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Abstract―Terahertz Band (100GHz-10THz) offers larger 

bandwidth and ultra-higher data rates and is visualized as a 

key technology to alleviate the capacity limitation and 

spectrum scarcity of the currents wireless networks. There are 

some competent development and design challenges in the 

realization of wireless terahertz network. Signal high path loss 

is one of the major constraints for enabling wireless 

communication networks in the terahertz band. Thus for the 

consummation of wireless propagation links in the THz band 

an equivalent signal path loss model is designed incorporating 

the major peculiarities of the wireless channel that accounts 

for terahertz wave propagation in LoS propagation. The 

equivalent path loss model for terahertz LoS propagation is 

developed and simulated in matlab
R
. The simulation results 

are compared with the lognormal path loss model results. 
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I. INTRODUCTION 

High data rates demands in wireless data sharing are 
extremely grown from the past few years in our society. 
Customers often demand wide bandwidth and high data rates 
application with the rapid advancement in Wireless networks 
and mobile technology [1]. Wireless data rates and capacity has 
observed increasing every 18 month 2-fold, leads to a distinct 
decision that 15-Gbps data rate for wireless communication 
will be required after 10 years. Moreover, wireless migrant 
data rate capabilities will be impending towards wire-line 
communication systems [2]. Until now the largest connected 
spectrum around 60 GHz with 7 GHz available spectrum 
allocated for current mobile services are challenging to achieve 
100 Gbps data rates. To achieve 100 Gbps data rates with 
realistic and spectral efficiencies of few bit/sec/Hz requires 
sufficiently larger bandwidth beyond 10 GHz. THz band is one 
of the most promising band to offer larger unregulated 
spectrum [3]. The current increasing demand of high dates and 
wireless networks can be accomplished with the allocation of 
higher dates and large bandwidth waves in terahertz band [4].  

Terahertz frequency spectrum or so-called millimeter band 
ranges between 0.1 THz and 10 THz frequencies waves within 
electromagnetic spectrum between infrared and microwaves, 

with correlating wavelengths between 3 mm and 30 µm offer 
larger bandwidth and high data rates. Terahertz various 
wireless applications at short range already used in 
spectroscopy, imaging and remote gas sensing etc, reveals that 
THz band will be attractive for future larger bandwidth and 
higher data rates wireless communication [5]. Terahertz band 
applications used in security equipments at airports and other 
public places have high selectivity because of molecular 
resonance frequencies in terahertz spectrum, can penetrate 
through many dense materials enabling suspicious materials 
detection. Due to their non-ionizing nature like microwaves, 
terahertz radiation can be used in close vicinity to a human 
body [6]. It will support next generation small cells cellular 
networks in future [7]. Terahertz will enable interconnection of 
different ultra high speed links like optical fiber wire links to 
tablets and other wireless links. Large wireless data sharing and 
HD video conferencing will be enabled through terahertz 
technologies [8]. Terahertz networks could be used to provide 
secure communication in military and defense fields. Terahertz 
equipments could be used in health monitoring systems to 
gather important information about patient’s health [9]. 

Terahertz networks technologies are swiftly developing and 
the new advancement in the antennas field and transceiver 
architectures are bringing wireless communication in THz 
spectrum closer to the reality [10]. THz frequency spectrum is 
imagined to overcome the problems related to spectrum 
scarcity and capacity limitations of the current wireless 
communication networks. Short-range and wide bandwidth 
THz communications for indoor wireless communication along 
THz standardization have been proposed within the WPAN 
(Wireless Personal Area network) THz band interest group 
IEEE 802.15 [11], but they are considered terahertz 
transmission up to several meters. . One of the major 
constraints for the realization of the terahertz wireless 
communication is the high signal path loss [12]. Atmospheric 
absorption attenuation because of molecular absorption like 
oxygen molecules and water vapors in the air and high 
frequency propagation, terahertz signal experience harsh path 
loss that restrict the wireless communication to few meters 
[13]. In an atmospheric medium the molecular absorption 
influence the terahertz signals propagation [14]. Molecular 
absorption can be defined as the process in which some part of 
signal energy is converted to kinetic energy of the charged 
medium molecules. In addition to some other such factors like 
fading, spreading loss, molecular absorptions weakened the 
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propagated signals wireless communications in the THz 
spectrum [5]. In this paper we proposed a path loss model for 
THz signal line of sight propagation incorporating the signal 
spreading in free space and scattering effect from particles in 
addition to molecular absorption in the atmospheric medium. 
Besides molecular absorption, molecular noises produced as a 
result of discharge of absorbed energy are also considered. 

II. PATH LOSS MODEL 

      Terahertz signal path loss is the main component in the 

design and interpretation of wireless propagation links. The 

signal path loss or loss in signal strength may occur due to 

several effects like free space path loss or signal spreading loss, 

absorption losses due to signal interactions with atmospheric 

molecules because of molecular resonances due to oxygen and 

water vapors in the atmosphere. Molecules present in the 

atmospheric medium are energized by electromagnetic waves 

radiation at terahertz band. molecular noise generating when 

molecules in the medium discharge absorbed energy back to 

the medium Due to shorter wavelength terahertz signal 

scattering are also occur from medium molecules having size 

greater than propagating signal present in Los propagation of 

terahertz signal. Terahertz signal path loss is directly 

proportional propagating signal frequency, distance between 

transmitter and receiver and the medium composition in free 

space wireless communication. Terahertz signal total path loss 

PLTotal(f,d) can be defined as the spreading loss function 

PLspr(f,d), absorption loss function PLabs(f,d), scattering loss 

function PLscat(f,d) and noise function PLNoise(f,d) as 

 

𝑃𝐿𝑇𝑜𝑡𝑎𝑙 (𝑓, 𝑑) = 𝑃𝐿𝑠𝑝𝑟 (𝑓, 𝑑) × 𝑃𝐿𝑎𝑏𝑠 (𝑓, 𝑑) × 𝑃𝐿𝑠𝑐𝑎𝑡      (1) 

 
Terahertz signal spreading loss due to signal expansion can 

be calculated by Friis formula as a function of signal 
frequency, propagation distance and speed of light as 

            𝑃𝐿𝑠𝑝𝑟  𝑓, 𝑑 = 20 log  
4𝜋. 𝑓. 𝑑

𝑐
                                 (2) 

 
The atmospheric absorption that a propagating terahertz 

signal suffers due to molecular absorption over distance d 
depends on transmittance of the medium ψ can be determined 
with the help of Beer-Lambert law as 

                             𝜓 𝑓 =
𝑃𝑖
𝑃

= 𝑒−𝛽𝑚𝑜𝑙𝑒  𝑓𝑠 𝑑                          (3) 

 
The atmospheric attenuation coefficient β depends upon the 

composition of mixture of medium gasses. Assuming office air 
as standard that is mainly composed of nitrogen 78%, oxygen 
21% dust particles and water vapors 1% [15], the atmospheric 
attenuation coefficient β can be determined as 

 𝛽 𝑓 =  𝛽𝑔 𝑓 = 𝛽𝑁𝑂2 𝑓 + 𝛽𝑂2 𝑓 + 𝛽𝐻2𝑂 𝑓    

𝑔

    (4) 

The molecular absorption coefficient of a medium for 
transmitting signal having frequency f depends upon 
temperature, pressure and medium composition of the 

molecules. Molecular absorption coefficient can also be 
represented as 

                                  𝛽 𝑓𝑆 = 𝑁𝜕𝑎𝑏𝑠  𝑓𝑆                                   (5) 
 

     Where 𝜕abs represents the cross sectional area of the 

absorbing species and N represents their number. Molecules 

natural abundances for terahertz signal wireless channel can 

be predicted in high resolution transmission molecular 

absorption database HITRAN [16]. Dry air integrants natural 

abundances should be investigated by using water vapors 

volume mixing ratio. The water vapors volume mixing ratio is 

calculated with saturated water vapor partial pressure Pw as   

 

 𝑃𝑤 = 6.1121 1.0007 + 3.46

× 10−6𝑝 . exp  
17.502𝑇

240.97 + 𝑇
                   (6) 

 

So water vapor volume mixing ratio in presence of relative 

humidity 𝜔 is given by 

                                     𝜖𝑤𝑎𝑡𝑒𝑟 =
𝜔

100
.
𝑃𝑤
𝑝

                                (7) 

 

So the moist air components abundance is given by  

 

                          𝜖𝑚𝑜𝑖𝑠𝑡 = 𝜖𝑑𝑟𝑦  1 − 𝜖𝑤𝑎𝑡𝑒𝑟                             (8) 

 

     The saturated water air Atmospheric attenuation coefficient 

because of these gases, dust particles and water vapors in the 

air can be found in detail in [12]. Also the absorption loss 

function PLabs(f,d) for terahertz signal molecular absorption 

loss in equation (1) can now be written as  

 

                             𝑃𝐿𝑎𝑏𝑠  𝑓, 𝑑 =
1

𝜓 𝑓 
                                  (9) 

 

                         𝑃𝐿𝑎𝑏𝑠  𝑓, 𝑑 = 𝑒𝛽𝑚𝑜𝑙𝑒𝑐 (𝑓)𝑑                           (10) 

 

The molecular noise generating due to molecular discharge 

energy [5] can be written as 

          𝑃𝐿𝑁𝑜𝑖𝑠𝑒  𝑓, 𝑑 = 𝐾𝐵 . 𝐵 𝑁𝐿 𝑓, 𝑑 + 𝑁𝐴 𝑓                 11   
 

The propagating signal path loss due to molecular and particle 

scattering in LoS propagation medium can be calculated by 

using scattering coefficient [17] as inverse Beer-Lambert law 

as 

                        𝑃𝐿𝑠𝑐𝑎𝑡  𝑓, 𝑑 = 𝛼𝑠𝑐𝑎𝑡  𝑓 𝑑                           (12) 

 

The scattering coefficient for number N of scattering species 

cross-sectional 𝜕scat can be define as 

 

                                 𝛼𝑠𝑐𝑎𝑡  𝑓 = 𝑁𝜕𝑠𝑐𝑎𝑡  𝑓                          (13) 

 

Rayleigh scattered cross sectional areas of particles can be 

determined from [18] as 
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                             𝜕𝑠𝑐𝑎𝑡  𝑓 =
128𝜋5𝛽2

3ƛ4
                             (14) 

 

The polarizability β of a molecule can be calculated [19] as 

 

                            𝛽 =
𝑛 𝑓 2 − 1

𝑛 𝑓 2 + 2
. (
𝑥𝑑
2

)3                               (15) 

 

From [20] the Rayleigh scatters cross sectional areas becomes 

 

          𝜕𝑠𝑐𝑎𝑡  𝑓 =
24𝜋3

ƛ4𝑁2
 
𝑛 𝑓 2 − 1

𝑛 𝑓 2 + 2
 

2
6 + 3𝑝

6 − 7𝑝
                   (16) 

 
Where the depolarization is p and their ratio (6+3p)/(6-7p) 

≈ G, the air molecules depolarization term G can be calculated 
from [17]. Terahertz signal scattering from a molecular particle 
is shown in Figure 1. 

 
Figure 1. THz Signal Scattering form molecules/particles 

 

The number of scattering particles can be found by log-
normal distribution approximated in [21], [22] as 

 

𝑁 𝑥𝑑 =
𝑑𝑁

𝑑𝑥𝑑
                                

=
1

𝑥𝑑 2𝜋 ln 𝜎 
𝑒
−  ln  x d  −ln ⁡(z)  

2

2 ln 𝜎      (17) 

 

The scattering coefficient for scattering particles can be 

approximated from [21] as  

 

𝛼𝑠𝑐𝑎𝑡  𝑓 =  
2𝜋5𝑥𝑑

5𝑁

3ƛ4 2𝜋 ln 𝜎 
 
𝑛(𝑓)2 − 1

𝑛(𝑓)2 + 2
 

2∞

0

× 𝑒
−  ln  x d  −ln ⁡(z)  

2

2 ln 𝜎 𝑑𝑥𝑑                           (18) 
 

Where σ is the standard deviation, z is the scatter diameter and 

xd is the scattering particle diameter. 

The proposed path loss model in equation (1) for terahertz 

wireless propagation can be summarized as 

 

 𝑃𝐿𝑇𝑜𝑡𝑎𝑙  𝑓, 𝑑 =       
4𝜋.𝑓.𝑑

𝑐
 × 𝑒𝛽𝑚𝑜𝑙𝑒𝑐  𝑓 𝑑 × 𝑒𝛼𝑠𝑐𝑎𝑡  𝑓 𝑑   (19) 

 

Where B is the channel bandwidth, KB represents Boltzmann 

constant NL(f,d) and NA(f) is the temperature of the molecular 

noise and other noise. Terahertz signal total attenuation 

coefficients for line of propagation medium can be 

approximated as 

 

𝐶𝑜𝑒𝑓𝑓𝑇𝑜𝑡𝑎𝑙 =  𝐶𝑜𝑒𝑓𝑓𝑠𝑝𝑟 + 𝐶𝑜𝑒𝑓𝑓𝑚𝑜𝑙𝑒𝑐 + 𝐶𝑜𝑒𝑓𝑓𝑠𝑐𝑎𝑡
+ 𝐶𝑜𝑒𝑓𝑓𝑛𝑜𝑖𝑠𝑒                                           (20) 

III. SIMULATION RESULTS  

The proposed path loss model for terahertz signal wireless 
propagation in LoS channel is demonstrated with the 
experimental results. The total path loss and attenuation 
coefficients are simulated for terahertz signal. Signal path loss 
due spreading of terahertz signal through the medium is 
simulated as function of THz frequencies and propagation 
distance in Figure 2. 

 
Figure 2. THz Signal Spreading Path Loss Measurement 

 

Molecular absorption losses cause additional attenuation to 
electromagnetic waves in terahertz band frequencies are 
approximated in Figure 3. THz signal path losses due to 
spreading of signals are simulated in Figure 4, shows that 
molecular absorption loss attenuates the signal strength over 
distance. 

 
Figure 3. THz Signal molecular Absorption Loss  
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Figure 4. THz Signal Path Loss Considering Absorption 

 

Terahertz signals wireless propagation suffers scattering 
through medium molecules and particles in wireless 
propagation. For calculating scattering coefficient the cross 

section of scattering particle can be calculated from s =
πxd

ƛ
, 

the size of particle. Where xd is the diameter of the particle and 
ƛ is the wavelength [23]. For Rayleigh scattering the average 
particle size is taken 2.5um [18]. The refractive index of 
medium and dust n(f) is taken 1.6 for visible light frequencies 
[24]. The number of scattering particles per cubic cm3 is 
considered one million [25]. The scattering coefficient for dry 
air at 302.5 K temperature, 100.7 Kpa pressure and 70% 
relative humidity for 2um diameter and 2.7um standard 
deviation [26] is calculated 1.3069 × 10−14cm−1. The average 
diameter of water droplet is (1-10um) [27]. The scattering 
coefficient for water vapors calculated 3.8386 × 10−7cm−1. A 
higher frequency signals causes scattering from medium 
molecules because of their shorter wavelength. The scattering 
coefficients for high frequencies signal at 100m propagation 
distance are depicted in Figure 5 below.  

 
Figure 5. Scattering Coefficient for higher frequencies Signal 

 

THz signal path loss considering free space spreading loss, 
molecular absorption attenuation and scattering losses due to 
signal scattering from particles in the medium are simulated 
over distance in Figure 6. 

 
Figure 6. THz Signal Path Loss Considering Scattering 

 

The power spectral density for molecular noise generated 
when atmospheric molecules re-emit absorb energy in 
atmospheric medium [5] as shown in Figure 7. When the 
atmospheric molecules re-emit the absorb energy, temperature 
of the channel arises causes molecular noise to THz signal 
wireless propagation in through the channel. 

Figure 7. Molecular Noise Power Spectral Density 

Finally path loss for a signal in free space wireless 
propagation at 0.3THz frequency are simulated for a distance 
of 3m including the effects of spreading loss, molecular 
absorption and scattering attenuation and molecular noise. The 
simulation results are compared with the path loss results in 
[28] shown in Figure 8. The simulation results are very close in 
value to the lognormal path loss results. 

 
Figure 8. THz Signal Path in Los Propagation 

0 1 2 3 4 5 6 7 8 9 10

x 10
12

20

40

60

80

100

120

140

160

Frequency in Hz

P
a
th

 L
o
s
s
 w

it
h
 A

b
s
o
rp

ti
o
n
 A

tt
e
n
u
a
ti
o
n

THz Signal Path Loss with Absorption

 

 

1m

2m

3m

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0.998

0.9985

0.999

0.9995

1

1.0005

Frequency in Hz

S
c
a
tt

e
in

g
 C

o
e
ff

ic
ie

n
t

High Frequency Signal Particle Scattering Loss

0 1 2 3 4 5 6 7 8 9 10

x 10
12

20

40

60

80

100

120

140

160

Frequency in Hz

p
a
th

 l
o
s
s
 i
n
 D

B

THz Signal Signal Absorption and Scattering Attenuation

 

 

1m

2m

3m

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

140

160

180

Distance (m)

T
H

z
 w

a
v
e
s
 P

a
th

 L
o
s
s
 (

d
B

)

THz Waves Path Loss Measurement

 

 

Lognormal Path Loss Model

Theoretical Path Loss



International Journal of Engineering Works                                                                    Vol. 5, Issue 10, PP. 193-197, October 2018 

www.ijew.io         

CONCLUTION 

In this paper, the main constraints to wireless 
communications in the Terahertz spectrum are studied. We 
examined the line of sight free space signal spreading including 
molecular absorption losses and signal scattering from medium 
particles. The effect of molecular noise is also considered in 
THz signal line of sight propagation. Taking into consideration 
all these peculiarities of the terahertz wireless communication 
an equivalent path loss model based is derived. We have 
validated our proposed path loss model through simulations in 
Matlab. The simulation results shows that our proposed path 
loss model is more practical and useful for interference and 
link budget calculations in the design of future wireless 
propagation link at terahertz band. 
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