2,111 research outputs found

    Low-cost programmable battery dischargers and application in battery model identification

    Get PDF
    This paper describes a study where a low-cost programmable battery discharger was built from basic electronic components, the popular MATLAB programming environment, and an low-cost Arduino microcontroller board. After its components and their function are explained in detail, a case study is performed to evaluate the discharger's performance. The setup is principally suitable for any type of battery cell or small packs. Here a 7.2 V NiMH battery pack including six cells is used. Consecutive discharge current pulses are applied and the terminal voltage is measured as the output. With the measured data, battery model identification is performed using a simple equivalent circuit model containing the open circuit voltage and the internal resistance. The identification results are then tested by repeating similar tests. Consistent results demonstrate accuracy of the identified battery parameters, which also confirms the quality of the measurement. Furthermore, it is demonstrated that the identification method is fast enough to be used in real-time applications

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    Advances in Development of Quartz Crystal Oscillators at Liquid Helium Temperatures

    Full text link
    This work presents some recent results in the field of liquid helium {bulk acoustic wave} oscillators. The discussion covers the whole development procedure starting from component selection and characterization and concluding with actual phase noise measurements. The associated problems and limitations are discussed. The unique features of obtained phase noise power spectral densities are explained with a proposed extension of the Leeson effect.Comment: Cryogenics, 201

    Theoretical Engineering and Satellite Comlink of a PTVD-SHAM System

    Full text link
    This paper focuses on super helical memory system's design, 'Engineering, Architectural and Satellite Communications' as a theoretical approach of an invention-model to 'store time-data'. The current release entails three concepts: 1- an in-depth theoretical physics engineering of the chip including its, 2- architectural concept based on VLSI methods, and 3- the time-data versus data-time algorithm. The 'Parallel Time Varying & Data Super-helical Access Memory' (PTVD-SHAM), possesses a waterfall effect in its architecture dealing with the process of voltage output-switch into diverse logic and quantum states described as 'Boolean logic & image-logic', respectively. Quantum dot computational methods are explained by utilizing coiled carbon nanotubes (CCNTs) and CNT field effect transistors (CNFETs) in the chip's architecture. Quantum confinement, categorized quantum well substrate, and B-field flux involvements are discussed in theory. Multi-access of coherent sequences of 'qubit addressing' in any magnitude, gained as pre-defined, here e.g., the 'big O notation' asymptotically confined into singularity while possessing a magnitude of 'infinity' for the orientation of array displacement. Gaussian curvature of k(k<0) is debated in aim of specifying the 2D electron gas characteristics, data storage system for defining short and long time cycles for different CCNT diameters where space-time continuum is folded by chance for the particle. Precise pre/post data timing for, e.g., seismic waves before earthquake mantle-reach event occurrence, including time varying self-clocking devices in diverse geographic locations for radar systems is illustrated in the Subsections of the paper. The theoretical fabrication process, electromigration between chip's components is discussed as well.Comment: 50 pages, 10 figures (3 multi-figures), 2 tables. v.1: 1 postulate entailing hypothetical ideas, design and model on future technological advances of PTVD-SHAM. The results of the previous paper [arXiv:0707.1151v6], are extended in order to prove some introductory conjectures in theoretical engineering advanced to architectural analysi

    Modeling of thermally induced skew variations in clock distribution network

    Get PDF
    Clock distribution network is sensitive to large thermal gradients on the die as the performance of both clock buffers and interconnects are affected by temperature. A robust clock network design relies on the accurate analysis of clock skew subject to temperature variations. In this work, we address the problem of thermally induced clock skew modeling in nanometer CMOS technologies. The complex thermal behavior of both buffers and interconnects are taken into account. In addition, our characterization of the temperature effect on buffers and interconnects provides valuable insight to designers about the potential impact of thermal variations on clock networks. The use of industrial standard data format in the interface allows our tool to be easily integrated into existing design flow

    Adaptive Efficiency Optimization For Digitally Controlled Dc-dc Converters

    Get PDF
    The design optimization of DC-DC converters requires the optimum selection of several parameters to achieve improved efficiency and performance. Some of these parameters are load dependent, line dependent, components dependent, and/or temperature dependent. Designing such parameters for a specific load, input and output, components, and temperature may improve single design point efficiency but will not result in maximum efficiency at different conditions, and will not guarantee improvement at that design point because of the components, temperature, and operating point variations. The ability of digital controllers to perform sophisticated algorithms makes it easy to apply adaptive control, where system parameters can be adaptively adjusted in response to system behavior in order to achieve better performance and stability. The use of adaptive control for power electronics is first applied with the Adaptive Frequency Optimization (AFO) method, which presents an auto-tuning adaptive digital controller with maximum efficiency point tracking to optimize DC-DC converter switching frequency. The AFO controller adjusts the DC-DC converter switching frequency while tracking the converter minimum input power point, under variable operating conditions, to find the optimum switching frequency that will result in minimum total loss and thus the maximum efficiency. Implementing variable switching frequencies in digital controllers introduces two main issues, namely, limit cycle oscillation and system instability. Dynamic Limit Cycle Algorithms (DLCA) is a dynamic technique tailored to improve system stability and to reduce limit cycle oscillation under variable switching frequency operation. The convergence speed and stability of AFO algorithm is further improved by presenting the analysis and design of a digital controller with adaptive auto-tuning algorithm that has a variable step size to track and detect the optimum switching frequency for a DC-DC converter. The Variable-Step-Size (VSS) algorithm is theoretically analyzed and developed based on buck DC-DC converter loss model and directed towered improving the convergence speed and accuracy of AFO adaptive loop by adjusting the converter switching frequency with variable step size. Finally, the efficiency of DC-DC converters is a function of several variables. Optimizing single variable alone may not result in maximum or global efficiency point. The issue of adjusting more than one variable at the same time is addressed by the Multivariable Adaptive digital Controller (MVAC). The MVAC is an adaptive method that continuously adjusts the DC-DC converter switching frequency and dead-time at the same time, while tracking the converter minimum input power, to find the maximum global efficiency point under variable conditions. In this research work, all adaptive methods were discussed, theoretically analyzed and its digital control algorithm along with experimental implementations were presented
    • 

    corecore