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Abstract. We propose two characterizations of complexity classes by
means of programming languages. The first concerns Logspace while the
second leads to Ptime. This latter characterization shows that adding a
choice command to a Ptime language (the language WHILE of Jones [1])
may not necessarily provide NPtime computations. The result is close
to Cook in [2] who used “auxiliary push-down automata”. Logspace is
obtained through a decidable mechanism of tiering. It is based on an
analysis of deforestation due to Wadler in [3]. We get also a characteri-
zation of NLogspace.

We propose a contribution to the program of Jones [1]: “We maintain that
Computability and Complexity theory, and Programming Language and Seman-
tics [...] have much to offer each other, in both directions.” ; we give characteriza-
tions of complexity classes by means (of restrictions) of programming languages.

The present contribution belongs to a largely wider program (see [4–6]) where
we have shown the interest of that kind of characterization. Let us recall it
briefly. From a practical point of view, a static analysis allows an evaluation
of the bounds on the resources before computations are effectively performed.
It can be used by an operating system to manage processes. In particular, it
avoids the monitoring of memory usage. Maybe more interestingly, it can be
used by the compiler to deal with memory management, and so, to optimize
the complexity of programs. Such analyses are the theoretical core of projects
like Amadio’s CRISS project1 whose objective is to control resources—time and
space—for synchronous systems.

We propose a characterization of Logspace. It is obtained with respect to
a kind of tiering discipline. This fruitful approach has been initially considered
by Bellantoni and Cook in [7] and Leivant and Marion [8] who characterized
Ptime. Leivant and Marion showed that such a stratification could be used for
other complexity classes, see [9, 10]. Following Bellantoni-Cook, Neergaard [11]
has shown what restrictions of the language B leads to Logspace. The current
proposition differs from the preceding ones in the following way. The role of
tiering is not to control recursion but rather to restrict the width of the call
graph. It is essentially based on the work of Wadler [3] and Jones [1].

1 http://www.pps.jussieu.fr/∼amadio/Criss/criss.html



Among space characterizations, we mention the work of Hofmann [12, 13]
who, in particular, showed how to compile functional programs to malloc()-free
C. Applications of these techniques are to be found in the Embounded Project2

whose aim is to quantify and certify resources for real-time embedded systems.
An other approach, based on linear logic, was carried on by Baillot and Terui,
see [14]. In the vein of Leivant, Oitavem proposed an interesting characterization
of small complexity classes in [15, 16].

The second characterization we propose deals with non determinism. We
show, and the result is surprising, that adding some choice command in the lan-
guage WHILE of Jones does not change the class of computed functions. Naively,
one would have expected to characterize NPtime. Indeed, if one considers — as
does Jones — the class of functions computed in polynomial time in WHILE, one
gets Ptime. Adding the choice command, one gets NPtime. Since WHILE-cons-
free programs characterize Ptime, adding the choice command “should” have
resulted in NPtime. It is not the case, and we show that such a system char-
acterize Ptime. The result is all the more surprising that for the corresponding
space characterization, that is of Logspace, adding the choice command leads
to the corresponding non-deterministic complexity class NLogspace. We men-
tion here the work of Cook [2] whose characterization of Ptime by means of
auxiliary pushdown automata is in essence close to us. The main difference lies
in the fact that we have an implicit call stack (for recursion) where Cook has an
explicit one.

The upper bound on the complexity of functions computed in Logspace

is obtained through a mechanism of compilation. The syntactical restrictions
make the method sound. Two points. First, we do not explicitly compute time
or space bounds. We know that they exist as a consequence of Jone’s analysis of
life without cons. Second, the proposition enters the field of implicit complexity
as one has to compile the program in order to stay within Logspace. Computing
in the original framework leads to polynomial time computations.

The structure of the paper is as follows. In Section 1, we define the two pro-
gramming languages we will consider, namely the language WHILE of Jones and
a functional language. We define also some syntactical restrictions on them, in
particular, we present our tiering discipline. In Section 2, we show the Logspace

characterization. At that point, we show how tiering can be used for the evalu-
ation of programs. Section 3 deals with non-determinism, choice command and
the corresponding complexity classes. We give a polynomial time procedure for
computing non-deterministic WHILE-cons-free programs.

1 Programming Languages

We introduce two programming languages, WHILE programs, and FOFP programs.
We suppose from now on, that we are given a signature Cns, that is, some
symbols with their arity. These symbols are called the constructor symbols.

2 http://www.embounded.org/



The signature defines a term algebra T (Cns) on which computations will be
performed. We suppose that among these symbols one is nil of arity 0. The
expression nil serves as “false”. Any other value is “true”.

For each constructor symbol c, we define a set of destructor functions dc,k

which map c(t1, · · · , tn) 7→ tk. Finally, we suppose, for any constructor symbol
c, we are given a pattern matching function pc that tells whether a term has
the form c(t1, · · · , tn) or not.

1.1 The WHILE language

Let us begin with the syntax, which is due to Jones [1], except that we authorize
more than one input. This is only for convenience.

Definition 1. A WHILE program is given by the following grammar:

P : Program ::= read X1, ..., Xn; C; write Y

C : Command ::= Z := E

| C1; C2
| if E then C1 else C2
| while E do C done

E : Expression ::= Z

| D
| c(E1, E2, . . . , Ek)
| dc,k E

| pc E

X, Y, Z : Variable ::= X0 | X1 | . . .
D : Data− value ::= T (Cns)

We note Var(p) the variables appearing in a program p.

The semantics are given by Jones. We recall it informally. A store for a
program p is a function σp : Var(p)→ T (Cns). The initial store given the input
data d1, d2, . . . , dn is the store σp

0(d1, . . . , dn) = [X1 7→ d1, . . . , Xn 7→ dn, Z 7→
nil, . . . , Y 7→ nil]. Commands have the intuitive meaning. For instance, in an
expression if E then C1 else C2, one tests if E = nil, in which case one executes
C1. Otherwise, one executes C2. Assignments modify the store.

Definition 2. Given a program p, its execution induces a partial function JpK :
T (Cns)n → T (Cns) which maps d1, d2, . . . , dn to σ(Y) if the program terminates
and where σ is the last store of the computation, otherwise it is undefined.

Definition 3. A program is called cons-free, if it does not use an expression of
the form c(E1, . . . , Ek). We note WHILEcons-free the set of cons-free programs.

Theorem 1 (Jones [1]). The set of decision problems computed by cons-free
programs is exactely Logspace.



Definition 4. The recursive extension of WHILE is described as follows. To WHILE,
we add the instruction call that calls some sub-procedure. A program is given
by

globalvariable U_1, ..., U_u;

procedure P1; localvariable P11, ..., P1v;

C1;

procedure P2; localvariable P21, ..., P2w;

C2;

.......

read U1; call P1; write U1

Variables appearing in Ci belong to the local variables of the procedure or to
the global variables. The semantics are briefly as follows. Each time one calls
a new procedure, one stacks some fresh local variables. Then, one executes the
instructions until one reaches the end of the procedure (modifying the fresh local
variables and the global ones). At this point, just forget the local variables. We
note WHILErec−cons−free the set of such programs.

Theorem 2 (Jones [1]). The set of decision problems computed by WHILErec−cons−free

programs is exactly the set of Ptime decision problems.

1.2 FOFP

We define a generic first order functional programming language. The vocabulary
Σ = 〈Cns,Op,Fct〉 is composed of three disjoint domains of symbols. The set of
programs is defined by the following grammar.

Programs ∋p ::= d1, · · · , dm

Definitions ∋ d ::= f(x1, · · · , xn) = ef

Expression ∋ e ::= x | op(e1, · · · , en) | f(e1, · · · , en)
| c(e1, · · · , en)
| if e1 then e2 else e3

| let x = e1 in e2

| case x1, · · · , xn of p1 → e1 . . . pℓ → eℓ

Patterns ∋ p ::= x | c(p1, · · · , pn)

where x ∈ Var is a variable, c ∈ Cns is a constructor, op ∈ Op is an operator,
f ∈ Fct is a function symbol, and pi is a sequence of n patterns. Throughout, we
generalize this notation to expressions and we write e to express a sequence of
expressions, that is e = e1, . . . , en, for some n clearly determined by the context.

Throughout the proofs which follows, we make no distinction between oper-
ators and function symbols. We have introduced operators only for convenience
when writing the examples.

The set of variables Var is disjoint from Σ. In a definition, ef is called the
body of f. A variable of ef is either a variable in the parameter list x1, · · · , xn

of the definition of f or a variable which occurs in a pattern of a case definition.



In a case expression, patterns are supposed to be non overlapping. We will come
back to this Hypothesis in the Section on non determinism.

Given a function symbol f, we say that an expression e is f-free if there is no
occurrences of f in e. We call functional an expression of the form g(e1, · · · , en).

Lastly, it is convenient, because it avoids tedious details, to restrict our atten-
tion to programs without nested case , let , if expressions within functional ex-
pressions. This is not a severe restriction as one can easily transform programs to
avoid this nesting. For instance, one transforms f(. . . , if e1 then e2 else e3, . . .)
into if e1 then f(. . . , e2, . . .) else f(. . . , e3, . . .).

Definition 5. Rules for evaluation are given by Fig. 1. A function f : T (Cns)k →
T (Cns) is computed by a program p if there is a function f ∈ p such that
∀t ∈ T (Cns)k : f(t) ↓ f(t).

From now on, we suppose that the programs that we consider are terminat-
ing. Any method for proving their termination can be considered, for instance
Recursive Path Orderings, Dependency Pairs, and so on.

t ∈ T (Cns)

t ↓ t

e1 ↓ v1 . . . en ↓ vn f(x1, · · · , xn) = e
f

e
f[xi ← vi] ↓ v

f(e1, · · · , en) ↓ v

e1 ↓ tt e2 ↓ v

if e1 then e2 else e3 ↓ v

e1 ↓ ff e3 ↓ v

if e1 then e2 else e3 ↓ v

e1 ↓ u e2[x← u] ↓ v

let x = e1 in e2 ↓ v

ek ↓ uk ∃σ, i : piσ = u eiσ ↓ v

case t1, · · · , tn of p1 → e
1
. . . pℓ → e

ℓ
↓ v

Fig. 1. Call by value semantics of a program p

Definition 6. We say that a program p is cons-free if the definitions do not use
the rule c(e1, · · · , en) of the grammar. In other words, there are only constructors
in patterns. The set of such cons-free programs is noted FOFPcons-free.

Definition 7. A definition f(x1, · · · , xn) = ef induces a relation on function
symbols. Say that f calls g if g appears in the body of f. We note this relation→.
The reflexive-transitive closure of this relation induces a pre-order on function
symbols, noted

∗
→. The corresponding equivalence relation ≃ is defined by f ≃

g ⇔ (f
∗
→g ∧ g

∗
→f). The corresponding strict partial order is noted ≺. We have

g ≺ f⇔ (f
∗
→g ∧ ¬(f

∗
→g)).

Definition 8. We say that an expression e is tail-recursive w.r.t. a function
symbol f if



1. e = x,
2. e = g(e1, · · · , en) where for all h ∈ e, h ≺ f,
3. e = f(x1, · · · , xn),
4. e = if e1 then e2 else e3 and e1 is f-free and both e2 and e3 are tail recur-

sive wrt f,
5. e = case x of p1 → e1 . . . pℓ → eℓ and for all i ≤ ℓ the expression ek is tail

recursive.

A definition f(x1, · · · , xn) = ef is tail recursive if ef is tail recursive wrt f.
A program is tail recursive if any definition is tail recursive. The set of such tail
recursive programs is noted FOFPtr. We note FOFPtr-cons-free the set of programs
that are both tail recursive and cons-free.

The following is due to Jones [17].

Theorem 3.

1. The set of decision problems computed by FOFPcons−free programs is exactly
the set of Ptime decision problems.

2. The set of decision problems computed by FOFPtr−cons−free programs is ex-
actly the set of Logspace decision problems.

In the following, we reinforce Definition 8 to allow nesting of functions. We
propose a finer discipline on programs that stays within Logspace.

Example 1.

x1 < x2 = case x1, x2 of x1 − x2 = case x1, x2 of
x′

1,0→ ff x′
1,0→ x1

0, s(x′
2)→ tt 0, x′

2 → 0
s(x′

1), s(x
′
2)→ x′

1 < x′
2 s(x′

1), s(x
′
2)→ x′

1 − x′
2

pgcd(x1, x2) = case x2 of
0→ x1

s(x′
2)→ if x1 < x2

then pgcd(x2, x1)
else pgcd(x1 − x2, x2)

Here the first two definitions are tail-recursive. This is not the case of the
third expression. Note that it cannot be directly handled by Wadler’s approach,
see [3], as there is some composition of function symbols. Note also that there is
more than one occurrence of pgcd in the right hand side of the second rule. In
the following, we show how to compute pgcd in Logspace.

Definition 9. An expression is strongly tail-recursive if it follows Definition 8
except that clauses (2) and (3) are replaced by clauses

2’. e = g(e1, · · · , en) and for all the i ≤ n, ei is f-free. Here, g may be equal to
f ;



6’. e = let x = e1 in e2 where e1 is f-free and e2 is strongly tail-recursive.

This extends to the definition of function symbols and to programs. We note the
set of such programs FOFPs−tr.

One may observe that the above definition of the pgcd respects the strong-tail
recursiveness condition. The next Section shows that programs in FOFPs−tr−cons−free

can be computed within Logspace.

Theorem 4. The set of decision problems computed by FOFPs−tr−cons−free pro-
grams is exactly the set of Logspace decision problems.

Finally, we propose a notion that goes beyond strong tail-recursion.

Definition 10 (Linear programs). Given a function symbol f, the level of an
expression is given by the inductive rules:

– lvlf(x) = 0,
– lvlf(g(e1, · · · , en)) = 1 +

∑
k≤n lvlf(ek) where g ≃ f,

– lvlf(g(e1, · · · , en)) =
∑

k≤n lvlf(ek) where g ≺ f,
– lvlf(let x = e1 in e2) = lvlf(e1) + lvlf(e2),
– lvlf(if e1 then e2 else e3) = lvlf(e1) + max(lvlf(e2), lvlf(e3)),
– lvlf(case x of p1 → e1, . . . , pk → ek) = max(lvlf(e1), . . . , lvl(ek)).

We say that a definition f(x) = ef is linear if lvlf(e
f) = 1. A program is

linear if any definition has level 1. The set of such programs is noted FOFPlin.

Theorem 5. Decision problems decided by linear cons-free programs are exactly
Logspace decision problems.

Example 2. The following program is not strongly-tail-recursive but linear.

pred(x) = case x of half(x) = case x of
0→ 0 0→ 0

s(x′)→ x′ s(0)→ 0
incr(x, y) = y − pred(y − x) s(s(x′))→ incr(half(x), x)

log(x) = case x of
0→ 0

s(x′)→ incr(log(half(x)), x)

2 Compiling FOFP programs

The proofs of the Theorems 4, 5 involve the same argument. We compile pro-
grams in FOFPs−tr−cons−free and in FOFPlin−cons−free to WHILE-cons-free. As
a consequence, function computable in these two languages can be computed
within Logspace due to Theorem 3. The converse part, that is to show that
all Logspace decidable problems can be computed by strongly-tail-recursive
programs or linear-cons-free programs is a direct consequence of the fact that
FOFPtr−cons−free ⊆ FOFPs−tr−cons−free ⊆ FOFPlin−cons−free.

We first begin with a few observations.



Proposition 1. Given a program in FOFPcons−free, for any constructor terms
t, and any expression e, suppose that e[xi ← ti] ↓ v, then, v is a subterm of one
of the ti.

Corollary 1. For a FOFPcons−free program, the height of the evaluation tree (cf.
Fig. 1) is bounded by a polynomial in the input.

Proof. Given a term t, the number of subterms of t is linear in the size of t.
Suppose we are given a constant d. Consider the set Ct = {s1, · · · , sn | n ≤
d ∧ (∀i ≤ n : ∃j ≤ n : si E tj)}. Then, this set has polynomial size in the size
of t. Now, take d to be the maximal arity of a symbol, the polynomial bound
together the property of termination of programs and the preceding proposition
gives the result.

Proposition 2. Suppose that f1, . . . , fk are FOFP programs which are Logspace

computable. Then any function f(x1, . . . , xn) = ef with ef a composition of
the functions f1, . . . , fk is computed by a WHILE-cons free program, and so, is
Logspace. Given an expression e, we note the corresponding code Ce.

Proof. The proof is by induction on the expression ef. Suppose that we are given
for each function fi a WHILE-cons-free program read Xfi1, Xfi2, . . . , Xfik; Cfi; write Y;
that computes it. We suppose w.l.o.g that these programs do not change de val-
ues of the input variables. Suppose that ef = xk, it is computed by:

read X1, X2, ..., Xn;

Y := Xk;

write Xk;

Suppose now that ef = g(e). Then, by induction we can suppose that ei is
computed by Cei . In that case, the following WHILE-cons-free program computes
f.

read X1, ..., Xn;

Ce1;

X1g := Y;

Ce2;

X2g := Y;

.

.

.

Cek;

Xkg := Y;

Cg;

write Y;

Remark 1. It is well known that if f and g are Logspace, so is f ◦ g. Since the
output of functions are subterms of the inputs, we have a much easier proof of
the composition. Furthermore, we use the construction throughout the paper.
This is why we give an explicit construction.



2.1 Strongly-tail-recursive programs

We prove now Theorem 4. First of all, let us eliminate the let construction.

Proposition 3. Consider the program transformation that maps let x = e1 in e2

to e2[x← e1]. It preserves the semantics of the program. Furthermore, if a pro-
gram is strongly-tail recursive, so is its transform.

As a consequence, we may consider w.l.o.g only programs without the let
construction.

For each definition, we build a WHILE-cons-free program that computes it.
We proceed by induction on the ordering ≺. For the sake of the proof, to avoid
a tedious case analysis, we suppose that for all symbols g ∈ ef, either g = f or
g ≺ f. In other words, we avoid mutual definitions.

For minimal elements, observe that their definitions are tail-recursive. So,
one applies Theorem 3 to get a WHILE-cons-free programs that computes them.

Now, we suppose that we are given an expression ef that computes f. We
suppose by induction that we have a program computing any function g 6= f

involved in the definition of f. As a consequence, applying Proposition 2, one
gets for each composition of such functions some program that computes it.

We now perform an induction on the structure of the definition of f. In the
following compiling procedure, we suppose (by induction) that we are given for
any sub-expression e some program read Xe1, . . . , Xen; Ce; writeY; where the Xei

are the variables of ei .
By compositions of pattern expression pc as well as destructors dc, we build

for each pattern p a code Pp ∈ WHILEcons−free that returns tt if the inputs
verify the pattern. We suppose given the code for the unification of variables in
patterns. So, after X ′

p :=p X, the variables in the patterns are supposed to have
their value after pattern matching.

Given an expression e, Table 1 gives rules to build the code De.

Dcase x of p1→e1,...,pk→ek Dif e1 then e2 else e3 Df(e1,··· ,en) Dg(e)
Pp1

;
if Y

then X′p1 :=p1 X; De1 ;
else Pp2 ;

if Y

then X′p2 :=p2 X; De2 ;
...

X ′
pk

:=p3
X; Dek ;

Ce1 ;
if Y

then De2 ;
else De3 ;

Ce1 ;
X1 := Y;
Ce2 ;
X2 := Y;
...
Cek ;
Xk := Y;

Cg(e);
R := ff;

Table 1. Compilation rules

What do these programs do? If the expression is f-free, that is if we reached
the end of the recursion, Y is assigned the value of the computation. In that case,



the flag variable R is turned to tt. Otherwise, it computes the arguments of the
next call of f, and continues the process.

So, the function f is computed by the following program:

read X1, · · · , Xn;
R := tt;
while R do

Def;
write Y;

2.2 Linear programs

The rationale behind the compilation of linear programs is the following. In the
first part of the computation, we just compute the arguments of the intermediate
calls of f and forget the context in which they appear. At the end of the process,
one knows two crucial points.

First, one knows the exact number of nested calls of f, moreover, due to
Corollary 1, this number is polynomial in the size of the input. As a consequence,
it is representable in log-space. Second, one knows the value of the function f

on its terminating call.
In the second part, you just redo what has been said above except that at

each step you compute one less nesting of calls of f and reuse the last result of
the loop to compute the value of f in its full context.

Contrarily to what happened for strong-tail-recursion, we cannot get rid
off the let construction. Indeed, the transform does not preserve linearity. A
counter-example is the definition f(x) = case x of (0 → 0, s(x′) → let y =
f(x′) in g(y, y)) where g is an already defined binary function. So, don’t forget
we have to cope with let .

Proof. As above, we proceed by induction on the ≺ order. For minimal elements,
the definition is tail-recursive. For those, we have already seen that we have
a procedure. Suppose now that we are trying to compute function f whose
definition is f(x1, · · · , xn) = ef. As above, we suppose that there is no symbol
equivalent to f in ef (except for f of course!). We suppose that we have built for
any function g ≺ f some WHILE-cons-free code that computes it. Moreover, using
Proposition 2, we suppose that we are able to compute any expression composed
of such symbols.

Now, suppose we are given a functional term h(e) of level 1. It contains one
occurrence of f. It can be seen as C[f(e′)] where the context C can be seen as an
expression over the variables of h(e) plus an extra variable F that corresponds
to the call of f. We can suppose that for any of these expressions, we have some
code that computes them. We use a similar notation to that of the proof above.

To compute the value of the last call, we build a code analogous to what we
have done for strong-tail recursion. The rules are somewhat different.

– For the case construction, we use the construction of Table 1.



– The if case splits into two sub-cases. When lvlf(e1) = 0, we use the rule
of Table 1. The other case, is shown below.

– The let construction also splits into two parts that are considered below.

– The last case correspond to the functional expressions. When the functional
expression has level 0, we use the rule of Table 1. The other case is presented
below.

Dif e1 then e2 else e3 Dlet v=e1 in e2 Dlet v=e1 in e2 D
C[f(e′)]

when lvlf1(e1) = 1 when lvlf(e1) = 0 when lvlf(e1) = 1

De1
Ce1 ;
V := Y; De2

De1

Ce′1 ;
X1 := Y;
Ce′2 ;
X2 := Y;
...
Ce′k ;
Xk := Y;

Given an expression e, we define now (by induction) a code Ee that computes
the value of f given that F contains the value of the sub-call of f.

Ecase x of p1→e1,...,pk→ek Eif e1 then e2 else e3 Elet v=e1 in e2

when lvlf(e1) = 0 when lvlf(e1) = 0
Pp1

;
if Y

then X′p1 :=p1 X; Ee1 ;
else Pp2 ;

if Y

then X′p2 :=p2 X; Ee2 ;
...
X ′

pk
:=pk

X; Eek ;

Ce1 ;
if Y

then Ee2 ;
else Ee3 ;

Ce1 ;
V := Y;
Ee2 ;

E
C[f(e′)] Eif e1 then e2 else e3 Elet v=e1 in e2

when lvlf(e1) = 1 when lvlf(e1) = 1

CC;

Ee1 ;
if Y

then Ce2 ;
else Ce3 ;

Ee1 ;
V := Y;
Ce2 ;



We can now compute f by the following code:

read X1,0, . . . , Xn,0;
Xi := Xi,0; //a copy of the inputs
R := tt;
while R do

Def ; incr N;
done; N := pred N;
while N 6= 0 do

Xi := Xi,0;
M = N;
while M 6= 0 do

Def ; M := pred M;
done;
N := pred N;
Eef ; F := Y;

done;
Y := F;
writeY;

Some last words about this code. Our management of the counters N and M

is licit, even the incrementing, since we have a polynomial bound due to Propo-
sition 1 on the two counters. We refer to Jones [17] who extensively discusses
how to carry this out.

3 Non-determinism

This part of the paper introduces some “non-determinism” to the languages.
To WHILE, we add a new command choose. We propose non-confluence as a
functional correspondence of this instruction.

Definition 11. Following Jones, to WHILEwe add the expression choose C1 C2
whose operational semantics is to evaluate either C1 or C2. A program induces
now a relation between inputs and outputs. We say that a decision problem f
is computed by a program f if for all inputs t, the value of f(t) is true iff one
execution of f on t reaches tt. We note WHILEn the set of programs with this
extra instruction. WHILEn-ptime denotes the set of (non deterministic) programs
working in polynomial time, etc.

Theorem 6 (Jones [17]).

1. WHILEn-ptime = NPtime;
2. WHILEn−log−space = NLogspace.

Definition 12. We consider here some FOFP programs without the confluence
property, that is, patterns may overlap each other. A normal form is one possible
result of the computation. Following Grädel and Gurevich [18], the value of any



term is the maximal normal form of the term (for a given order on terms).
Notice that this includes the usual definition for decision problem by choosing
true > false. We add the superscript n to denote the fact that we include non-
deterministic programs.

Theorem 7.

1. WHILEn−cons−free = FOFPn−lin−cons−free = NLogspace;
2. WHILEn−rec−cons−free = FOFPn-cons-free = Ptime.

This latter fact is surprising as it breaks a similarity (similarity that holds
for logspace):

WHILEn−rec−cons−free

=

��

6= WHILEn−ptime =

��

NPtime

��

WHILErec−cons−free = WHILEptime = Ptime

This result is analogous to that of Cook [2] Th.2 p7. He gives a characteriza-
tion of Ptime by means of auxiliary pushdown automata working in logspace,
that is a Turing Machine working in logspace plus an extra (unbounded) stack.
It is also the case that the result holds whether or not the auxiliary pushdown
automata is deterministic.

3.1 Bound on FOFPn-cons-free

We propose a proof for FOFP-programs. The case of WHILE-programs is similar.
The key observation is that Proposition 1 remains true in the context of non-
confluent programs. As a consequence, following a call-by-value semantics, any
arguments in subcomputations are some subterms of the initial inputs. From
that, it is possible to use memoization, see [17]. The original point is that we
have to manage non-determinism.

So, the crucial point is that the arguments of functions are subterms of the
input and moreover, that the cardinality of this set is polynomial as was shown
in Proposition 1. A second point is that normal forms are also subterms of the
input. It means that, for each defined symbol, the induced relation can be stored
in polynomial space. This leads to a procedure where we remember the normal
forms of each (already computed) function on arguments and reuse it when
necessary.

Suppose we are given a program f which is n-cons-free. Given input t1, · · · , tn,
let us note I = {t E ti | i ≤ n}. We have ♯I ≤ O(|t1, · · · , tn|).

We consider a 3D table. The first dimension corresponds to F , the second
to IA (where A is the maximal arity of a symbol), that is the arguments of
functions. The third to I, the possible values of the relation. The entries of the
table are boolean, and T[g][t][v] is (intended to be) true iff g(t)

+

→v. This table
has a polynomial size w.r.t. the inputs.

Consider the following algorithm (at the beginning, the entries of table T[g][t][v]
are false):



var r : Term ;
for i := 1 to |F | ∗ O( | t1 , . . . , tn |ˆA) ∗ O( | t1 , . . . , tn | ) do
for g in F do
for t in I ˆA do
for v in I do

r1 , . . . , rn := f i nd (g , t ) ;
for l := 1 to n do
T[ g ] [ t ] [ v ] := T[ g ] [ t ] [ v ] | | compute ( r i , t , v ) ;
end

end ;
end ;
end ;
end ;

find(g,t) is charged to give the list of all rules that can be applied on t.
There are finitely many of these. This can be done in linear time.

compute(ri,t,v) is charged to see if the rule ri given by find may lead to
value v. That is, to see if the subcalls (with the corresponding inputs) in r have
been already computed, choose for all of them the already computed values and
finally turns the table cell to true if one of these choices leads to the value v. This
process is easily proved polynomial by a simple induction on the construction of
the rule ri. So, the instructions inside the loop take polynomial time.

For each loop on i, one will fulfil some of the T [g][t][v]. As a consequence, the
bound on the exterior loop is enough to get the result. So, the fixpoint is reached
within a polynomial in the number of entries in the table. This algorithm works
in polynomial time, hence we obtain the following corollary:

Corollary 2. FOFPn−cons−free ⊆ Ptime.

Concerning the counterpart of the proof. In the case of Ptime, one may note
that FOFPcons−free ⊆ FOFPn−cons−free. As a consequence, w.r.t. Theorem 3, it
is Ptime complete.

3.2 FOFPn-lin-cons-free

First, proving that WHILEnlogspace ≃ WHILEn−cons−free can be achieved following
Jones’s proof that WHILElogspace ≃ WHILEcons−free. Here, non-determinism plays
no special role.

For the case of non-deterministic linear programs, one may note that the
rules for the case analysis can be transformed to take into account the fact that
more than one pattern applies. At this point, use the choice operator to decide
which pattern to take.

As a consequence, the analysis of Section 2 can be used here. So, by the
remark at the beginning of the subsection, the global process can be performed
within NLogspace.

Acknowledgment This work has been largely inspired by “life without cons” of
Jones.
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