1,532 research outputs found

    Reliable multicast transport by satellite: a hybrid satellite/terrestrial solution with erasure codes

    Get PDF
    Geostationary satellites are an efficient way to provide a large scale multipoint communication service. In the context of reliable multicast communications, a new hybrid satellite/terrestrial approach is proposed. It aims at reducing the overall communication cost using satellite broadcasting only when enough receivers are present, and terrestrial transmissions otherwise. This approach has been statistically evaluated for a particular cost function and seems interesting. Then since the hybrid approach relies on Forward Error Correction, several practical aspects of MDS codes and LDPC codes are investigated in order to select a code

    A detailed study on LDPC encoding techniques

    Get PDF
    This survey deals with LDPC encoding techniques. Different types of error detection and correction codes have been studied. BHC codes, Turbo code, LDPC Codes, Hamming codes are some of the vast classes of codes. Low Decoding complexity and efficient throughput are the achieved by using LDPC codes. Robert G.Gallager introduced this code so LDPC codes are Gallager code. After then Mackay and Neal in 1995 rediscovered LDPC codes because of its bit error performance. It consist of sparse of ones ie., low density of one’s because of this property decoding is simple. The major setback in LDPC codes are Encoding Complexity. WLAN (IEEE 802.11n) and MIMO OFDM are some of the applications of code. This code is a class of forward error correction (FEC) technique that exhibits capacity of impending near Shannon’s limit. LDPC codes are well identified for their capacity-approaching performance The LDPC codes have been selected as forward error correction in application including digital video broadcasting (DVBS2), 10 Gigabit Ethernet (10GBASE-T) broadband wireless access (Wi-Max), wireless local area network, deep-space communications

    A survey of digital television broadcast transmission techniques

    No full text
    This paper is a survey of the transmission techniques used in digital television (TV) standards worldwide. With the increase in the demand for High-Definition (HD) TV, video-on-demand and mobile TV services, there was a real need for more bandwidth-efficient, flawless and crisp video quality, which motivated the migration from analogue to digital broadcasting. In this paper we present a brief history of the development of TV and then we survey the transmission technology used in different digital terrestrial, satellite, cable and mobile TV standards in different parts of the world. First, we present the Digital Video Broadcasting standards developed in Europe for terrestrial (DVB-T/T2), for satellite (DVB-S/S2), for cable (DVB-C) and for hand-held transmission (DVB-H). We then describe the Advanced Television System Committee standards developed in the USA both for terrestrial (ATSC) and for hand-held transmission (ATSC-M/H). We continue by describing the Integrated Services Digital Broadcasting standards developed in Japan for Terrestrial (ISDB-T) and Satellite (ISDB-S) transmission and then present the International System for Digital Television (ISDTV), which was developed in Brazil by adopteding the ISDB-T physical layer architecture. Following the ISDTV, we describe the Digital Terrestrial television Multimedia Broadcast (DTMB) standard developed in China. Finally, as a design example, we highlight the physical layer implementation of the DVB-T2 standar

    Protograph-Based LDPC Code Design for Probabilistic Shaping with On-Off Keying

    Full text link
    This work investigates protograph-based LDPC codes for the AWGN channel with OOK modulation. A non-uniform distribution of the OOK modulation symbols is considered to improve the power efficiency especially for low SNRs. To this end, a specific transmitter architecture based on time sharing is proposed that allows probabilistic shaping of (some) OOK modulation symbols. Tailored protograph-based LDPC code designs outperform standard schemes with uniform signaling and off-the-shelf codes by 1.1 dB for a transmission rate of 0.25 bits/channel use.Comment: Invited Paper for CISS 201

    VLSI implementation of a multi-mode turbo/LDPC decoder architecture

    Get PDF
    Flexible and reconfigurable architectures have gained wide popularity in the communications field. In particular, reconfigurable architectures for the physical layer are an attractive solution not only to switch among different coding modes but also to achieve interoperability. This work concentrates on the design of a reconfigurable architecture for both turbo and LDPC codes decoding. The novel contributions of this paper are: i) tackling the reconfiguration issue introducing a formal and systematic treatment that, to the best of our knowledge, was not previously addressed; ii) proposing a reconfigurable NoCbased turbo/LDPC decoder architecture and showing that wide flexibility can be achieved with a small complexity overhead. Obtained results show that dynamic switching between most of considered communication standards is possible without pausing the decoding activity. Moreover, post-layout results show that tailoring the proposed architecture to the WiMAX standard leads to an area occupation of 2.75 mm2 and a power consumption of 101.5 mW in the worst case

    On Complexity, Energy- and Implementation-Efficiency of Channel Decoders

    Full text link
    Future wireless communication systems require efficient and flexible baseband receivers. Meaningful efficiency metrics are key for design space exploration to quantify the algorithmic and the implementation complexity of a receiver. Most of the current established efficiency metrics are based on counting operations, thus neglecting important issues like data and storage complexity. In this paper we introduce suitable energy and area efficiency metrics which resolve the afore-mentioned disadvantages. These are decoded information bit per energy and throughput per area unit. Efficiency metrics are assessed by various implementations of turbo decoders, LDPC decoders and convolutional decoders. New exploration methodologies are presented, which permit an appropriate benchmarking of implementation efficiency, communications performance, and flexibility trade-offs. These exploration methodologies are based on efficiency trajectories rather than a single snapshot metric as done in state-of-the-art approaches.Comment: Submitted to IEEE Transactions on Communication
    corecore