1,009 research outputs found

    LDPC Codes Based on Algebraic Graphs

    Get PDF
    In this paper we investigate correcting properties of LDPC codes obtained from families of algebraic graphs. The graphs considered in this article come from the infinite incidence structure. We describe how to construct these codes, choose the parameters and present several simulations, done by using the MAP decoder. We describe how error correcting properties are dependent on the graph structure. We compare our results with the currently used codes, obtained by Guinand and Lodge [1] from the family of graphs D(k; q), which were constructed by Ustimenko and Lazebnik [2]

    A Class of Quantum LDPC Codes Constructed From Finite Geometries

    Full text link
    Low-density parity check (LDPC) codes are a significant class of classical codes with many applications. Several good LDPC codes have been constructed using random, algebraic, and finite geometries approaches, with containing cycles of length at least six in their Tanner graphs. However, it is impossible to design a self-orthogonal parity check matrix of an LDPC code without introducing cycles of length four. In this paper, a new class of quantum LDPC codes based on lines and points of finite geometries is constructed. The parity check matrices of these codes are adapted to be self-orthogonal with containing only one cycle of length four. Also, the column and row weights, and bounds on the minimum distance of these codes are given. As a consequence, the encoding and decoding algorithms of these codes as well as their performance over various quantum depolarizing channels will be investigated.Comment: 5pages, 2 figure

    Algebraic Design and Implementation of Protograph Codes using Non-Commuting Permutation Matrices

    Get PDF
    Random lifts of graphs, or equivalently, random permutation matrices, have been used to construct good families of codes known as protograph codes. An algebraic analog of this approach was recently presented using voltage graphs, and it was shown that many existing algebraic constructions of graph-based codes that use commuting permutation matrices may be seen as special cases of voltage graph codes. Voltage graphs are graphs that have an element of a finite group assigned to each edge, and the assignment determines a specific lift of the graph. In this paper we discuss how assignments of permutation group elements to the edges of a base graph affect the properties of the lifted graph and corresponding codes, and present a construction method of LDPC code ensembles based on noncommuting permutation matrices. We also show encoder and decoder implementations for these codes

    Algebraic Design and Implementation of Protograph Codes using Non-Commuting Permutation Matrices

    Get PDF
    Random lifts of graphs, or equivalently, random permutation matrices, have been used to construct good families of codes known as protograph codes. An algebraic analog of this approach was recently presented using voltage graphs, and it was shown that many existing algebraic constructions of graph-based codes that use commuting permutation matrices may be seen as special cases of voltage graph codes. Voltage graphs are graphs that have an element of a finite group assigned to each edge, and the assignment determines a specific lift of the graph. In this paper we discuss how assignments of permutation group elements to the edges of a base graph affect the properties of the lifted graph and corresponding codes, and present a construction method of LDPC code ensembles based on noncommuting permutation matrices. We also show encoder and decoder implementations for these codes

    Design and Analysis of Graph-based Codes Using Algebraic Lifts and Decoding Networks

    Get PDF
    Error-correcting codes seek to address the problem of transmitting information efficiently and reliably across noisy channels. Among the most competitive codes developed in the last 70 years are low-density parity-check (LDPC) codes, a class of codes whose structure may be represented by sparse bipartite graphs. In addition to having the potential to be capacity-approaching, LDPC codes offer the significant practical advantage of low-complexity graph-based decoding algorithms. Graphical substructures called trapping sets, absorbing sets, and stopping sets characterize failure of these algorithms at high signal-to-noise ratios. This dissertation focuses on code design for and analysis of iterative graph-based message-passing decoders. The main contributions of this work include the following: the unification of spatially-coupled LDPC (SC-LDPC) code constructions under a single algebraic graph lift framework and the analysis of SC-LDPC code construction techniques from the perspective of removing harmful trapping and absorbing sets; analysis of the stopping and absorbing set parameters of hypergraph codes and finite geometry LDPC (FG-LDPC) codes; the introduction of multidimensional decoding networks that encode the behavior of hard-decision message-passing decoders; and the presentation of a novel Iteration Search Algorithm, a list decoder designed to improve the performance of hard-decision decoders. Adviser: Christine A. Kelle
    • …
    corecore