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This paper is concerned with the delay-dependent synchronization criterion for neutral-type
stochastic delayed complex networks. Firstly, expectations of stochastic crossterms containing the
Itô integral are investigated. In fact, for stochastic delay systems, if we want to obtain the delay-
dependent condition with less conservatism, how to deal with expectations of stochastic cross
terms properly is of vital importance, and many existing results did not deal with expectations
of these stochastic cross terms correctly. Then, based on this, this paper establishes a novel delay-
dependent synchronization criterion for neutral-type stochastic delayed complex networks. In the
derivation process, the mathematical development avoids bounding stochastic cross terms. Thus,
this method shows less conservatism. Finally, a numerical example is provided to demonstrate the
effectiveness of the proposed approach.

1. Introduction

In the real world, many systems can be described as complex networks such as Internet
networks, biological networks, epidemic spreading networks, collaborative networks, social
networks, neural networks, and so forth [1–4]. Thus, during the past years, the study of
complex networks has become a very active area, see, for example, [5, 6] and the references
therein. In particular, for complex networks, the major collective behavior is the synchro-
nization phenomena, because many problems in practice have close relationships with
synchronization [7]. Recently, growing research results, that focused on synchronization
problems for complex networks, have been reported in [8–12] and the references therein.
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Up to now, it has been well realized that in spreading information through complex
networks, there always exist time delays caused by the finite speed of information transmis-
sion and the limit of bandwidth, which often decrease the quality of the system and even lead
to oscillation, divergence, and instability. Accordingly, synchronization problems for many
delayed complex networks have been studied in [13–17]. It is worth mentioning that in the
above results for delayed complex networks, each dynamical node is modeled as a retarded
functional differential equation coupling with other nodes. However, in some cases, in order
to reflect dynamical behaviors for some realistic networks models, the information about
derivatives of the past state variables of the networks should be utilized. Therefore, the
dynamic of the complex networks should be described by a group of neutral-type functional
differential equations. This kind of delayed complex network is termed as the neutral-type
delayed complex network. As a matter of fact, neutral-type delays exist in many fields such
as the population ecology, distributed networks containing lossless transmission lines, and a
typical neutral-type delayed complex network example which is the stock transaction system
[18]. Consequently, synchronization problems of neutral-type delayed complex networks
were studied in [18–20]. For instance, a delay-dependent synchronization criterion for
complex networks with neutral-type coupling delay was presented in [18], and the robust
synchronization criterion for a class of uncertain neutral-type delayed complex networks was
given in [19]. And [20] discussed the synchronization problem for the neutral-type complex
networks with coupling time-varying delays.

On the other hand, in the real world, complex networks are often subject to stochastic
disturbances. For example, the signal transfer in a real complex network could be perturbed
randomly from the release of probabilistic causes such as neurotransmitters and packet
dropouts [21]. Hence, such a stochastic disturbance phenomenon that typically occurs in
complex networks has attracted considerable attention during the past years, and synchro-
nization problems for delayed complex networks with stochastic disturbances have been
investigated in [21–24]. For instance, the synchronization problems of discrete-time delayed
complex networks with stochastic disturbances were investigated in [21, 22]. Reference [24]
designed an adaptive feedback controller to solve the synchronization problem for an array of
linearly stochastically coupled networks with time delays. Although the above results have
discussed delayed complex networks under the influence of stochastic noises, it should be
pointed out that as to the neutral-type delayed complex networks, there is still no paper to
investigate the influence of stochastic disturbances on this kind of complex networks.

Moreover, for delay systems including delayed complex networks, a very active
research topic is to obtain the delay-dependent conditions. The reason is that the delay-
dependent condition makes use of the information on the size of time delays, and the delay-
dependent condition is generally less conservative than the delay-independent one [25–27].
However, when we used the existing effective methods, such as the model transformation
method [25, 26] and the free-weighting matrix method [27], to give the delay-dependent
condition for stochastic delay systems including stochastic delayed complex (or neural)
networks, the following stochastic cross terms containing the Itô integral will appear:

x(t)TJ

∫ t

t−h
μ(s, xs)dw(s), x(t − h)TK

∫ t

t−h
μ(s, xs)dw(s),

(∫ t

t−h
κ(s, xs)ds

)T

L

∫ t

t−h
μ(s, xs)dw(s).

(1.1)
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It is still very difficult to calculate expectations of these stochastic cross terms up to now.
The results in [28–31] resorted to bounding techniques, which obviously can bring the
conservatism. Some papers such as [32–34] considered that expectations of these stochastic
cross terms are all equal to zero. However, these results are not given by strict mathematical
proofs, and we can find examples to illustrate that expectations of some stochastic cross
terms are not equal to zero in Remark 3.3. Therefore, in order to obtain the delay-dependent
synchronization criterion with less conservatism for neutral-type stochastic delayed complex
networks, there is a strong need to investigate the expectations of stochastic cross terms
containing the Itô integral firstly.

Motivated by the discussion mentioned above, this paper investigates the delay-
dependent synchronization problem for neutral-type stochastic delayed complex networks.
The main contributions of this paper are summarized as follows. (1) Expectations of
stochastic cross terms containing the Itô integral are investigated by stochastic analysis
techniques in Lemma 3.1 and Corollary 3.2. We prove that the expectation of x(t −
h)TK

∫ t
t−h μ(s, xs)dw(s) is equal to zero and expectations of other stochastic cross terms are

not. (2) Based on this conclusion, this paper establishes a delay-dependent synchronization
criterion that guarantees the globally asymptotic synchronization of neural-type stochastic
delayed complex networks. In the derivation process, the mathematical development avoids
bounding stochastic cross terms. Thus, thismethod leads to a criterionwith less conservatism.
Finally, a numerical example is provided to demonstrate the effectiveness of the proposed
approach.

Notation. Throughout the paper, unless otherwise specified, we will employ the following
notation. Let (Ω,F, {Ft}t≥0,P) be a complete probability space with a natural filtration {Ft}t≥0,
and let E(·) be the expectation operator with respect to the probability measure. If A is a
vector or matrix, its transpose is denoted by AT . If P is a square matrix, then P > 0 (P < 0)
means that it is a symmetric positive (negative) definite matrix of appropriate dimensions
while P ≥ 0 (P ≤ 0) is a symmetric positive (negative) semidefinite matrix. I stands for
the identity matrix of appropriate dimensions. Denote by λmin(·) the minimum eigenvalue
of a given matrix. Let | · | denote the Euclidean norm of a vector and its induced norm of a
matrix. Unless explicitly specified, matrices are assumed to have real entries and compatible
dimensions. L2(Ω) denotes the space of all random variables X with E|X|2 < ∞, it is a
Banach space with norm ‖X‖2 = (E|X|2)1/2. Let h > 0 and C([−h, 0];Rn) denote the family
of all continuous Rn-valued functions ϕ on [−h, 0] with the norm ‖ϕ‖ = sup{|ϕ(θ)| : −h ≤
θ ≤ 0}. Let L2

F0
([−h, 0];Rn) be the family of all F0-measurable C([−h, 0];Rn)-valued random

variables φ such that E(‖φ‖2) < ∞, and let L2([a, b];Rn) be the family of all Rn-valued Ft-
adapted processes {f(t)}a≤t≤b such that

∫b
a |f(t)|2dt < ∞ a.s. Let M2([a, b];Rn) be the family

of processes {f(t)}a≤t≤b in L2([a, b];Rn) such that E(∫ba |f(t)|2dt) < ∞, and M2([a, b]) is the
1-dimensional case of M2([a, b];Rn).

2. Problem Formulation and Preliminaries

In this paper, we consider the following neutral-type stochastic delayed complex networks
consisting of N identical nodes:
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d[xi(t) −Dxi(t − h)]

=

⎡
⎣Axi(t) + Bf(xi(t)) + Cf(xi(t − h)) +

N∑
j=1

gijΓxj(t) +
N∑
j=1

hijΥxj(t − h)

⎤
⎦dt

+ σi(t, xi(t), xi(t − h))dw(t), i = 1, 2, . . . ,N,

(2.1)

where xi(t) = [xi1(t), xi2(t), . . . , xin(t)]
T ∈ Rn represents the state vector of the ith node; the

scalar h > 0 is the time delay; A is a known connection matrix; B and C denote, respectively,
the connection weight matrix and the delayed connection weight matrix; Γ,Υ ∈ Rn×n

are matrices describing the inner coupling between the subsystems at time t and t − h,
respectively; G = (gij)N×N and H = (hij)N×N are called the outer-coupling configuration
matrices representing the coupling strength and the topological structure of the complex
networks; D is a known real matrix, and the spectrum radius of the matrix D, ρ(D), satisfies
ρ(D) < 1. σi(·, ·, ·) : R × Rn × Rn → Rn which is the noise intensity function vector; w(t) is
a scalar standard Brownian motion defined on a complete probability space (Ω,F, {Ft}t≥0,P)
with a natural filtration {Ft}t≥0. f(xi(t)) = (f1(xi1(t)), . . . , fn(xin(t)))

T , is an unknown but
sector-bounded nonlinear function.

The initial conditions associated with system (2.1) are given by

xi(s) = ϕi(s), −h ≤ s ≤ 0, i = 1, 2, . . . ,N, (2.2)

where ϕi(·) ∈ L2
F0
([−h, 0];Rn).

Let

x(t) =
(
x1(t)T , . . . , xN(t)T

)T
,

F(x(t)) =
(
f(x1(t))T , . . . , f(xN(t))T

)T
,

F(x(t − h)) =
(
f(x1(t − h))T , . . . , f(xN(t − h))T

)T
,

σ(t) =
(
σ1(t, x1(t), x1(t − h))T , . . . , σN(t, xN(t), xN(t − h))T

)T
,

D = diag

⎛
⎜⎝

N︷ ︸︸ ︷
D,D, . . . , D

⎞
⎟⎠.

(2.3)

With the Kronecker product “⊗” for matrices, system (2.1) can be rearranged as

d
[
x(t) −Dx(t − h)

]
= [(IN ⊗A +G ⊗ Γ)x(t) + (H ⊗ Υ)x(t − h)

+(IN ⊗ B)F(x(t)) + (IN ⊗ C)F(x(t − h))]dt + σ(t)dw(t).
(2.4)

Before stating our main results, we need the following definitions, assumptions, and
propositions.
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Definition 2.1. The neutral-type stochastic delayed complex network (2.1) is globally asymp-
totically synchronized in themean square if, for all ϕi(·), ϕj(·) ∈ L2

F0
([−h, 0];Rn), the following

holds:

lim
t→∞

E
{∣∣xi

(
t, ϕi

) − xj

(
t, ϕj

)∣∣2} = 0, 1 ≤ i < j ≤ N. (2.5)

Definition 2.2 (see [35]). If a stochastic process {ν(t)}a≤t≤b belongs to M2([a, b]), then its Itô
integral (from a to b) is defined by

∫b

a

ν(t)dw(t) = lim
n→∞

∫b

a

νn(t)dw(t)
(
lim in L2(Ω)

)
, (2.6)

where {νn(t)}a≤t≤b (n = 1, 2, . . .) are the step stochastic processes and belong to M2([a, b])
such that

lim
n→∞

E
(∫b

a

|ν(t) − νn(t)|2dt
)

= 0. (2.7)

Definition 2.3 (see [36]). Let {Ft}t∈T be an increasing family of σ-algebras of subset of Ω. A
stochastic process {Xt}t∈T is said to be adapted to {Ft}t∈T if for each t, the random variable Xt

is Ft-measurable.

Assumption 2.4. The outer-coupling configuration matrices of the complex networks (2.1)
satisfy

gij = gji ≥ 0, hij = hji ≥ 0,
(
i /= j

)
,

gii = −
N∑

j=1,j /= i

gij , hii = −
N∑

j=1,j /= i

hij , i, j = 1, 2, . . . ,N.
(2.8)

Assumption 2.5. The noise intensity function vector σi : R × Rn × Rn → Rn satisfies the Lip-
schitz condition, that is, there exist constant matrices W1 and W2 of appropriate dimensions
such that

∣∣σi

(
t, x1, y1

) − σj

(
t, x2, y2

)∣∣2 ≤ |W1(x1 − x2)|2 +
∣∣W2

(
y1 − y2

)∣∣2, (2.9)

for all i, j = 1, 2, . . . ,N and x1, y1, x2, y2 ∈ Rn.

Assumption 2.6. For all x, y ∈ Rn, the nonlinear function f(·) is assumed to satisfy the
following condition:

(
f(x) − f

(
y
) −U

(
x − y

))T(
f(x) − f

(
y
) − V

(
x − y

)) ≤ 0, (2.10)

where U and V are real constant matrices with U-V being symmetric and positive definite.
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Proposition 2.7 (see [14]). The Kronecker product has the following properties:

(αA) ⊗ B = A ⊗ (αB),

(A + B) ⊗ C = A ⊗ C + B ⊗ C,

(A ⊗ B)(C ⊗D) = (AC) ⊗ (BD),

(A ⊗ B)T = AT ⊗ BT .

(2.11)

Proposition 2.8 (see [19]). Let U = (αij)n×n, P ∈ Rm×m, x = (xT
1 , x

T
2 , . . . , x

T
n)

T , y = (yT
1 , y

T
2 , . . .,

yT
n )

T , where xi = (xi1, xi2, . . . , xim)
T ∈ Rm, yi = (yi1, yi2, . . . , yim)

T ∈ Rm (i = 1, 2, . . . , n). If
U = UT and each row sum of U is equal to zero, then

xT (U ⊗ P)y = −
∑

1≤i<j≤n
αij

(
xi − xj

)T
P
(
yi − yj

)
. (2.12)

Proposition 2.9 (see [35]). Let {ϑ(t)}a≤t≤b be a stochastic process and belong toM2([a, b]), then

E
(∫b

a

ϑ(t)dw(t)

)
= 0. (2.13)

3. Main Results

Then, we give the following lemma and corollary which will play a key role in the proof of
our main results.

Lemma 3.1. If a stochastic process {ν(t)}a≤t≤b ∈ M2([a, b]) and� is a bounded and Fa-measurable
random variable, then

E
(
�

∫b

a

ν(t)dw(t)

)
= 0. (3.1)

Proof. Firstly, in order to prove the above results, wewill prove that if {ν(t)}a≤t≤b ∈ M2([a, b])
and � is a bounded and Fa-measurable random variable, then

�

∫b

a

ν(t)dw(t) =
∫b

a

�ν(t)dw(t). (3.2)

Most important of all, since� is a bounded and Fa-measurable random variable, it is easy to
verify {�ν(t)}a≤t≤b ∈ M2([a, b]). Then, we will prove (3.2) by the following two steps.

Step 1. If {ν(t)}a≤t≤b is a step stochastic process, then we let, without loss of generality,

ν(t) =
n∑
i=1

ςi−11[ti−1,ti)(t), (3.3)
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where t0 = a, tn = b, ςi−1 is Fti−1 -measurable and E(ς2i−1) < ∞. In this case,

∫b

a

�ν(t)dw(t) =
n∑
i=1

�ςi−1(w(ti) −w(ti−1)) = �
n∑
i=1

ςi−1(w(ti) −w(ti−1)) = �

∫b

a

ν(t)dw(t).

(3.4)

Step 2. If {ν(t)}a≤t≤b ∈ M2([a, b]) is not a step stochastic process, then by Definition 2.2, we
can find a sequence of step stochastic processes in M2([a, b]): {ν1(t)}a≤t≤b, {ν2(t)}a≤t≤b, . . .,
{νn(t)}a≤t≤b, . . . such that

∫b

a

ν(t)dw(t) = lim
n→∞

∫b

a

νn(t)dw(t)
(
lim in L2(Ω)

)
, (3.5)

where {ν(t)}a≤t≤b and {νn(t)}a≤t≤b satisfy

lim
n→∞

E
(∫b

a

|ν(t) − νn(t)|2dt
)

= 0. (3.6)

Because � is bounded, by Definition 2.2 and (3.5)-(3.6), it is easy to prove that

∫b

a

�ν(t)dw(t) = lim
n→∞

∫b

a

�νn(t)dw(t)
(
lim in L2(Ω)

)
,

�

∫b

a

ν(t)dw(t) = lim
n→∞

�

∫b

a

νn(t)dw(t)
(
lim in L2(Ω)

)
.

(3.7)

From Step 1, it follows that for each step stochastic process {νn(t)}a≤t≤b, we have

∫b

a

�νn(t)dw(t) = �

∫b

a

νn(t)dw(t). (3.8)

Therefore, it is easy to obtain

lim
n→∞

∫b

a

�νn(t)dw(t) = lim
n→∞

�

∫b

a

νn(t)dw(t)
(
lim in L2(Ω)

)
. (3.9)

Then, we can get by (3.7) and (3.9) that

∫b

a

�ν(t)dw(t) = �

∫b

a

ν(t)dw(t). (3.10)
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Due to {�ν(t)}a≤t≤b ∈ M2([a, b]), then by Proposition 2.9, we can know that

E
(
�

∫b

a

ν(t)dw(t)

)
= E

(∫b

a

�ν(t)dw(t)

)
= 0. (3.11)

This completes the proof.

Corollary 3.2. Let one consider the following neutral stochastic functional differential equation:

d[x(t) − Dx(t − h)] = κ(t, xt)dt + μ(t, xt)dw(t), (3.12)

on t ≥ 0 with the initial data x0 = ξ ∈ L2
F0
([−h, 0];Rn). κ(·, ·) and μ(·, ·) satisfy the local Lipschitz

condition and the linear growth condition. If x(t) is the solution of (3.12) and K is any compatible
dimensional matrix, then

E
(
x(t − h)TK

[∫ t

t−h
μ(s, xs)dw(s)

])
= 0, t ≥ h. (3.13)

Especially when D = 0 in (3.12), that is,

dx(t) = κ(t, xt)dt + μ(t, xt)dw(t). (3.14)

Equation (3.14) is a common stochastic functional equation. For this case, (3.13) is also tenable.

Proof. Since κ(·, ·) and μ(·, ·) satisfy the local Lipschitz condition and the linear growth con-
dition, we can know that, for all T > 0, (3.12) has a unique continuous solution on [−h, T]
denoted by {x(t)}−h≤t≤T that is adapted to {Ft}−h≤t≤T and {x(t)}−h≤t≤T ∈ M2([−h, T]) [37].
Therefore, it can be derived that for t ≥ h, x(t − h) is a bounded random variable and x(t − h)
is Ft−h-measurable. Then, by Lemma 3.1, it is easy to obtain (3.13). If D = 0 in (3.12) that is
a common stochastic functional equation, then we can easily prove that (3.13) is also tenable
for this case.

Remark 3.3. Lemma 3.1 has proved

E
(
x(t − h)TK

[∫ t

t−h
μ(s, xs)dw(s)

])
= 0, t ≥ h. (3.15)
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However, for any compatible dimensional matrix J or L, the following results are not correct:

E
(
x(t)TJ

[∫ t

t−h
μ(s, xs)dw(s)

])
= 0,

t ≥ h.

E
⎛
⎝
(∫ t

t−h
κ(s, xs)ds

)T

L

[∫ t

t−h
μ(s, xs)dw(s)

]⎞
⎠ = 0,

(3.16)

We will give two examples to illustrate it.

Example 3.4. Consider the following one-dimensional Langevin equation in [36] that can be
regarded as a special class of neutral stochastic delay systems as follows:

d[x(t) − 0x(t − h)] = κ(t, xt)dt + μ(t, xt)dw(t), x(0) = ξ, (3.17)

where κ(t, xt) = −βx(t), μ(t, xt) = α and α > 0, β > 0. This equation has a solution

x(t) = e−β(t−u)x(u) + α

∫ t

u

e−β(t−s)dw(s), u ≤ t. (3.18)

Then by (3.18), we can know that

E
(
x(t)J

∫ t

t−h
μ(s, xs)dw(s)

)
= E

((
e−βhx(t − h) + α

∫ t

t−h
e−β(t−s)dw(s)

)

×J

[∫ t

t−h
α dw(s)

])

= e−βhE
(
x(t − h)J

[∫ t

t−h
α dw(s)

])

+ E
(
α

∫ t

t−h
e−β(t−s)dw(s)J

∫ t

t−h
α dw(s)

)

= 0 + α2
Je−βt

∫ t

t−h
eβsds

=
α2J

β

(
1 − e−βh

)
/= 0, ∀J/= 0,

E
(∫ t

t−h
κ(s, xs)dsL

[∫ t

t−h
μ(s, xs)dw(s)

])
= E

((
x(t) − x(t − h) −

∫ t

t−h
μ(s, xs)dw(s)

)

×L

[∫ t

t−h
μ(s, xs)dw(s)

])

= E
(
x(t)L

∫ t

t−h
μ(s, xs)dw(s)

)
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− E
(
x(t − h)L

∫ t

t−h
μ(s, xs)dw(s)

)

− E
(∫ t

t−h
μ(s, xs)dw(s)L

∫ t

t−h
μ(s, xs)dw(s)

)

=
α2L

β

(
1 − e−βh

)
− 0 − L

∫ t

t−h
α2ds

=
α2L

β

(
1 − e−βh − βh

)
/= 0, ∀L/= 0.

(3.19)

Example 3.5. Consider the following one-dimensional stochastic equation:

d[x(t) − 0x(t − h)] = dw(t), (3.20)

which has a one solution x(t) = w(t). However, we can easily verify that

E
(
x(t)TJ

∫ t

t−h
μ(s, xs)dw(s)

)
= E

(
w(t)J

∫ t

t−h
dw(s)

)
= Jh/= 0, ∀J/= 0. (3.21)

We should point out that in recent years, some papers such as [32–34] considered that the
expectations of these stochastic terms are all equal to zero. However, this is not the case.
From the above examples and Corollary 3.2, we can see that x(t − h)TK

∫ t
t−h μ(s, xs)dw(s) is

the only one whose expectation is equal to zero.
Then, we are in the position to present ourmain result for the synchronization criterion

of the neutral-type delayed complex networks with stochastic disturbances.

Theorem 3.6. Under the Assumptions 2.4–2.6, the dynamical system (2.1) is globally asymptotically
synchronized in the mean square if there exist matrices P > 0, Q1 > 0, Q2 > 0, R > 0, Z > 0, S and
scalars ε > 0, λ > 0 such that the following LMIs hold for all 1 ≤ i < j ≤ N:

P < λI, (3.22)

Ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ξ11 Ξ12 0 Ξ14 PC Ξ16 0
∗ Ξ22 Ξ23 −DTPB −DTPC Ξ26 Ξ27

∗ ∗ −Q2 0 0 0 0
∗ ∗ ∗ R − 2εI 0 BTST 0
∗ ∗ ∗ ∗ −R CTST 0
∗ ∗ ∗ ∗ ∗ hZ − ST − S 0
∗ ∗ ∗ ∗ ∗ ∗ −hZ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (3.23)
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where

Ξ11 = PA +ATP −NgijPΓ −NgijΓTP + λWT
1 W1 +Q1 +Q2 − εUTV − εV TU,

Ξ12 = −ATPD +NgijΓTPD, Ξ14 = PB + εUT + εV T , Ξ16 = ATST −NgijΓTST ,

Ξ22 = λWT
2 W2 −Q1 −NhijPΥ −NhijΥTP,

Ξ23 = NhijΥTPD, Ξ26 = −NhijΥTST , Ξ27 = −hNhijΥTP.

(3.24)

Proof. Firstly, set

y(t) = (IN ⊗A +G ⊗ Γ)x(t) + (H ⊗ Υ)x(t − h) + (IN ⊗ B)F(x(t)) + (IN ⊗ C)F(x(t − h)),
(3.25)

then, (2.1) can be rewritten as

d
[
x(t) −Dx(t − h)

]
= y(t)dt + σ(t)dw(t). (3.26)

From (3.26), we can have

[
x(t) −Dx(t − h)

]
−
[
x(t − h) −Dx(t − 2h)

]
=
∫ t

t−h
y(s)ds +

∫ t

t−h
σ(s)dw(s). (3.27)

Consider the following Lyapunov functional for the system (3.26):

V (xt, t) =
[
x(t) −Dx(t − h)

]T
(U ⊗ P)

[
x(t) −Dx(t − h)

]
+
∫ t

t−h
x(s)T (U ⊗Q1)x(s)ds

+
∫ t

t−2h
x(s)T (U ⊗Q2)x(s)ds +

∫0

−h

∫ t

t+θ
y(s)T (U ⊗ Z)y(s)dsdθ

+
∫ t

t−h
F(x(s))T (U ⊗ R)F(x(s))ds, t ≥ h,

(3.28)

where

U =

⎛
⎜⎜⎝

N − 1 −1 · · · −1
−1 N − 1 · · · −1
· · · · · · · · · · · ·
−1 −1 · · · N − 1

⎞
⎟⎟⎠. (3.29)

Then, by the Itô’s formula, the stochastic differential dV (xt, t) can be obtained

dV (xt, t) = LV (xt, t)dt + 2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)σ(t)dw(t), (3.30)
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where

LV (xt, t) = 2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)y(t) + σ(t)T (U ⊗ P)σ(t) + x(t)T (U ⊗Q1)x(t)

− x(t − h)T (U ⊗Q1)x(t − h) + x(t)T (U ⊗Q2)x(t) − x(t − 2h)T (U ⊗Q2)x(t − 2h)

+ F(x(t))T (U ⊗ R)F(x(t)) − F(x(t − h))T (U ⊗ R)F(x(t − h)) + hy(t)T (U ⊗ Z)y(t)

−
∫ t

t−h

[
y(s)T (U ⊗ Z)y(s)

]
ds.

(3.31)

By (3.27), we have

2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)y(t)

= 2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)

× [(IN ⊗A +G ⊗ Γ)x(t) + (IN ⊗ B)F(x(t)) + (IN ⊗ C)F(x(t − h))]

+ 2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)(H ⊗ Υ)x(t − h)

= 2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)

× [(IN ⊗A +G ⊗ Γ)x(t) + (IN ⊗ B)F(x(t)) + (IN ⊗ C)F(x(t − h))]

+ 2

[
x(t − h) −Dx(t − 2h) +

∫ t

t−h
y(s)ds +

∫ t

t−h
σ(s)dw(s)

]T

(U ⊗ P)(H ⊗ Υ)x(t − h).

(3.32)

From Corollary 3.2, it follows that

E
(
2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)y(t)

)

= E
⎛
⎝2

[
x(t) −Dx(t − h)

]T
(U ⊗ P)

× [(IN ⊗A +G ⊗ Γ)x(t) + (IN ⊗ B)F(x(t)) + (IN ⊗ C)F(x(t − h))]

+2

[
x(t − h) −Dx(t − 2h) +

∫ t

t−h
y(s)ds

]T
(U ⊗ P)(H ⊗ Υ)x(t − h)

⎞
⎠.

(3.33)
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By (3.25), it is easy to know that for any matrix S, we have

2y(t)T (U ⊗ S)
[
(IN ⊗A +G ⊗ Γ)x(t) + (H ⊗ Υ)x(t − h) + (IN ⊗ B)F(x(t))

+(IN ⊗ C)F(x(t − h)) − y(t)
]
= 0.

(3.34)

From (3.31)–(3.34) and by the Propositions 2.7 and 2.8, it is easy to get

E(LV (xt, t)) = E
(

1
h

∫ t

t−h

[
2
(
x(t) −Dx(t − h)

)T
(U ⊗ P)

× [(IN ⊗A +G ⊗ Γ)x(t) + (IN ⊗ B)F(x(t))

+(IN ⊗ C)F(x(t − h))] + 2
(
x(t − h) −Dx(t − 2h) + hy(s)

)T

× (U ⊗ P)(H ⊗ Υ)x(t − h)

+ σ(t)T (U ⊗ P)σ(t) + x(t)T (U ⊗Q1)x(t) − x(t − h)T

× (U ⊗Q1)x(t − h) + x(t)T (U ⊗Q2)x(t)

− x(t − 2h)T (U ⊗Q2)x(t − 2h) + F(x(t))T (U ⊗ R)F(x(t))

− F(x(t − h))T (U ⊗ R)F(x(t − h))

+ hy(t)T (U ⊗ Z)y(t) − hy(s)T (U ⊗ Z)y(s) + 2y(t)T (U ⊗ S)

× ((IN ⊗A +G ⊗ Γ)x(t) + (H ⊗ Υ)x(t − h) + (IN ⊗ B)F(x(t))

+(IN ⊗ C)F(x(t − h)) − y(t)
)]
ds

)

= E
⎛
⎝ 1

h

∫ t

t−h

⎡
⎣ ∑

1≤i<j≤N

(
2
(
xi(t) − xj(t) −D

(
xi(t − h) − xj(t − h)

))T

× (PA −NgijPΓ
)(
xi(t) − xj(t)

)

+ 2
(
xi(t) − xj(t) −D

(
xi(t − h) − xj(t − h)

))T
× PB

(
f(xi(t)) − f

(
xj(t)

))

+ 2
(
xi(t) − xj(t) −D

(
xi(t − h) − xj(t − h)

))T
× PC

(
f(xi(t − h)) − f

(
xj(t − h)

))

− 2
(
xi(t − h) − xj(t − h) −D

(
xi(t − 2h) − xj(t − 2h)

))T
× (NhijPΥ

)(
xi(t − h) − xj(t − h)

)



14 Abstract and Applied Analysis

− 2h
(
yi(s) − yj(s)

)T
NhijPΥ

(
xi(t − h) − xj(t − h)

))

+
(
σi(t, xi(t), xi(t − h)) − σj

(
t, xj(t), xj(t − h)

))T
× P

(
σi(t, xi(t), xi(t − h)) − σj

(
t, xj(t), xj(t − h)

))

+
(
xi(t) − xj(t)

)T
Q1

(
xi(t) − xj(t)

) − (xi(t − h) − xj(t − h)
)T

×Q1
(
xi(t − h) − xj(t − h)

)

+
(
xi(t) − xj(t)

)T
Q2

(
xi(t) − xj(t)

)

− (xi(t − 2h) − xj(t − 2h)
)T
Q2

(
xi(t − 2h) − xj(t − 2h)

)

+
(
f(xi(t)) − f

(
xj(t)

))T
R
(
f(xi(t)) − f

(
xj(t)

))

− (f(xi(t − h)) − f
(
xj(t − h)

))T
× R

(
f(xi(t − h)) − f

(
xj(t − h)

))

+ h
(
yi(t) − yj(t)

)T
Z
(
yi(t) − yj(t)

)

− h
(
yi(s) − yj(s)

)T
Z
(
yi(s) − yj(s)

)

+ 2
(
yi(t) − yj(t)

)T(
SA −NgijSΓ

)(
xi(t) − xj(t)

)

− 2
(
yi(t) − yj(t)

)T(
NhijSΥ

)(
xi(t − h) − xj(t − h)

)

+ 2
(
yi(t) − yj(t)

)T
SB

(
f(xi(t)) − f

(
xj(t)

))

+ 2
(
yi(t) − yj(t)

)T
SC

(
f(xi(t − h)) − f

(
xj(t − h)

))

−2(yi(t) − yj(t)
)T
S
(
yi(t) − yj(t)

)
⎤
⎦ds

⎞
⎠.

(3.35)

According to Assumptions 2.5 and (3.22), it is clear that

(
σi(t, xi(t), xi(t − h)) − σj

(
t, xj(t), xj(t − h)

))T
P
(
σi(t, xi(t), xi(t − h)) − σj

(
t, xj(t), xj(t − h)

))

≤ λ
(
xi(t) − xj(t)

)T
WT

1 W1
(
xi(t) − xj(t)

)

+ λ
(
xi(t − h) − xj(t − h)

)T
WT

2 W2
(
xi(t − h) − xj(t − h)

)
.

(3.36)

By Assumption 2.6, we can obtain

0 ≤ 2ε
(
xi(t) − xj(t)

)T
UT(f(xi(t)) − f

(
xj(t)

))
+ 2ε

(
f(xi(t)) − f

(
xj(t)

))T
V
(
xi(t) − xj(t)

)

− 2ε
(
xi(t) − xj(t)

)T
UTV

(
xi(t) − xj(t)

) − 2ε
(
f(xi(t)) − f

(
xj(t)

))T(
f(xi(t)) − f

(
xj(t)

))
.

(3.37)
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Combining (3.35)–(3.37), we have

E(LV (xt, t)) ≤ E
⎡
⎣ 1
h

∫ t

t−h

∑
1≤i<j≤N

ξTijΞξijds

⎤
⎦, (3.38)

where

ξij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi(t) − xj(t)
xi(t − h) − xj(t − h)

xi(t − 2h) − xj(t − 2h)
f(xi(t)) − f

(
xj(t)

)
f(xi(t − h)) − f

(
xj(t − h)

)
yi(t) − yj(t)
yi(s) − yj(s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.39)

Since Ξ < 0, it is guaranteed that all the subsystems in (2.1) are globally asymptotically
synchronized in the mean square. The proof is completed.

Remark 3.7. We note here that ifD = 0 in (2.1), then system (2.1) describes a kind of stochastic
delayed complex networks considered in [32]. Our result can be applied to this case, and we
have pointed out that [32]made a mistake when dealing with expectations of stochastic cross
terms in Remark 3.3. If we let A be a diagonal and negative matrix and let D = 0 in (2.1), the
system (2.1) will be an array of coupled neural networks consisting of N nodes, in which
each node is an n-dimensional stochastic delayed Hopfield neural network. As to stochastic
Hopfield neural networks with time delays, [30, 38] have investigated the stability problems,
respectively. Furthermore, if we don’t consider stochastic disturbances and time delays in
stochastic delayed Hopfield neural networks, then this kind of neural networks is the famous
Hopfield neural network.

Remark 3.8. If we do not consider the stochastic disturbances in (2.1), then the system will be
a kind of determinate neutral-type delayed complex networks, that have been considered in
the [18–20]. If we letA be a diagonal and negative matrix in this kind of determinate neutral-
type delayed complex networks, each node will be an n-dimensional neutral-type delayed
neural network. For neutral-type neural networks with time delays, [39, 40] have discussed
the stability problems and presented the new and effective stability conditions, respectively.

Remark 3.9. For neutral stochastic delay systems, a very active topic is to obtain the delay-
dependent condition. For example, [28, 29] considered delay-dependent stability problems
for neutral stochastic delay systems. However, these two papers used bounding techniques
including the Jensen inequality to deal with stochastic cross terms contain the Itô integral.
Obviously, bounding techniques will increase the conservatism. In the derivation process
of Theorem 3.6, we don’t use any bounding technique to deal with stochastic cross terms.
Therefore, this method can show less conservatism and can also be extended to solve delay-
dependent stability problems for neutral stochastic delay systems.

Remark 3.10. In Theorem 3.6, we give a delay-dependent synchronization criterion by the
linear matrix inequalities (LMIs), because LMIs can be easily solved by using the Matlab
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LMI toolbox and no tuning of parameters is required. Moreover, we can easily get the
maximum possible upper bound on the delay by the LMI toolbox. The maximum possible
upper bound on the delay is the main criterion for judging the conservatism of a delay-
dependent condition.

4. Numerical Example

In this section, we present a simulation example to illustrate the effectiveness of our approach.

Example 4.1. Consider the following complex network consisting of three identical nodes:

d[xi(t) −Dxi(t − h)]

=

⎡
⎣Axi(t) + Bf(xi(t)) + Cf(xi(t − h)) +

3∑
j=1

gijΓxj(t) +
3∑

j=1

hijΥxj(t − h)

⎤
⎦dt

+ σi(t, xi(t), xi(t − h))dw(t),

(4.1)

for all i = 1, 2, 3, where xi(t) = [xi1(t), xi2(t)]
T ∈ R2 is the state vector of the ith subsystem,

and

A =
(−3 0

0 −3
)
, B =

(
0.6 −0.1
−0.3 0.5

)
, C =

(−0.5 −0.1
0.2 −1.5

)
, D =

(−0.6 0
0 −0.6

)
,

G =

⎛
⎝−3 1 2

1 −2 1
2 1 −3

⎞
⎠, H =

⎛
⎝−2 1 1

1 −2 1
1 1 −2

⎞
⎠, Γ =

(
0.5 0
0.1 0.5

)
, Υ =

(
0.5 0.1
0 0.4

)
,

σ(t, x(t), x(t − h)) =

(√
0.15 0

√
0.2 0

0
√
0.15 0

√
0.2

)(
x(t)

x(t − h)

)
,

f(xi(t)) =
(
f1(xi1(t)), f2(xi2(t))

)T = (tanh(xi1(t)), tanh(xi2(t)))
T .

(4.2)

Thus, the matrices U,V,W1,W2, in the Assumptions 2.5 and 2.6 are

U =
(
0 0
0 0

)
, V =

(
1 0
0 1

)
, W1 =

(√
0.3 0
0

√
0.3

)
, W2 =

(√
0.4 0
0

√
0.4

)
. (4.3)

According to Theorem 3.6, the allowable maximum delay h, that can guarantee the globally
asymptotic mean-square synchronization of the neutral-type stochastic delayed complex
networks, is 0.33. When we randomly choose the the initial states in [0, 1] × [0, 1], the
synchronization errors are plotted in Figures 1 and 2, which can confirm that the neutral-
type stochastic delayed complex system is globally synchronized in the mean square.
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Figure 1: State error of x11(t) − xi1(t), i = 2, 3.
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Figure 2: State error of x12(t) − xi2(t), i = 2, 3.

5. Conclusions

This paper has investigated the problem of delay-dependent synchronization criterion for
neutral-type stochastic delayed complex networks. Most important of all, this paper is
concerned with expectations of stochastic cross terms containing the Itô integral. By sto-
chastic analysis techniques, we prove that among these stochastic cross terms, x(t −
h)TK

∫ t
t−h μ(s, xs)dw(s) is the only one whose expectation is equal to zero. Then, this paper
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has utilized this conclusion to give a delay-dependent synchronization criterion for neutral-
type stochastic delayed complex networks. In the derivation process, the mathematical
development avoids bounding stochastic cross terms. Thus, the method in our paper can lead
to a criterion with less conservatism, and a numerical example is provided to demonstrate the
effectiveness of the proposed approach.
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[2] R. Pastor-Satorras, E. Smith, and R. V. Solé, “Evolving protein interaction networks through gene
duplication,” Journal of Theoretical Biology, vol. 222, no. 2, pp. 199–210, 2003.

[3] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks,” Physical Review
Letters, vol. 86, no. 14, pp. 3200–3203, 2001.

[4] X. F.Wang andG. Chen, “Synchronization in scale-free dynamical networks: robustness and fragility,”
IEEE Transactions on Circuits and Systems I, vol. 49, no. 1, pp. 54–62, 2002.

[5] D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-world” networks,” Nature, vol. 393, no.
6684, pp. 440–442, 1998.

[6] A. L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439,
pp. 509–512, 1999.

[7] S. Boccalettia, V. Latorab, Y. Morenod, M. Chavezf, and D. U. Hwang, “Complex networks: structure
and dynamics,” Physics Reports, vol. 424, no. 4-5, pp. 175–308, 2006.

[8] C. W. Wu, “Synchronization in arrays of coupled nonlinear systems: passivity, circle criterion, and
observer design,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 10, pp. 1257–1261, 2001.

[9] C. W. Wu, “Synchronization in coupled arrays of chaotic oscillators with nonreciprocal coupling,”
IEEE Transactions on Circuits and Systems I, vol. 50, no. 2, pp. 294–297, 2003.
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