95 research outputs found

    Observation of implicit complexity by non confluence

    Get PDF
    We propose to consider non confluence with respect to implicit complexity. We come back to some well known classes of first-order functional program, for which we have a characterization of their intentional properties, namely the class of cons-free programs, the class of programs with an interpretation, and the class of programs with a quasi-interpretation together with a termination proof by the product path ordering. They all correspond to PTIME. We prove that adding non confluence to the rules leads to respectively PTIME, NPTIME and PSPACE. Our thesis is that the separation of the classes is actually a witness of the intentional properties of the initial classes of programs

    Some programming languages for LOGSPACE and PTIME

    Get PDF
    We propose two characterizations of complexity classes by means of programming languages. The first concerns Logspace while the second leads to Ptime. This latter characterization shows that adding a choice command to a Ptime language (the language WHILE of Jones) may not necessarily provide NPtime computations. The result is close to Cook who used “auxiliary push-down automata”. Logspace is obtained through a decidable mechanism of tiering. It is based on an analysis of deforestation due to Wadler in. We get also a characterization of NLogspace

    Minimizing Tree Automata for Unranked Trees

    Get PDF
    International audienceAutomata for unranked trees form a foundation for XML schemas, querying and pattern languages. We study the problem of efficiently minimizing such automata. We start with the unranked tree automata (UTAs) that are standard in database theory, assuming bottom-up determinism and that horizontal recursion is represented by deterministic finite automata. We show that minimal UTAs in that class are not unique and that minimization is NP-hard. We then study more recent automata classes that do allow for polynomial time minimization. Among those, we show that bottom-up deterministic stepwise tree automata yield the most succinct representations

    Prioritized Repairing and Consistent Query Answering in Relational Databases

    Get PDF
    A consistent query answer in an inconsistent database is an answer obtained in every (minimal) repair. The repairs are obtained by resolving all conflicts in all possible ways. Often, however, the user is able to provide a preference on how conflicts should be resolved. We investigate here the framework of preferred consistent query answers, in which user preferences are used to narrow down the set of repairs to a set of preferred repairs. We axiomatize desirable properties of preferred repairs. We present three different families of preferred repairs and study their mutual relationships. Finally, we investigate the complexity of preferred repairing and computing preferred consistent query answers.Comment: Accepted to the special SUM'08 issue of AMA

    Pure Pointer Programs and Tree Isomorphism

    Full text link

    Simple Parsimonious Types and Logarithmic Space

    Get PDF
    We present a functional characterization of deterministic logspace-computable predicates based on a variant (although not a subsystem) of propositional linear logic, which we call parsimonious logic. The resulting calculus is simply-typed and contains no primitive besides those provided by the underlying logical system, which makes it one of the simplest higher-order languages capturing logspace currently known. Completeness of the calculus uses the descriptive complexity characterization of logspace (we encode first-order logic with deterministic closure), whereas soundness is established by executing terms on a token machine (using the geometry of interaction)
    • 

    corecore