the maintenance, while constraints (25) and (26)
mpose that the maintenance activity is performed within the given
indow by setting a lower and upper bound on its completion time

or each scenario.
The objective function (18) – which can be trivially linearized –

odels the min–max robustness criterion 𝑐 = 𝑀𝑀 . For the 𝐴𝐵𝑆 and
𝐸𝐿 criteria, it can be modified respectively as:

minmax
𝑠∈

{

𝐶𝑛(𝑠) − 𝐶∗
max(𝑠)

}

(31)

minmax
𝑠∈

{

𝐶𝑛(𝑠)∕𝐶∗
max(𝑠)

}

. (32)

n this case, the values 𝐶∗
max(𝑠), 𝑠 ∈ , have to be pre-computed through

he efficient procedure illustrated at the end of Section 4.1. The number
f variables and constraints in the above MIP formulation is 𝑂(𝑛2+𝑛||)
nd 𝑂(𝑛||), respectively.

For the 𝑂𝑊𝐴 criterion, we need a set of additional variables 𝜒𝑖 ≥ 0
and 𝑢𝑖(𝑠) ∈ {0, 1}, for 𝑠 ∈ , 𝑖 = 1,… , 𝑘. Binary variable 𝑢𝑖(𝑠) = 1
ndicates that the makespan 𝐶𝑛(𝑠) of the schedule in scenario 𝑠 is the
th largest makespan among the 𝑘 = || makespan values, and 𝜒𝑖 would
qual such 𝑖th value. We may then add the following set of constraints:
∑

𝑠∈
𝑢𝑖(𝑠) = 1 𝑖 = 1,… , 𝑘 (33)

𝑘
∑

𝑖=1
𝑢𝑖(𝑠) = 1 𝑠 ∈ (34)

𝑖 ≥ 𝜒𝑖+1 𝑖 = 1,… , 𝑘 − 1 (35)

𝑖 ≥ 𝐶𝑛(𝑠) −𝑁(1 − 𝑢𝑖(𝑠)) 𝑠 ∈ , 𝑖 = 1,… , 𝑘. (36)

esides the obvious assignment constraints (33) and (34) that give
ne of the 𝑘 possible ranks for the makespan of scenario 𝑠, the set of
elations (35) and (36) (where, as above, 𝑁 is a suitably large constant,
.g., 𝑁 = 𝑑max+

∑𝑛
𝑗=1 𝑝𝑗) guarantee that 𝜒𝑖 upper bounds the 𝑖th largest
9

alue of the makespan values. In conclusion, the objective function d
hen the robustness 𝑂𝑊𝐴 criterion is used, can be expressed as:

in

{ 𝑘
∑

𝑖=1
𝛽𝑖𝜒𝑖

}

(37)

in which 𝛽𝑖 is the weight associated to the 𝑖th largest makespan scenario
(see Eq. (5)). Note that, since the objective pushes the 𝜒𝑖 variables to as-
sume their lowest possible values, together with Eqs. (35), it is ensured
that 𝜒𝑖 would equal the 𝑖th largest value among the 𝐶𝑛(𝑠1),… , 𝐶𝑛(𝑠𝑘).

.2. 𝑀𝐼𝑃2: Indicator variable model

Hereafter, we present a different mathematical program, denoted
s 𝑀𝐼𝑃2, in which we use binary variables 𝑥𝑗 (𝑠), defined for all jobs
∈ 𝐽 and all scenarios 𝑠 ∈ , equal to 1 if job 𝑗 is scheduled before
in scenario 𝑠 and 0 otherwise. Furthermore, let variables 𝑡(𝑠) specify

he starting time of the maintenance 𝑀 in scenario 𝑠. Clearly, we have
hat the schedule makespan 𝐶max in scenario 𝑠 is:

(𝑠) + 𝑃 (𝑠) +
∑

𝑗∈𝐽
𝑝𝑗 (1 − 𝑥𝑗 (𝑠)).

t is important to recall that Eq. (1) holds, i.e., the 𝑘 scenarios in are
orted according to non-decreasing values of 𝑑(𝑠) − 𝑃 (𝑠). This ordering
mplies that there always exists a solution sequence 𝜎 such that, if a
ob 𝑗 is scheduled before the maintenance 𝑀 in a scenario 𝑠𝑖, then 𝑗 is
cheduled before 𝑀 in all scenarios 𝑠𝑖′ with 𝑖′ > 𝑖. 𝑀𝐼𝑃2 when 𝑐 = 𝑀𝑀
s presented below.

inmax
𝑠∈

{

𝑡(𝑠) + 𝑃 (𝑠) +
∑

𝑗∈𝐽
𝑝𝑗 (1 − 𝑥𝑗 (𝑠))

}

(38)

∑

𝑗∈𝐽
𝑝𝑗𝑥𝑗 (𝑠) ≤ 𝑡(𝑠) 𝑠 ∈ (39)

𝑥𝑗 (𝑠𝑖+1) ≥ 𝑥𝑗 (𝑠𝑖) 𝑗 ∈ 𝐽 , 𝑖 = 1,… , 𝑘 − 1 (40)

𝑡(𝑠) ≥ 𝑟(𝑠) 𝑠 ∈ (41)

𝑡(𝑠) + 𝑃 (𝑠) ≤ 𝑑(𝑠) 𝑠 ∈ (42)

𝑥𝑗 (𝑠) ∈ {0, 1} 𝑗 ∈ 𝐽 , 𝑠 ∈ (43)

𝑡(𝑠) ≥ 0 𝑠 ∈ (44)

onstraints (39) state that the starting time of 𝑀 in scenario 𝑠 cannot
e smaller than the total processing times of jobs assigned before 𝑀
n scenario 𝑠. Constraints (40) imply that if a job 𝑗 is assigned before

in scenario 𝑠𝑖 than 𝑗 is assigned before 𝑀 in all scenarios 𝑠𝑖′ with
′ > 𝑖. Constraints (41) and (42) define lower and upper bounds for the
tarting time of 𝑀 in each scenario 𝑠 ∈ . The number of variables and
onstraints in the above MIP formulation is 𝑂(𝑛||).

The above MIP can be easily adjusted to model different robustness
riteria. The expression

(𝑠) = 𝑡(𝑠) + 𝑃 (𝑠) +
∑

𝑗∈𝐽
𝑝𝑗 (1 − 𝑥𝑗 (𝑠)) (45)

easures the makespan in scenario 𝑠, so that, the objective functions for
he 𝐴𝐵𝑆 and 𝑅𝐸𝐿 criteria are those indicated, respectively, in Eqs. (31)
nd (32) in which 𝐶𝑛(𝑠) is replaced by 𝑧(𝑠). For the 𝑂𝑊𝐴 criterion, we
eed again to add the constraints indicated in Eqs. (33)–(36) (with 𝑧(𝑠)
n the place of 𝐶𝑛(𝑠)) and the objective function is the one in Eq. (37).

. Computational experiments

In this section we present the results of a computational campaign
arried out to assess the effectiveness of the two MIP models and
he dynamic program presented in the previous sections. To this aim,

ifferent classes of instances have been randomly generated and tested.

Computers & Industrial Engineering 185 (2023) 109610P. Detti et al.

T
w
i
d
S
O
o
t
i
u
n
t
t
p

7

c
j
s
t
u
m
[
r

i
r
a
t
a
t
(
a
p
a
s

Table 3
Experimental results of 𝑀𝐼𝑃1 and 𝑀𝐼𝑃2 on the instances of 𝑆𝑒𝑡1 for 𝑐 = 𝑀𝑀 .
𝑛 𝑀𝐼𝑃1 time 𝑀𝐼𝑃2 time Obj # opt scen 𝐿𝐵1 𝐿𝐵2 𝐿𝐵1 time 𝐿𝐵2 time

20 1.49 0.05 642.3 19 554.3 642.3 0.05 0.02
40 5.81 0.06 1188.4 20 1095.6 1188.4 0.15 0.02
60 23.34 0.08 1763.8 19 1675.2 1763.8 0.40 0.02
80 97.81 0.07 2293.7 19 2198.8 2293.7 0.64 0.02
100 162.19 0.08 2794.4 19 2703.1 2794.4 1.01 0.02
Table 4
Experimental results of 𝑀𝐼𝑃1 and 𝑀𝐼𝑃2 on the instances of 𝑆𝑒𝑡1 for 𝑐 = 𝐴𝐵𝑆.
𝑛 𝑀𝐼𝑃1 time 𝑀𝐼𝑃2 time Obj # opt scen

20 0.97 0.14 0.10 19
40 4.14 0.09 0.00 20
60 14.26 0.06 0.10 19
80 22.48 0.08 0.05 19
100 72.65 0.14 0.10 19

7.1. MIP performance assessment

In order to evaluate the MIP models presented in Section 6, two sets
of instance classes have been generated and tested. In Section 7.1.1, we
describe a set of experiments on a first set of instances denoted as 𝑆𝑒𝑡1.

he results of these tests gave us some insight on the type of solutions
e obtain and provided hints on the design of the second set of (harder)

nstances, denoted as 𝑆𝑒𝑡2, which are discussed in Section 7.1.2. The
escription of the computational experiments on 𝑆𝑒𝑡2 is illustrated in
ection 7.1.3. All the experiments have been performed using Cplex
ptimizer version 12.10, on a 1.19 GHz computer equipped with 8 GB
f RAM. A time limit of 30 min has been set in each run. We emphasize
hat in experiments with absolute and relative robustness criteria, we
nitially determine the optimal solution values 𝐶∗

max(𝑠) for all scenarios
sing the procedure described in Section 4.1. This process requires a
egligible amount of computation time compared to the time taken by
he solvers to handle the MIP models. The CPU-times presented in the
ables of this section include both the solver processing times and the
re-processing times.

.1.1. Experiments on instances of 𝑆𝑒𝑡1
𝑆𝑒𝑡1 contains 100 randomly generated instances partitioned into 5

lasses of 20 instances each, characterized by a different number 𝑛 of
obs, with 𝑛 ∈ {20, 40, 60, 80, 100}. In each instance, there are 𝑘 = 4
cenarios corresponding to maintenance windows distributed over the
ime span of the schedule. The integer processing times of the jobs are
niformly distributed in the range [5, 50], and, for each scenario 𝑠, the
aintenance activity duration 𝑃 (𝑠) is uniformly drawn in the interval

50, 100], whereas the time window slack 𝛥(𝑠) = 𝑑(𝑠)−𝑃 (𝑠)−𝑟(𝑠) assumes
andom integer values uniformly distributed in [0, 3].

The computational results on the two MIP models for this set of
nstances are summarized in Tables 3–5, for 𝑐 = 𝑀𝑀,𝐴𝐵𝑆,𝑅𝐸𝐿,
espectively. In all the tables, the second and third column report the
verage computation time in seconds over the 20 instances required by
he two MIP models, while in the fourth column ‘‘Obj’’ indicates the
verage objective function value. In the fifth column, the number of
imes in which the robust solution is also optimal in all four scenarios
out of the 20 instances in each class) is reported, this entry is denoted
s ‘‘# opt scen’’. In Table 3, the average solutions of the lower bounds
rovided by the linear relaxations of the two models, denoted as ‘‘𝐿𝐵1’’
nd ‘‘𝐿𝐵2’’, are also reported, as well as their computation times in
econds (indicated as ‘‘𝐿𝐵1 time’’ and ‘‘𝐿𝐵2 time’’).

A few comments are in order:

• Cplex is extremely fast on 𝑀𝐼𝑃2, requiring at most one second
on average on each class, while it spends more time on 𝑀𝐼𝑃1.
In fact, when 𝑛 = 100, 𝑀𝐼𝑃1 requires between 70 to 162 s on
average, depending on the robustness criterion.
10
Table 5
Experimental results of 𝑀𝐼𝑃1 and 𝑀𝐼𝑃2 on the instances of 𝑆𝑒𝑡1 for 𝑐 = 𝑅𝐸𝐿.
𝑛 𝑀𝐼𝑃1 time 𝑀𝐼𝑃2 time Obj # opt scen

20 0.79 1.02 1.000150 19
40 3.22 0.04 1.000000 20
60 13.17 0.04 1.000057 19
80 22.50 0.07 1.000020 19
100 69.87 0.09 1.000037 19

• As columns ‘‘# opt scen’’ of Tables 3–5 show, in most of the cases
the robust solution coincides with a sequence which is optimal
in all four scenarios in all the classes, for all robustness criteria.
Also, in most cases, for all the three robustness criteria, we obtain
solutions with zero idle times in all the scenarios, which are,
trivially, optimal.

• The solutions seem highly insensitive to the particular robust-
ness criterion adopted. The robust solutions (sequences) obtained
when 𝑐 = 𝐴𝐵𝑆 or 𝑐 = 𝑅𝐸𝐿 are almost always the same solutions
obtained with 𝑐 = 𝑀𝑀 . The computation times required to
determine robust solutions when 𝑐 = 𝐴𝐵𝑆 or 𝑐 = 𝑅𝐸𝐿 are very
similar, while they increase when 𝑐 = 𝑀𝑀 .

• We also observed that, when 𝑐 = 𝑀𝑀 , for almost all ran-
domly generated instances, the worst case scenario �̂� (for which
𝐶∗
max(�̂�) ≥ 𝐶∗

max(𝑠), for all 𝑠 ∈) occurs when the maintenance
activity 𝑀 has the largest duration 𝑃max = max𝑠∈{𝑃 (𝑠)}, making
the other scenarios irrelevant in terms of selection of a robust
solution.

• It is evident from Table 3 that the optimal solution of the lin-
ear relaxation of 𝑀𝐼𝑃2, denoted by 𝐿𝐵2, is better than that
of 𝑀𝐼𝑃1, and is always equal to the optimal solution value.
Furthermore, the computation time of 𝐿𝐵2 is extremely small,
0.02 s on average, while 𝐿𝐵1 requires 0.45 s on average.

All above considerations suggest that the instances in 𝑆𝑒𝑡1 are
somewhat ‘‘manageable’’ instances. Hence, to better test the perfor-
mance of the two MIP, we developed more challenging, possibly harder,
instances which are described in the next section.

7.1.2. Design of the 𝑆𝑒𝑡2 instances
In building the instances of 𝑆𝑒𝑡2, we kept in mind the results of the

previous section (see the comments above) in order to rule out easy or
less significant tests. To this aim, instances in 𝑆𝑒𝑡2 have been chosen so
that the robust solution does not coincide with the optimal solutions of
the scenarios and so that schedules may present some idle time before
the maintenance.

The following easy observations are useful to rule out these trivial
cases for 𝑅𝑆𝑀𝑃 (𝑐). First note that, if the job processing times are
not larger than the slack 𝛥(𝑠) = 𝑑(𝑠) − 𝑟(𝑠) − 𝑃 (𝑠) in all the scenarios
𝑠 ∈ , then any sequence produces a schedule with no idle times
(since a subset of jobs 𝐴 always exists such that 𝑀 can be scheduled
just after 𝐴 with no idle time) and hence any sequence is optimal. To
avoid this phenomenon we choose very small values for the slacks 𝛥(𝑠).
Furthermore, when 𝑟(𝑠) = 0 for all 𝑠 ∈ , it easy to see that an optimal
schedule exists with no idle time by starting the maintenance at time
0.

Computers & Industrial Engineering 185 (2023) 109610P. Detti et al.

g
(

7

t

f
s
c
a
t
a
C
t
o
i

t
t
r
a

7

n
m
p
a
g
p
d
m

d
i
m
t
f
i
m
𝑟
i

t
s
a
i
n
f
d
p
i
t
i

8

c
a

Table 6
Classes of instances in 𝑆𝑒𝑡2.

Instance Class # jobs [𝑝min , 𝑝max] # scenarios 𝑃 (𝑠) window positions slack

20-U 20 [50,150] 4 50 Spread (U) [0,1]
20-E 20 [50,150] 4 50 Early (E) [0,1]
20-M 20 [50,150] 4 50 Median (M) [0,1]
20-L 20 [50,150] 4 50 Late (L) [0,1]
30-U 30 [50,150] 4 50 Spread (U) [0,1]
30-E 30 [50,150] 4 50 Early (E) [0,1]
30-M 30 [50,150] 4 50 Median (M) [0,1]
30-L 30 [50,150] 4 50 Late (L) [0,1]
40-U 40 [50,150] 4 50 Spread (U) [0,1]
40-E 40 [50,150] 4 50 Early (E) [0,1]
40-M 40 [50,150] 4 50 Median (M) [0,1]
40-L 40 [50,150] 4 50 Late (L) [0,1]
50-U 50 [50,150] 4 50 Spread (U) [0,1]
50-E 50 [50,150] 4 50 Early (E) [0,1]
50-M 50 [50,150] 4 50 Median (M) [0,1]
50-L 50 [50,150] 4 50 Late (L) [0,1]

Taking all the above considerations into account we randomly
enerated a set of 320 instances, characterized by the data listed below
and summarized in Table 6).

• The number of jobs 𝑛 varies in {20, 30, 40, 50}.
• The number of scenarios is 𝑘 = 4.
• Processing times values are uniformly distributed in interval
[𝑝min, 𝑝max] = [50, 150].

• The maintenance activity duration is fixed to 𝑃 (𝑠) = 𝑃 = 50 for
each scenario 𝑠 ∈ .

• In each scenario 𝑠 ∈ , the window slack 𝛥(𝑠) = 𝑑(𝑠) − 𝑃 − 𝑟(𝑠)
assumes values equal to 0 or 1, with equal probability.

• The release dates and due dates, for all the 𝑘 scenarios, are gen-
erated by varying the position of the maintenance time window
[𝑟(𝑠), 𝑑(𝑠)] in the schedule. More precisely, since in general, any
realization schedule spans from time 0 to 𝑇 ⪆ 𝑃 +

∑

𝑗∈𝐽 𝑝𝑗 ,
we consider the following four modalities (which exclude trivial
cases):

– the 𝑘 time windows in the different scenarios are spread,
i.e., uniformly distributed over the span [0, 𝑇] of the sched-
ule (we refer to this choice using the letter U in the class
name);

– the 𝑘 time windows are chosen close to each other roughly
around 1

4𝑇 (‘‘early time windows’’, denoted by E);
– the 𝑘 time windows are chosen close to each other roughly

around 1
2𝑇 (‘‘median time windows’’, denoted by M);

– the 𝑘 time windows are chosen close to each other roughly
around 3

4𝑇 (‘‘late time windows’’, denoted by L).

Note that in these instances 𝑃 (𝑠) is fixed in all scenarios, since – as we
observed in Section 7.1.1 – in most cases the worst case scenario occurs
in correspondence of the largest duration for the maintenance.

In the following, we denote by 𝚗-pos an instance class of 𝑆𝑒𝑡2 in
which 𝚗 is the number of jobs of the instances of that class, while
pos indicates the maintenance time-window positions, with 𝚙𝚘𝚜 ∈
{𝚄, 𝙴, 𝙼, 𝙻}. Table 6 summarizes the characteristics of all the instances
classes in 𝑆𝑒𝑡2.

For each instance class 𝚗-pos, 20 instances are randomly generated.

.1.3. Computational results on instances of 𝑆𝑒𝑡2
Tables 7–9 present the results of the computational experiments on

he instances in 𝑆𝑒𝑡2 for 𝑐 = 𝑀𝑀,𝐴𝐵𝑆,𝑅𝐸𝐿, respectively. In all three
tables, Column 1 contains the instance class, Columns 2 and 3 report
the number of instances (‘‘# opt’’) of each class solved to optimality by
𝑀𝐼𝑃1 and 𝑀𝐼𝑃2, respectively, within the time limit, while Columns
4 and 5 report the average computation times in seconds. Column 6
11

a

gives the average solution values (‘‘Obj’’) of the robust solutions found
by the two formulations on the 20 instances of each class.

Table 7, presents additional four columns that report the values of
the lower bounds (‘‘LB value’’) obtained by the linear relaxations of the
two MIPs together with their computation time (‘‘LB time’’).

As shown in Table 7 (‘‘# opt’’, in Columns 2 and 3), for the 𝑀𝑀
criterion, 𝑀𝐼𝑃1 is able to solve all the 20 instances of each class within
the time limit, while 𝑀𝐼𝑃2 fails to certify the optimality for some
instances with 𝑛 ∈ {30, 40, 50}, especially for time window positions
E, L and M. A similar behavior can be also observed in Tables 8 and 9
or the 𝐴𝐵𝑆 and 𝑅𝐸𝐿 criteria. (Actually, 𝑀𝐼𝑃1 is able to optimally
olve all the instances but one and three for the 𝐴𝐵𝑆 and 𝑅𝐸𝐿
riteria, respectively.) However, for all the three robustness criteria,
comparison of the average solutions values shows that 𝑀𝐼𝑃2 finds

he optimal solution in all the instances, even if in some cases it is not
ble to certify the optimality. Regarding the computation times (see
olumns 4 and 5 of Tables 7–9), 𝑀𝐼𝑃1 is in general faster than 𝑀𝐼𝑃2,
aking from about 1 s (for 𝑛 = 20) to about 184 s for the class 𝟺𝟶-U,
n average. In fact, Cplex on 𝑀𝐼𝑃2 often reaches the time limit for the
nstances with 𝑛 = 40, 50.

On the other hand, as shown in the last four Columns of Table 7,
he linear relaxation of 𝑀𝐼𝑃2 provides slightly better lower bounds
han those provided by 𝑀𝐼𝑃1, in a very short computation time: Fig. 2
eports the trends of the two lower bounds in terms of solution values
nd computation times.

.2. Computational experiments on the dynamic programming algorithm

The dynamic programming algorithm presented in Section 4.3 was
ot able to solve the instances of 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2 due to the excessive
emory requirements, especially when instance numbers (namely, the
rocessing times of the jobs and the duration of the maintenance)
re large. In fact, the computational cost of the dynamic program
rows exponentially with the number of scenarios 𝑘 and it is directly
roportional to the schedule length. Indeed, the importance of the
ynamic programming is mainly theoretic and its performance – being
uch worse – is not comparable to that of MIP models.

However, in order to give an illustration of the behavior of the
ynamic program, we have randomly generated a number of ad-hoc
nstances characterized by short processing times and duration of the
aintenance activity, and larger maintenance slack. More precisely,

he new instances are characterized by a number of jobs 𝑛 varying
rom 5 to 35, with integer processing times uniformly distributed in
nterval [1, 10], 𝑐 = 𝑀𝑀 robustness criterion, two scenarios, constant
aintenance activity duration 𝑃 (𝑠) = 10 and allotted interval 𝑑(𝑠) −
(𝑠) = 15, respectively for both scenarios. For each value of 𝑛, 50
nstances have been randomly generated.

Table 10 presents the results of these experiments, depending on
he number 𝑛 of jobs (indicated in the first row of the table). The
econd row reports the number of optimal solutions found by the
lgorithm over the 50 instances (and the corresponding success ratio
n percent) for each value of 𝑛. Observe that, up to 𝑛 = 15, the dy-
amic programming algorithm always correctly terminates, obviously
inding optimal solutions. For larger number of jobs, its performance
ecreases accordingly: In these cases the algorithm cannot always com-
lete its processing before the maximum amount of available memory
s reached. On the other hand, in the solved instances, the computation
imes remain in any case below one second, for all the 350 considered
nstances.

. Conclusions

In this paper, a problem arising in a manufacturing environment
oncerning the joint scheduling of multiple jobs and a maintenance
ctivity on a single machine has been addressed. The maintenance

ctivity must be processed within a given time window. While the

Computers & Industrial Engineering 185 (2023) 109610P. Detti et al.
Table 7
Experimental results of 𝑀𝐼𝑃1 and 𝑀𝐼𝑃2 for 𝑐 = 𝑀𝑀 on instance set 𝑆𝑒𝑡2.

Instance # opt time Obj LB value LB time

Class 𝑀𝐼𝑃1 𝑀𝐼𝑃2 𝑀𝐼𝑃1 𝑀𝐼𝑃2 MM 𝑀𝐼𝑃1 𝑀𝐼𝑃2 𝑀𝐼𝑃1 𝑀𝐼𝑃2

20-U 20 20 2.29 1.12 2004.7 1941.2 1991.2 0.049 0.018
20-E 20 20 1.77 1.09 2122.6 2047.8 2097.8 0.065 0.010
20-M 20 20 2.22 5.75 2086.6 2011.8 2061.8 0.044 0.010
20-L 20 20 2.90 1.31 2099.5 2022.7 2072.7 0.050 0.009

30-U 20 20 4.11 47.75 3084.9 3026.8 3076.8 0.109 0.018
30-E 20 20 3.60 79.05 3093.5 3019.7 3069.7 0.111 0.009
30-M 20 15 3.89 1072.79∗ 3112.5 3037.1 3087.1 0.144 0.001
30-L 20 20 4.44 124.71 3081.0 3007.0 3057.0 0.153 0.014

40-U 20 3 4.99 1530.05∗ 4043.1 3957.0 4033.3 0.174 0.013
40-E 20 2 3.50 1620.03∗ 4071.9 3997.6 4060.7 0.186 0.015
40-M 20 0 5.96 1800.00∗ 4093.9 4023.3 4073.3 0.196 0.009
40-L 20 1 3.89 1710.03∗ 4066.0 3993.2 4043.2 0.279 0.025

50-U 20 6 35.40 1260.12∗ 5093.2 5033.4 5083.4 0.377 0.013
50-E 20 1 4.85 1710.04∗ 4961.6 4885.9 4935.8 0.251 0.016
50-M 20 1 7.58 1800.00∗ 5147.5 5075.8 5125.8 0.443 0.009
50-L 20 0 6.44 1620.05∗ 5158.8 5087.6 5137.6 0.375 0.012
Fig. 2. Linear relaxation solution values and computation times for 𝑀𝐼𝑃1 and 𝑀𝐼𝑃2.
Table 8
Experimental results of 𝑀𝐼𝑃1 and 𝑀𝐼𝑃2 for 𝑐 = 𝐴𝐵𝑆 on the instances of 𝑆𝑒𝑡2.

Instance # opt time Obj

Class 𝑀𝐼𝑃1 𝑀𝐼𝑃2 𝑀𝐼𝑃1 𝑀𝐼𝑃2 ABS

20-U 20 20 0.96 0.85 13.6
20-E 20 20 1.00 0.87 24.8
20-M 20 20 1.26 4.90 24.9
20-L 20 20 1.12 0.76 26.9

30-U 20 20 12.44 41.05 8.1
30-E 20 20 2.07 106.65 23.8
30-M 20 17 2.21 1096.81∗ 25.4
30-L 20 20 2.44 134.82 24.0

40-U 20 3 5.74 1530.04∗ 9.9
40-E 20 2 5.36 1620.04∗ 24.3
40-M 20 3 5.00 1530.30∗ 20.7
40-L 20 3 4.10 1530.08∗ 22.8

50-U 19 4 97.64∗ 1440.13∗ 9.8
50-E 20 2 4.58 1620.06∗ 25.8
50-M 20 1 8.13 1710.02∗ 21.6
50-L 20 2 4.88 1620.07∗ 21.3

processing times of the jobs are deterministic, the maintenance time
window and duration are uncertain. In this context, the problem of
finding job schedules which are robust to any possible change in the
maintenance activity characteristics has been addressed. We prove
several properties (see Table 2) of robust schedules when minimizing
the makespan under four different standard robustness criteria.
12
Table 9
Experimental results of 𝑀𝐼𝑃1 and 𝑀𝐼𝑃2 for 𝑐 = 𝑅𝐸𝐿 on the instances of 𝑆𝑒𝑡2.

Instance # opt time Obj

Class 𝑀𝐼𝑃1 𝑀𝐼𝑃2 𝑀𝐼𝑃1 𝑀𝐼𝑃2 REL

20-U 20 20 9.85 1.16 1,007
20-E 20 20 0.71 0.88 1.012
20-M 20 20 1.36 4.57 1.012
20-L 20 20 1.06 0.81 1.013

30-U 19 20 93.36∗ 65.62 1.003
30-E 20 20 2.27 103.70 1.008
30-M 20 10 2.87 1371.01∗ 1.008
30-L 20 20 3.70 79.08 1.008

40-U 18 4 184.88∗ 1440.11∗ 1.002
40-E 20 2 3.42 1620.05∗ 1.006
40-M 20 2 10.07 1620.06∗ 1.005
40-L 20 1 4.45 1710.03∗ 1.006

50-U 20 2 8.28 1620.01∗ 1.002
50-E 20 1 6.90 1710.04∗ 1.005
50-M 20 2 9.48 1620.07∗ 1.214
50-L 20 3 6.12 1530.10∗ 1.004

Two MIP models and a dynamic programming algorithm are pro-
posed and the results of the computational campaign show that the
suggested solution approaches are efficient and effective for instances
up to 50 jobs and 4 scenarios. We leave for future research the evalu-
ation of the approaches on instances with a larger number of jobs and
scenarios.

Computers & Industrial Engineering 185 (2023) 109610P. Detti et al.

t
f
i
&
L
&
i
i
r
v
r
i
I
p
P
i
a
i
c

C

F
W
C
s
r
c
I
&

D

R

A

A

A

Table 10
Number of optimal solutions found by the Dynamic Program.
𝑛 5 10 15 20 25 30 35

optima 50 (100%) 50 (100%) 50 (100%) 41 (82%) 23 (46%) 23 (46%) 20 (40%)
Other, future research directions may include a theoretical study
o characterize the properties of robust schedules in a setting different
rom the single machine one (for instance, an extension of these results
n the context of parallel machines Agnetis, Benini, Detti, Hermans,

Pranzo, 2022; Chen, Huang, Huang, Huang, & Chou, 2021; Yoo &
ee, 2016, or parallel dedicated machines Agnetis, Kellerer, Nicosia,

Pacifici, 2012) and the design of new heuristic algorithms (for
nstance, math-heuristics exploiting the proposed MIP models). Study-
ng 𝑅𝑆𝑀𝑃 (𝑐) under a different robustness paradigm, namely that of
ecoverable robustness (Liebchen, Lubbecke, Mohring, & Stiller, 2009;
an den Akker, Hoogeveen, & Stoef, 2018) also looks like an interesting
esearch line. Recoverable robustness permits a limited recovery action
f a solution is unfeasible after the realization of a specific scenario.
n our case, a recovery action can be viewed as a special re-scheduling
roblem (Alfieri, Nicosia, Pacifici, & Pferschy, 2018; Nicosia, Pacifici,
ferschy, Resch, & Righini, 2021). Finally, it would be interesting to
nvestigate the equivalence of the restricted problems in which 𝑟 or 𝑑
re fixed (Problem in Section 5.1) to the more ‘‘constrained’’ problem
n which both 𝑟 and 𝑑 are fixed (Problem) when the robustness
riteria are 𝑐 = 𝑅𝐸𝐿 or 𝑐 = 𝑂𝑊𝐴.

RediT authorship contribution statement

Paolo Detti: Conceptualization, Methodology, Software, Validation,
ormal analysis, Investigation, Data curation, Writing – original draft,
riting – review & editing, Visualization, Supervision. Gaia Nicosia:

onceptualization, Methodology, Software, Validation, Formal analy-
is, Investigation, Data curation, Writing – original draft, Writing –
eview & editing, Visualization, Supervision. Andrea Pacifici: Con-
eptualization, Methodology, Software, Validation, Formal analysis,
nvestigation, Data curation, Writing – original draft, Writing – review

editing, Visualization, Supervision.

ata availability

Data will be made available on request.

eferences

gnetis, A., Benini, M., Detti, P., Hermans, B., & Pranzo, M. (2022). Replication and
sequencing of unreliable jobs on parallel machines. Computers & Operations Research,
139, Article 105634.

gnetis, A., Cosmi, M., Nicosia, G., & Pacifici, A. (2023). Two is better than one?
Order aggregation in a meal delivery scheduling problem. Computers & Industrial
Engineering, 183, Article 109514.

gnetis, A., Kellerer, H., Nicosia, G., & Pacifici, A. (2012). Parallel dedicated machines
scheduling with chain precedence constraints. European Journal of Operational
Research, 221, 296–305.

Aissi, H., Bazgan, C., & Vanderpooten, D. (2009). Min–max and min–max regret versions
of combinatorial optimization problems: A survey. European Journal of Operational
Research, 197(2), 427–438.

Alfieri, A., Nicosia, G., Pacifici, A., & Pferschy, U. (2018). Constrained job rearrange-
ments on a single machine. In P. Daniele, & L. Scrimali (Eds.), AIRO Springer series:
vol. 1, New trends in emerging complex real life problems. Cham: Springer.

Benini, M., Detti, P., & de Lara, G. Zabalo Manrique (2022). Mathematical programming
formulations and metaheuristics for biological sample transportation problems in
healthcare. Computers & Operations Research, 146, Article 105921.

Chen, J. S. (2008). Scheduling of nonresumable jobs and flexible maintenance activities
on a single machine to minimize makespan. European Journal of Operational
Research, 190(1), 90–102.

Chen, Y. Y., Huang, P. Y., Huang, C. J., Huang, S. Q., & Chou, F. D. (2021).
Makespan minimization for scheduling on two identical parallel machines with
flexible maintenance and nonresumable jobs. Journal of Industrial and Production
13

Engineering, 38(4), 271–284.
Costa Souza, R. L., Ghasemi, A., Saif, A., & Gharaei, A. (2022). Robust job-shop
scheduling under deterministic and stochastic unavailability constraints due to
preventive and corrective maintenance. Computers & Industrial Engineering, 168,
Article 108130.

Daniels, R. L., & Kouvelis, P. (1995). Robust scheduling to hedge against processing
time uncertainty in single-stage production. Management Science, 41(2), 363–376.

Detti, P., Nicosia, G., Pacifici, A., & de Lara, G. Zabalo Manrique (2016). Robust single
machine scheduling with external-party jobs, proceedings of IFAC conference MIM
2016. IFAC-PapersOnLine, 49(12), 1731–1736.

Detti, P., Nicosia, G., Pacifici, A., & de Lara, G. Zabalo Manrique (2019). Robust single
machine scheduling with a flexible maintenance activity. Computers & Operations
Research, 107, 19–31.

Golpîra, H., & Tirkolaee, E. B. (2019). Stable maintenance tasks scheduling: A bi-
objective robust optimization model. Computers & Industrial Engineering, 137, Article
106007.

He, Y., Ji, M., & Cheng, T. C. E. (2005). Single machine scheduling with a restricted
rate-modifying activity. Naval Research Logistics, 52, 361–369.

Ji, M., Yong, H., & Cheng, T. C. E. (2007). Single-machine scheduling with periodic
maintenance to minimize makespan. Computers & Operations Research, 34(6),
1764–1770.

Kacem, I., & Kellerer, H. (2016). Semi-online scheduling on a single machine with
unexpected breakdown. Theoretical Computer Science, 646, 40–48.

Kasperski, A., & Zielinski, P. (2014). Minmax (regret) scheduling problems. In Sot-
skov Y., & Werner F. (Eds.), Sequencing and scheduling with inaccurate data (pp.
159–210). New York: Nova Science Publishers.

Kellerer, H., Mansini, R., Pferschy, U., & Speranza, M. G. (2003). An efficient fully
polynomial approximation scheme for the subset-sum problem. Journal of Computer
and System Sciences, 66(2), 349–370.

Kellerer, H., Pferschy, U., & Pisinger, D. (2003). Knapsack problems. Springer Verlag.
Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its applications. Boston:

Kluwer Academic Publishers.
Lebedev, V., & Averbakh, I. (2006). Complexity of minimizing the total flow time with

interval data and minmax regret criterion. Discrete Applied Mathematics, 154(15),
2167–2177.

Lee, C. Y. (1996). Machine scheduling with an availability constraint. Journal of Global
Optimization, 9, 395–416.

Liebchen, C., Lubbecke, M., Mohring, R., & Stiller, S. (2009). The concept of recoverable
robustness, linear programming recovery, and railway applications. In Lecture notes
in computer science: vol. 5868, (pp. 1–27).

Luo, W., Cheng, T. C. E., & Ji, M. (2015). Single-machine scheduling with a variable
maintenance activity. Computers & Industrial Engineering, 79, 168–174.

Ma, Y., Chu, C., & Zuo, C. (2010). A survey of scheduling with deterministic machine
availability constraints. Computers & Industrial Engineering, 58(2), 199–211.

Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of
large-scale systems. Informs Journal of Computing, 43(2), 264–281.

Nicosia, G., Pacifici, A., Pferschy, U., Resch, J., & Righini, G. (2021). Optimally
rescheduling jobs with a last-in-first-out buffer. Journal of Scheduling, 24, 663–680.

Pereira, J. (2016). The robust (minmax regret) single machine scheduling with interval
processing times and total weighted completion time objective. Computers &
Operations Research, 66, 141–152.

Shabtay, D., & Gilenson, M. (2023). A state-of-the-art survey on multi-scenario
scheduling. European Journal of Operational Research, 310(1), 3–23.

van den Akker, M., Hoogeveen, H., & Stoef, J. (2018). Combining two-stage stochastic
programming and recoverable robustness to minimize the number of late jobs in
the case of uncertain processing times. Journal of Scheduling, 21(6), 607–617.

Wang, S., Cui, W., Chu, F., Yu, J., & Gupta, J. N. D. (2020). Robust (min–max
regret) single machine scheduling with interval processing times and total tardiness
criterion. Computers & Industrial Engineering, 149, Article 106838.

Xu, D., Yin, Y., & Li, H. (2009). A note on scheduling of nonresumable jobs and flexible
maintenance activities on a single machine to minimize makespan. European Journal
of Operational Research, 197(2), 825–827.

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multi-
criteria decision making. IEEE Transactions on Systems, Man and Cybernetics, 18,
183–190.

Yang, D. L., Hung, C. L., Hsu, C. J., & Chern, M. S. (2002). Minimizing the makespan
in a single machine scheduling problem with a flexible maintenance. Journal of the
Chinese Institute of Industrial Engineers, 19, 63–66.

Yang, S., Maa, Y., Xu, D., & Yang, J. (2011). Minimizing total completion time on
a single machine with a flexible maintenance activity. Computers & Operations
Research, 38, 755–770.

Ying, K.-C., Lu, C.-C., & Chen, J.-C. (2016). Exact algorithms for single-machine schedul-
ing problems with a variable maintenance. Computers & Industrial Engineering, 98,
427–433.

Yoo, J., & Lee, I. S. (2016). Parallel machine scheduling with maintenance activities.
Computers & Industrial Engineering, 101, 361–371.

http://refhub.elsevier.com/S0360-8352(23)00634-4/sb1
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb1
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb1
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb1
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb1
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb2
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb2
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb2
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb2
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb2
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb3
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb3
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb3
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb3
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb3
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb4
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb4
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb4
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb4
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb4
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb5
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb5
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb5
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb5
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb5
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb6
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb6
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb6
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb6
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb6
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb7
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb7
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb7
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb7
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb7
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb8
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb8
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb8
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb8
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb8
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb8
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb8
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb9
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb9
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb9
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb9
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb9
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb9
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb9
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb10
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb10
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb10
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb11
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb11
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb11
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb11
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb11
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb12
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb12
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb12
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb12
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb12
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb13
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb13
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb13
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb13
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb13
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb14
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb14
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb14
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb15
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb15
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb15
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb15
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb15
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb16
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb16
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb16
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb17
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb17
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb17
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb17
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb17
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb18
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb18
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb18
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb18
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb18
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb19
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb20
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb20
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb20
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb21
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb21
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb21
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb21
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb21
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb22
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb22
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb22
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb23
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb23
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb23
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb23
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb23
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb24
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb24
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb24
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb25
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb25
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb25
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb26
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb26
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb26
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb27
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb27
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb27
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb28
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb28
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb28
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb28
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb28
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb29
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb29
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb29
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb30
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb30
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb30
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb30
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb30
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb31
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb31
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb31
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb31
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb31
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb32
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb32
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb32
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb32
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb32
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb33
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb33
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb33
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb33
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb33
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb34
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb34
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb34
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb34
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb34
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb35
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb35
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb35
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb35
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb35
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb36
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb36
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb36
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb36
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb36
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb37
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb37
http://refhub.elsevier.com/S0360-8352(23)00634-4/sb37

	Robust job-sequencing with an uncertain flexible maintenance activity
	Introduction
	Literature review
	Introductory concepts, definitions and notation
	Complexity and approximation
	Computation of the optimal solutions of all scenarios
	Complexity results
	A pseudopolynomial algorithm for RSMP(c) with a fixed number of scenarios
	Approximation

	Special cases
	Problems with fixed r or d
	Approximation results for a special case

	Mixed Integer Linear Programming models
	MIP1: Assignment and positional-variable model
	MIP2: Indicator variable model

	Computational experiments
	MIP performance assessment
	Experiments on instances of Set1
	Design of the Set2 instances
	Computational results on instances of Set2

	Computational experiments on the Dynamic Programming algorithm

	Conclusions
	CRediT authorship contribution statement
	Data availability
	References

