25 research outputs found

    A delay-dividing approach to robust stability of uncertain stochastic complex-valued Hopfield delayed neural networks

    Full text link
    In scientific disciplines and other engineering applications, most of the systems refer to uncertainties, because when modeling physical systems the uncertain parameters are unavoidable. In view of this, it is important to investigate dynamical systems with uncertain parameters. In the present study, a delay-dividing approach is devised to study the robust stability issue of uncertain neural networks. Specifically, the uncertain stochastic complex-valued Hopfield neural network (USCVHNN) with time delay is investigated. Here, the uncertainties of the system parameters are norm-bounded. Based on the Lyapunov mathematical approach and homeomorphism principle, the sufficient conditions for the global asymptotic stability of USCVHNN are derived. To perform this derivation, we divide a complex-valued neural network (CVNN) into two parts, namely real and imaginary, using the delay-dividing approach. All the criteria are expressed by exploiting the linear matrix inequalities (LMIs). Based on two examples, we obtain good theoretical results that ascertain the usefulness of the proposed delay-dividing approach for the USCVHNN model

    State Estimation for Fractional-Order Complex Dynamical Networks with Linear Fractional Parametric Uncertainty

    Get PDF
    This paper deals with state estimation problem for a class of fractional-order complex dynamical networks with parametric uncertainty. The parametric uncertainty is assumed to be of linear fractional form. Firstly, based on the properties of Kronecker product and the stability of fractional-order system, a sufficient condition is derived for robust asymptotic stability of linear fractional-order augmented system. Secondly, state estimation problem is then studied for the same fractional-order complex networks, where the purpose is to design a state estimator to estimate the network state through available output measurement, the existence conditions of designing state estimator are derived using matrix's singular value decomposition and LMI techniques. These conditions are in the form of linear matrix inequalities which can be readily solved by applying the LMI toolbox. Finally, two numerical examples are provided to demonstrate the validity of our approach

    State estimation for discrete-time neural networks with Markov-mode-dependent lower and upper bounds on the distributed delays

    Get PDF
    Copyright @ 2012 Springer VerlagThis paper is concerned with the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters and mixed time-delays. The parameters of the neural networks under consideration switch over time subject to a Markov chain. The networks involve both the discrete-time-varying delay and the mode-dependent distributed time-delay characterized by the upper and lower boundaries dependent on the Markov chain. By constructing novel Lyapunov-Krasovskii functionals, sufficient conditions are firstly established to guarantee the exponential stability in mean square for the addressed discrete-time neural networks with Markovian jumping parameters and mixed time-delays. Then, the state estimation problem is coped with for the same neural network where the goal is to design a desired state estimator such that the estimation error approaches zero exponentially in mean square. The derived conditions for both the stability and the existence of desired estimators are expressed in the form of matrix inequalities that can be solved by the semi-definite programme method. A numerical simulation example is exploited to demonstrate the usefulness of the main results obtained.This work was supported in part by the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 60774073 and 61074129, and the Natural Science Foundation of Jiangsu Province of China under Grant BK2010313

    LMI Approach to Exponential Stability and Almost Sure Exponential Stability for Stochastic Fuzzy Markovian-Jumping Cohen-Grossberg Neural Networks with Nonlinear p-Laplace Diffusion

    Get PDF
    The robust exponential stability of delayed fuzzy Markovian-jumping Cohen-Grossberg neural networks (CGNNs) with nonlinear p-Laplace diffusion is studied. Fuzzy mathematical model brings a great difficulty in setting up LMI criteria for the stability, and stochastic functional differential equations model with nonlinear diffusion makes it harder. To study the stability of fuzzy CGNNs with diffusion, we have to construct a Lyapunov-Krasovskii functional in non-matrix form. But stochastic mathematical formulae are always described in matrix forms. By way of some variational methods in W1,p(Ω), Itô formula, Dynkin formula, the semi-martingale convergence theorem, Schur Complement Theorem, and LMI technique, the LMI-based criteria on the robust exponential stability and almost sure exponential robust stability are finally obtained, the feasibility of which can efficiently be computed and confirmed by computer MatLab LMI toolbox. It is worth mentioning that even corollaries of the main results of this paper improve some recent related existing results. Moreover, some numerical examples are presented to illustrate the effectiveness and less conservatism of the proposed method due to the significant improvement in the allowable upper bounds of time delays

    Stability analysis for delayed quaternion-valued neural networks via nonlinear measure approach

    Get PDF
    In this paper, the existence and stability analysis of the quaternion-valued neural networks (QVNNs) with time delay are considered. Firstly, the QVNNs are equivalently transformed into four real-valued systems. Then, based on the Lyapunov theory, nonlinear measure approach, and inequality technique, some sufficient criteria are derived to ensure the existence and uniqueness of the equilibrium point as well as global stability of delayed QVNNs. In addition, the provided criteria are presented in the form of linear matrix inequality (LMI), which can be easily checked by LMI toolbox in MATLAB. Finally, two simulation examples are demonstrated to verify the effectiveness of obtained results. Moreover, the less conservatism of the obtained results is also showed by two comparison examples

    Global exponential stability conditions for quaternion-valued neural networks with leakage, transmission and distribution delays

    Get PDF
    This paper studies the global exponential stability problem of quaternion-valued neural networks (QVNNs) with leakage, transmission, and distribution delays. To address this issue, a direct method based on system solutions is proposed to ensure the global exponential stability of the considered network models. In addition, this method does not need to construct any Lyapunov-Krasovskii functional, which greatly reduces the amount of computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed results

    Global Synchronization of Neutral-Type Stochastic Delayed Complex Networks

    Get PDF
    This paper is concerned with the delay-dependent synchronization criterion for neutral-type stochastic delayed complex networks. Firstly, expectations of stochastic crossterms containing the Itô integral are investigated. In fact, for stochastic delay systems, if we want to obtain the delay-dependent condition with less conservatism, how to deal with expectations of stochastic cross terms properly is of vital importance, and many existing results did not deal with expectations of these stochastic cross terms correctly. Then, based on this, this paper establishes a novel delay-dependent synchronization criterion for neutral-type stochastic delayed complex networks. In the derivation process, the mathematical development avoids bounding stochastic cross terms. Thus, this method shows less conservatism. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach

    Fixed-time control of delayed neural networks with impulsive perturbations

    Get PDF
    This paper is concerned with the fixed-time stability of delayed neural networks with impulsive perturbations. By means of inequality analysis technique and Lyapunov function method, some novel fixed-time stability criteria for the addressed neural networks are derived in terms of linear matrix inequalities (LMIs). The settling time can be estimated without depending on any initial conditions but only on the designed controllers. In addition, two different controllers are designed for the impulsive delayed neural networks. Moreover, each controller involves three parts, in which each part has different role in the stabilization of the addressed neural networks. Finally, two numerical examples are provided to illustrate the effectiveness of the theoretical analysis

    Multi-weighted complex structure on fractional order coupled neural networks with linear coupling delay: a robust synchronization problem

    Get PDF
    This sequel is concerned with the analysis of robust synchronization for a multi-weighted complex structure on fractional-order coupled neural networks (MWCFCNNs) with linear coupling delays via state feedback controller. Firstly, by means of fractional order comparison principle, suitable Lyapunov method, Kronecker product technique, some famous inequality techniques about fractional order calculus and the basis of interval parameter method, two improved robust asymptotical synchronization analysis, both algebraic method and LMI method, respectively are established via state feedback controller. Secondly, when the parameter uncertainties are ignored, several synchronization criterion are also given to ensure the global asymptotical synchronization of considered MWCFCNNs. Moreover, two type of special cases for global asymptotical synchronization MWCFCNNs with and without linear coupling delays, respectively are investigated. Ultimately, the accuracy and feasibility of obtained synchronization criteria are supported by the given two numerical computer simulations.This article has been written with the joint financial support of RUSA-Phase 2.0 grant sanctioned vide letter No.F 24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn. Govt. of India, UGC-SAP (DRS-I) vide letter No.F.510/8/DRSI/2016(SAP-I) and DST (FIST - level I) 657876570 vide letter No.SR/FIST/MS-I/2018/17

    ψ-type stability of reaction–diffusion neural networks with time-varying discrete delays and bounded distributed delays

    Get PDF
    In this paper, the ψ-type stability and robust ψ-type stability for reaction–diffusion neural networks (RDNNs) with Dirichlet boundary conditions, time-varying discrete delays and bounded distributed delays are investigated, respectively. Firstly, we analyze the ψ-type stability and robust ψ-type stability of RDNNs with time-varying discrete delays by means of ψ-type functions combined with some inequality techniques, and put forward several ψ-type stability criteria for the considered networks. Additionally, the models of RDNNs with bounded distributed delays are established and some sufficient conditions to guarantee the ψ-type stability and robust ψ-type stability are given. Lastly, two examples are provided to confirm the effectiveness of the derived results
    corecore