9 research outputs found

    Channel Modeling and Analysis for Radio Wave Propagation in Vehicular Ad Hoc Network

    Full text link
    VANET is the basic technology of Vehicle Infrastructure Integration (VII). Vehicular Ad Hoc Network (VANET) is the network that is connecting a vehicle to the infrastructure (V2I) and vehicle to vehicle (V2V) via wireless manner to convey the information between them. Therefore analyzing influence such channels on the VANET system performance is crucial. This paper is conducted to model and analyze the channel for radio wave propagation with considering free space, two ray ground reflection and single knife edge diffraction. The received power, path loss and effect state of the communication sides whether is in moving stable are discussed. The direction of moving of the vehicles and location of obstacles are also taken into account for calculating the received power and path loss

    Signal Path Loss Measurement for Future Terahertz Wireless Propagation Links

    Get PDF
    Terahertz Band (100GHz-10THz) offers larger bandwidth and ultra-higher data rates and is visualized as a key technology to alleviate the capacity limitation and spectrum scarcity of the currents wireless networks. There are some competent development and design challenges in the realization of wireless terahertz network. Signal high path loss is one of the major constraints for enabling wireless communication networks in the terahertz band. Thus for the consummation of wireless propagation links in the THz band an equivalent signal path loss model is designed incorporating the major peculiarities of the wireless channel that accounts for terahertz wave propagation in LoS propagation. The equivalent path loss model for terahertz LoS propagation is developed and simulated in matlabR. The simulation results are compared with the lognormal path loss model results

    Analysis of the Chirality Effects on the Capacity of Wireless Communication Systems in the THz band

    Get PDF
    International audienceThe potentialities of Terahertz frequency band in the context of nano-scale communications are largely increasing, thanks to specific features that allow to overcome the issues related to the spectrum scarcity and capacity limitation. Apart from high molecular absorption and very high reflection loss that represent the main phenomena in Terahertz (THz) band, in this paper we investigate the chirality effects that affect the propagation medium, in the frequency range (4 − 10) THz. It is observed that in this interval the chiral parameter shows resonance peaks in specific frequencies. In this paper we investigate the channel capacity in a special medium affected by chirality effects, such as biomolecules, DNA chains, etc. Specifically, we analyze the signal propagation in a chiral medium where a Giant Optical Activity (GOA) is present. This effect is typical of the so-called chiral-metamaterials. Through simulation results we distinguish the behavior of a chirality-affected channel with GOA in Line-of-Sight and Non-Line-of-Sight propagations, assuming different power allocation techniques and also comparing the performance to the case of No GOA

    High Bit Rate Wireless and Fiber-Based Terahertz Communication

    Get PDF
    RÉSUMÉ Dans le spectre électromagnétique, la bande des térahertz s’étend de 100 GHz à 10 THz (longueurs d’onde de 3 mm à 30 μm). Des décennies auparavant, le spectre des THz était connu sous le nom de « gap térahertz » en raison de l’indisponibilité de sources et détecteurs efficaces à ces fréquences. Depuis quelques années, la science a évolué pour faire migrer la technologie THz des laboratoires aux produits commerciaux. Il existe plusieurs applications des ondes THz en imagerie, spectroscopie et communications. Dans cette thèse, nous nous intéressons aux communications THz à travers deux objectifs. Le premier objectif est de développer une source THz de haute performance dédiée aux communications et basée sur les technologies optiques avec des produits commerciaux uniquement. Le second objectif est de démontrer l’utilisation de fibres optiques afin de renforcer la robustesse des communications THz sans fil. Nous débutons cette thèse avec une revue de la littérature scientifique sur le sujet de la communications THz sans fil et filaire. D’abord, nous discutons des deux méthodes communément utilisées (électronique et optique) pour démontrer des liens de communications THz avec leurs avantages et inconvénients. Nous présentons par la suite la possibilité d’utiliser un système de spectroscopie THz pour des applications en communications avec des modifications mineures au montage. Nous présentons ensuite plusieurs applications gourmandes en bande passante qui pourraient bénéficier du spectre THz, incluant la diffusion en continu (streaming) de flux vidéo aux résolutions HD et 4K non compressés. Ensuite, nous discutons de la motivation d’utiliser de longues fibres THz et notamment du fait qu’elles ne sont pas destinées à remplacer les fibres optiques conventionnelles de l’infrarouge, mais plutôt à augmenter la robustesse des liens THz sans fil. En particulier, les fibres THz peuvent être utilisées pour garantir le lien de communication dans des environnements géométriques complexes ou difficile à atteindre, ainsi que pour immuniser le lien THz aux attaques de sécurité. Plusieurs designs de fibres et guides d’onde précédemment démontrées dans la littérature sont discutés avec, entre autres, leurs méthodes de fabrication respectives. Nous discutons ensuite de la possibilité d’utiliser un simple guide d’onde diélectrique et sous-longueur d’onde pour transmettre l’information à un débit de l’ordre de plusieurs Gbps sur une distance de quelques mètres.----------ABSTRACT The Terahertz (THz) spectral range spans from 100 GHz to 10 THz (wavelength: 3 mm to 30 μm) in the electromagnetic spectrum. Decades ago, the THz spectral range is often named as ‘THz gap’ due to the non-availability of efficient THz sources and detectors. In the recent years, the science has evolved in bringing the THz technology from lab scale to commercial products. There are several potential applications of THz frequency band such as imaging, spectroscopy and communication. In this thesis, we focus on THz communications by addressing two objectives. The first objective is to develop a high-performance photonics-based THz communication system using all commercially available components. The second objective is to demonstrate the THz-fiber based communications, which can be used to increase the reliability of THz wireless links. We begin this thesis with a scientific literature review on the subject of THz wireless and fiber-based communications. First, the two different methodologies (all electronics based and photonics-based THz system) that is commonly used in the demonstration of THz communications is discussed along with their advantages and challenges. We then present the flexibility of photonics-based THz system where it is possible to switch it with minor modifications for THz spectroscopic studies and THz communication applications. Several bandwidth hungry applications that demands the use of THz spectrum for next generation communications is detailed. This includes the streaming of uncompressed HD/4K and beyond high-resolution videos, where the THz spectrum can be beneficial. Next, the motivation of using long THz fibers is discussed and we convince the readers that the THz fibers are not meant to replace the fibers in the optical-infrared region but to increase the reliability of THz wireless links. Particularly, the THz fibers can be used to provide connectivity in complex geometrical environments, secure communications and signal delivery to hard-to-reach areas. Several novel fiber/waveguide designs along with their fabrication technologies from the literature are presented. We then show that a simple solid core dielectric subwavelength fiber can be used to transmit the information in the order of several Gbps to a distance of a few meters
    corecore