
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Mathematics Mathematics, Department of

2013

Algebraic Design and Implementation of
Protograph Codes using Non-Commuting
Permutation Matrices
Christine A. Kelley
University of Nebraska-Lincoln, ckelley2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/mathfacpub

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University
of Nebraska - Lincoln.

Kelley, Christine A., "Algebraic Design and Implementation of Protograph Codes using Non-Commuting Permutation Matrices"
(2013). Faculty Publications, Department of Mathematics. 90.
http://digitalcommons.unl.edu/mathfacpub/90

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/77942365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathematics?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathfacpub/90?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages

910 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

Algebraic Design and Implementation of Protograph
Codes using Non-Commuting Permutation Matrices

Christine A. Kelley, Member, IEEE

Abstract—Random lifts of graphs, or equivalently, random
permutation matrices, have been used to construct good families
of codes known as protograph codes. An algebraic analog of this
approach was recently presented using voltage graphs, and it was
shown that many existing algebraic constructions of graph-based
codes that use commuting permutation matrices may be seen as
special cases of voltage graph codes. Voltage graphs are graphs
that have an element of a finite group assigned to each edge,
and the assignment determines a specific lift of the graph. In
this paper we discuss how assignments of permutation group
elements to the edges of a base graph affect the properties
of the lifted graph and corresponding codes, and present a
construction method of LDPC code ensembles based on non-
commuting permutation matrices. We also show encoder and
decoder implementations for these codes.

Index Terms—Low density parity check codes, voltage graphs,
iterative decoding, graph lift.

I. INTRODUCTION

CODES on graphs and iterative decoders have been
shown to achieve near-capacity performance on several

communication channels and have replaced classical codes
in many practical applications. Much work has focused on
understanding the asymptotic performance of ensembles of
these codes for block lengths tending to infinity. For practical
implementation, the design of short to moderate length codes
with algebraic structure is desired. One approach is to design
the graphs for these codes by taking random lifts of a suitably
chosen base graph, or protograph [1], [2], [3]. The properties
of the base graph influence the properties of the graph lift
and resulting codes. Indeed, random lifts of graphs have
been heavily studied (e.g., [13], [14], [15]). Among other
advantages, these codes can be represented efficiently and
perform well compared to randomly designed codes with
comparable parameters.

In this paper, we design codes from specific lifts of graphs
that are obtained algebraically using voltage graphs, in which
group elements are assigned to the edges of the base graph that
determine the edge set in the lift. Voltage graphs, originally
coined in topological graph theory [4] in the study of embed-
ding graphs on surfaces, may be observed in many well-known

Manuscript received August 8, 2011; revised March 11, 2012. The associate
editor coordinating the review of this paper and approving it for publication
was T.-K. Truong.

C. A. Kelley is with the Department of Mathematics, Univer-
sity of Nebraska-Lincoln, Lincoln, NE, 68588, USA (e-mail: ckel-
ley2@math.unl.edu).

This work was supported in part by NSF Grant EPS-0701892 and by
the National Security Agency under Grant Number H98230-11-1-0156. The
United States Government is authorized to reproduce and distribute reprints
not-withstanding any copyright notation herein.

Digital Object Identifier 10.1109/TCOMM.2013.012313.110513

families of codes whose underlying graph representations may
be interpreted as voltage graphs [5]. For example, quasi-cyclic
LDPC codes based on blocks of shifted-identity matrices,
array codes, quasi-cyclic repeat accumulate codes, and others
fall into this category [6], [7], [8], [10], [11]. The voltage graph
approach is a powerful tool for analyzing graph properties of
the resulting graph lifts using the properties of the base graph.
Voltage graphs have been used to obtain many instances of
graphs with extremal properties; see e.g. [16], [17], [18], [19],
and thus provide a promising approach for code design.

We outline an algebraic technique of specifying the volt-
age assignments by restricting the voltage assignments to
a permutation group designed in a special way. From the
matrix perspective, our construction of protograph codes uses
non-commuting permutation matrices. This is in contrast to
the large body of work on constructions based on shifted
identity permutation matrices. Our method, which may be
applied to any base graph or protograph, yields codes having
good properties including efficient hardware implementation.
Paper [5] initiated the study of voltage graphs for codes, and
contains a classification of subgraphs that always cause cycles
in the lifted graph for any assignment of commuting group
elements to a base graph. In [12], we developed some initial
constructions using voltage graphs. This paper provides a
general construction method of code ensembles and theoretical
results.

Section 2 contains a brief background on voltage graphs.
In Section 3 we describe the connection between the voltages
in the base graph and the structure of the derived graph.
In Section 4, we present a general construction method for
assigning voltages from a nonabelian group to the edges of
a base graph, and give two explicit examples of algebraic
protograph code ensembles obtained by this method1. The
girth and minimum distance of the codes is discussed in
Section 5, with simulation results in Section 6. In Section 7,
we use the algebraic structure of the codes to obtain efficient
encoder and decoder implementations. Section 8 concludes the
paper.

II. VOLTAGE GRAPHS AND LDPC CODES

In this paper we use the theory of voltage graphs to obtain
lifts of graphs algebraically. The resulting graphs are designed
to be suitable for coding while also retaining some of the
desirable random-like characteristics of random lifts. It is
worth noting that the voltage graph framework also provides
a tool to analyze successful random protograph codes by ex-
amining their specific permutations (i.e. voltage assignments)

1Some of this work was partially published in [12].

0090-6778/13$31.00 c© 2013 IEEE

kasyma
Typewritten Text
Pages: 910 - 918, DOI: 10.1109/TCOMM.2013.012313.110513

KELLEY: ALGEBRAIC DESIGN AND IMPLEMENTATION OF PROTOGRAPH CODES USING NON-COMMUTING PERMUTATION MATRICES 911

in hindsight. This section provides a background on voltage
graphs.

An algebraic construction of specific covering spaces for
graphs was introduced by Gross and Tucker in the 1970s [4].
Since we will use permutation groups in our construction,
we will focus on permutation voltage graphs, which will be
defined shortly. We refer the reader to [4], [12] for a discussion
on ordinary voltage graphs, which generate lifts of graphs
using arbitrary finite groups. Before we can define permutation
voltage graphs, we first introduce some notation. Let {[n]}
denote the set of integers from 1 to n. Any permutation has a
unique decomposition into a product of cyclic permutations,
each called a cycle. For example, σ = (1572)(34)(6) is a
permutation of {[7]} in cycle representation, in which the
numbers within a set of parentheses form a cycle, and each
number in a cycle is mapped to the number to its right, except
for the last number which is mapped to the first number in
the cycle. We will use this notation to illustrate permutation
voltage graphs and our code constructions.

A permutation voltage graph G = (VG , EG) is a base
graph where each edge is assigned an element from a cho-
sen permutation group G on n elements, called the voltage
group. Specifically, each edge in G is arbitrarily assigned an
orientation, and a function α, called a permutation voltage
assignment, maps the positive orientation of each edge to
an element from G. The values of α on the edges are
called voltages, and the negative orientation of each edge is
assigned the inverse element of its voltage. For example, if
e = (u, v) ∈ EG , then the (positive) orientation of e, denoted
e+, is either “from u to v” or “from v to u”. The assignment
α(e) = σ ∈ G means that the permutation σ is assigned to
e+, whereas the negative (or, reverse) orientation of e, denoted
e−, is assigned σ−1 under α. 2

The base graph G together with α form the permutation
voltage graph. We now explain how the permutation voltage
graph determines a specific lift of the graph, Gα, called the
(permutation) derived graph. If G is a subgroup of Sn, the
group of all permutations of n elements (i.e. the symmetric
group), then Gα is a degree n lift of G with vertex set
VG × {1, . . . , n} and edge set EG × {1, . . . , n}. If π ∈ G
is a permutation voltage on the edge e oriented from u to
v in G, then there is an edge from (u, i) to (v, π(i)) in Gα

for i ∈ {[n]}. We will represent each vertex (v, i) and edge
(e, i) in the derived graph by vi and ei, respectively. The set
of vertices {vi|i = 1, 2 . . . , n} in the derived graph is called
the cloud of v, and similarly for edges. The clouds contain
precisely those elements in the pre-image of a vertex (or edge)
under the natural projection mapping p : Gα → G.

Figure 1 shows a permutation voltage graph G with voltages
from S3, and the corresponding derived graph Gα. Figure
2 shows a bipartite permutation voltage graph with voltages
from S3, and its derived graph that may be regarded as a
Tanner graph for a code of length 9. The shaded circles and
squares represent variable nodes and check nodes, respectively.

A walk W in the permutation voltage graph G with voltage

2While each edge has a notion of positive and negative orientation, the
graph remains undirected. For example, walks and cycles may traverse edges
in either direction but it will be important to keep track of the group elements
that are assigned to the given orientations of each edge used.

u1 v1

v2

u2

u3

v3

z3
y2

y3

y1

x1
z2 z1

x3

x2

(1 2)(3)
y

zvux(1 2 3) (1)(2 3)

Fig. 1. A permutation voltage graph with voltage group S3 on the bottom,
and its derived graph on the top.

i

(123)

(13)(2)

i

i
i

1
2
3

1
2
3

1
2
3 1

2
3

1
2
3

i=(1)(2)(3)

Fig. 2. A permutation voltage graph with voltage group S3 on the left, and
its derived graph on the right, where i denotes the identity permutation.

assignment α may be represented by the sequence of oriented
edges in the order they are traversed, e.g. W = eσ1

1 eσ2
2 . . . eσm

m

where e1, . . . , em are edges in G and each σi is + or −
denoting the direction edge ei is traversed. The net voltage
of the walk W is defined as the voltage group product
α(eσ1

1)α(eσ2
2) . . . α(eσm

m) of the voltages on the edges of W
in the order and direction of the walk. For example, the walk
W = z+y−x+ in Figure 1 has net voltage (12)(3)×(1)(23)×
(123) = (1)(2)(3).

Theorem 2.1: [4] Let W be a walk with initial vertex v in a
voltage graph G with voltages from a permutation group G on
n elements. Then for each vertex vi in Gα, where i ∈ {[n]},
there is a unique walk Wi in Gα that starts at vi and projects
down3 to W .

A walk of length m is closed if it starts and ends at the same
vertex, and backtrackless if ei �= ei+1 for 1 ≤ i ≤ m − 1.
A backtrackless closed walk is said to be tailless if em �=
e1. For example, in Figure 1, the walk y+z+y− is closed,
backtrackless, but not tailless, whereas the walk y+z+y−x+

is closed, backtrackless, and tailless. The walk x+y+y− is
not backtrackless. A useful consequence of Theorem 2.1 is as
follows.

Corollary 2.2: Assume W = eσ1
1 eσ2

2 · · · eσm
m is closed,

3A walk Wα in the derived graph Gα projects down to W if the edges in
Wα are mapped onto the edges of W by the natural projection mapping in
the exact order and orientation of W .

912 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

backtrackless, and tailless. Then Wi, for any i ∈ {[n]}, is
a cycle on Gα if and only if the net voltage of W is the
identity of G.

III. INFLUENCE OF VOLTAGES ON TANNER GRAPH

PROPERTIES

Permutation voltage graphs provide a natural algebraic
analog to random protograph codes. In this section we explain
how to choose a permutation group and assign voltages to
ensure that the derived graph is connected and has a good
cycle structure. These guidelines were initially proposed in
[12] and will be used in the new constructions in Section 4.

1)Choose a non-abelian voltage group. In [5], we provide a
classification of subgraphs that, if present in a base graph, give
rise to certain cycles in the derived graph for any assignment
of voltages from an abelian group G4. The result in [5] gives
an alternative short proof that the girth is always at most 12 for
codes constructed using commuting permutation matrices in
arrays that contain a sub-array of 2× 3 non-zero permutation
matrices. This girth limitation was originally shown in [7] and
later by others (see e.g., [20]). Many researchers have also
noted that the use of commuting permutation matrices, such as
shifted identity matrices, leads to restrictions on the minimum
distance of the associated codes [8], [21], [22], [23], [24], [25],
[26]. This indicates that non-commuting voltage assignments
have a greater potential in yielding derived graphs with larger
girth and improved minimum distance.

2) Choose permutations that do not have fixed points or
cycles of length ≤ 3 in their cycle representation, and use
pairwise non-commuting permutations as voltages. Since non-
abelian groups may contain abelian subgroups, the voltages
assigned should be pairwise non-commuting. This alone is not
enough to guarantee large girth in the lift. Rather, the cycle
structure of the lifted graph relates directly to the structure
of the net voltages of cycles in the base graph. A j-cycle
of a permutation π will refer to a cyclic permutation of j
elements in the cycle decomposition of π, and should not be
confused with a j-cycle in a graph which is a closed path
containing j edges. The cycle structure of a permutation in
Sn is a vector (c1, . . . , cn) where cj denotes the number of
j-cycles in the cycle decomposition of the permutation. For
example, σ = (1572)(34)(6) contains one 4-cycle, one 2-
cycle, and one 1-cycle (i.e. fixed point) and has cycle structure
(1, 1, 0, 1, 0, 0, 0). The pre-image of each cycle in a permu-
tation voltage graph under the natural projection mapping
consists of a union of disjoint cycles in the derived graph.
The following result from [4] explains how the length and
number of these cycles in the lift are determined.

Theorem 3.1: [4] Let C be a k-cycle with net voltage π in
a permutation voltage graph, and let (c1, c2, . . . , cn) be the
cycle structure of π. Then the pre-image of C in the derived
graph consists of c1 + c2 + · · ·+ cn disjoint cycles, including
for each j ∈ {[n]}, exactly cj kj-cycles.

To continue the example, if σ = (1572)(34)(6) is the net
voltage of a k-cycle C in G that starts at u, then the pre-

4The elements commute. That is, for each a, b ∈ G, ab = ba.

image of C in Gα consists of one cycle of length 4k that
contains vertices u1, u2, u5, and u7, one cycle of length 2k
that contains vertices u3 and u4, and one cycle of length k
that contains vertex u6. Thus, since 6 is a fixed point of σ,
a cycle of length equal to k occurs in the derived graph. A
result similar to Theorem 3.1 was observed in [8].

Due to Theorem 3.1 and Corollary 2.2, the permutation
voltages should not have fixed points or cycles of length
≤ 3 in their cycle representation. This will allow our code
constructions to surpass the girth 12 restriction that exists in
the abelian case, provided that there are no short products
of these voltages that yield permutations with small cycles
in their decomposition. Moreover, we will choose a voltage
group where the only group element with fixed points is the
identity permutation. This will eliminate fixed points in the
net voltages of all graph cycles that do not have the identity
permutation as a net voltage.

3) Use a permutation voltage group whose action on {[n]}
has just one orbit, and assign voltages that generate the group.
First, to simplify the voltage assignment process, it is enough
to assign voltages so that the edges of a spanning tree receive
the identity element [4], [19]5. A spanning tree is a connected
spanning subgraph that is a tree. The edges outside of a given
spanning tree form the co-tree. For a voltage assignment that
assigns the identity element to the edges of spanning tree, the
local voltage group G′ is the group generated by the voltages
assigned to the co-tree. In [4], [19] the authors show that
the number of connected components in the corresponding
derived graph is equal to number of orbits in the action6 of
G′ on {[n]}. Since we want one component in the lift (i.e.
a connected graph), our constructions will use a permutation
group G whose action yields a single orbit, and we will assign
voltages to the co-tree that generate the group G. Thus, G ∼= G′

and the derived graph will be connected. In contrast, randomly
chosen permutation voltages may yield disconnected derived
graphs.

A. Summary of guidelines for voltage assignments

To surpass the girth limitations of earlier code construc-
tions, voltages should be chosen from a nonabelian group so
that they are pairwise non-commuting. (This is stricter than
necessary since some pairwise commuting elements are fine
if placed appropriately in the base graph.) The net voltages
on short cycles in the base graph should not have short cycles
in their permutation cycle decompositions. Each edge of an
arbitrarily chosen spanning tree should be assigned the identity
group element as a voltage, and the edges in the co-tree should
be assigned voltages that generate the entire voltage group to
ensure connectivity.

5Specifically, in [4], [19] it is shown that for any assignment α of edges in
G to voltages in a group G and for any spanning tree T of G, it is possible
to find a voltage assignment α′ of edges in G to G, where the edges of T
are assigned the identity element of G under α′ and the resulting graphs Gα

and Gα′
are isomorphic.

6see e.g. Section 2.4 of [34] for the definitions of group action and orbit.

KELLEY: ALGEBRAIC DESIGN AND IMPLEMENTATION OF PROTOGRAPH CODES USING NON-COMMUTING PERMUTATION MATRICES 913

IV. LDPC CODES FROM THE NONABELIAN GROUP OF

ORDER pq

In this section, we present a general method for constructing
voltage assignments for code design, and give an explicit
example of a code ensemble obtained by this method.

A. Method for assigning voltages

We give a general method for assigning elements from a
nonabelian group G to the edges of a base graph. Our method
may be applied to any non-abelian voltage group to obtain
derived graphs that will be interpreted as Tanner graphs for
LDPC codes. Let Npq denote the nonabelian group of order pq
for primes p and q with q|p− 1. Npq is the only nonabelian
group (up to isomorphism) of order m = pq where q|(p −
1), and if q � (p − 1), then there is no nonabelian group
of order pq. We will illustrate our method using the group
Npq , and the complete bipartite graph Kj,k as the base graph,
but the method and constructions may be easily applied to
any base graph simply by removing some of the edges (and
corresponding voltages) or by applying the same guidelines to
multiple (or, parallel) edges.

1) Start with a base graph G on j check nodes and k variable
nodes and orient the edges from the variable nodes to the
check nodes. Permutations will be assigned to these positively
oriented edges, and the negative orientation of each edge will
be assigned the inverse permutation. The parity-check matrix
of the resulting LDPC code is a j × k array of m × m
permutation matrices determined by the following steps. Note
that if an edge is not present in the base graph, then an
m × m all-zero matrix will be used to represent its voltage,
and if multiple edges are present, then a superposition of the
corresponding permutation matrices is used. For our example,
let G = Kj,k.

2) Choose a non-abelian group G of order m, and label
the elements of G from 1 to m. Let G act on itself by left
multiplication to obtain an isomorphic group P, where P is
a permutation group of order m. Let P be the permutation
voltage group. In our examples, P will be the permutation
group isomorphic to Npq. Note that P is a subgroup of Sm

and has the desirable property that the only element in P with
a fixed point is the identity permutation. We construct the
group Npq generated by elements c and d of orders p and q,
respectively, such that dc = csd, where s �≡ 1(mod p) and
sq ≡ 1(mod p) (See Chapter 2 of [34] for more detail on this
group, and Example 4.1 in this section for an illustration of
this step.)

3) Choose a spanning tree of the base graph and assign each
of its edges the identity permutation i. For the remaining
edges, choose nontrivial pairwise non-commuting voltages
such that they generate the group P. Without loss of generality,
let the edges in Kj,k corresponding to the first row and column
of the j×k array be the spanning tree and assign each of them
the identity permutation in P. This leaves (j− 1)(k− 1) non-
identity permutations to assign to the edges of the co-tree. The
group P contains one cyclic subgroup of order p, namely the
one generated by c, and p cyclic subgroups of order q, namely

the ones generated by cid for i = 0, 1, . . . , p−1. Permutations
chosen from the same cyclic subgroup will commute, therefore
choose at most one element from each for the remaining
edges. For this to be possible, the number of edges in the
co-tree should be at most p+ 1. Moreover, since the identity
permutation is the only element in P with a fixed point, the
Orbit-Counting Lemma (see e.g. [35]) ensures that P has just
one orbit when acting on {1, 2, . . . ,m}, where m = |P|.
Thus, the chosen nontrivial permutations should generate P
to ensure that the condition for connectivity is met.

When using Npq , q must be larger than 3 to achieve girth
larger than 12 when G has a 4-cycle. If q = 3, P will
have permutations of order 3 with 3-cycles in their cycle
decompositions. The smallest pq that satisfies these constraints
is m = 55, where q = 5.

Example 4.1: We illustrate Step 2 using the nonabelian
group N6 with p = 3 and q = 2. N6 has two generators, c of
order 3 and d of order 2, with the relation that c2d = dc. The
elements of N6 are {1, c, c2, d, cd, c2d = dc}. Order the ele-
ments, e.g., 1 �→ 1, c �→ 2, c2 �→ 3, d �→ 4, cd �→ 5, c2d �→ 6.
The action of c on N6 by left multiplication yields the set
{c · g|g ∈ N6} = {c, c2, 1, cd, c2d, d} = {2, 3, 1, 5, 6, 4}.
This means that 1 �→ 2, 2 �→ 3, 3 �→ 1, 4 �→ 5, 5 �→
6, 6 �→ 4, which corresponds to the permutation (123)(456).
Similarly, the permutation corresponding to the action of d is
(14)(26)(35), of c2 is (132)(465), of cd is (15)(24)(36), and
of c2d is (16)(25)(34). The action of the identity permutation
i = (1)(2)(3)(4)(5)(6) on N6 gives i. Thus, P is the subgroup
of S6 containing these six permutations.

The following groups will be used in the forthcoming
constructions. The explicit cycle representations for the per-
mutations c and d in both groups may be found in [12].

Example 4.2: Let m = 55, so m = pq where p = 11
and q = 5. Then N55 is obtained by two generators, c of
order 11 and d of order 5, with the relation that c3d = dc.
The action of c and d on N55 yields the isomorphic non-
abelian permutation group P of order 55 consisting of the
elements {cidj |i = 0, . . . , 10 and j = 0, . . . , 4} where, with
an abuse of notation, c and d are the corresponding generating
permutations of P. Similarly, when p = 29 and q = 7,
the group N203 is obtained by two generators, c of order
29 and d of order 7, with the relation that c7d = dc. The
action of c and d on N203 yields the isomorphic nonabelian
permutation group P of order 203 consisting of the elements
{cidj |i = 0, . . . , 28 and j = 0, . . . , 6}.

B. Construction Example

Using the permutation group P ∼= Npq, we form the
following j × k matrix M with j ≤ k and entries in P
that has as its (a, b)th element Ma,b, the entry (da+bc)t·a for
some fixed integer 0 < t ≤ q − 1. (Here, 1 ≤ a ≤ j − 1,
1 ≤ b ≤ k− 1.) Further, M has the identity element 1 ∈ G as
entries in the first row and first column.

M =

⎡
⎣

1 1 1 . . . 1

1 (d2c)t (d3c)t . . . (dkc)t

1 (d3c)2t (d4c)2t . . . (d(k+1)c)2t

.

1 (djc)(j−1)t (dj+1c)(j−1)t . . . (d(j+k−2)c)(j−1)t

⎤
⎦ .

914 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

In M , the exponents of the c’s are modulo p and the
exponents of the d’s are modulo q. The parity-check matrix
of the bipartite derived graph corresponding to M is given by

H =

⎡
⎣

I I I . . . I
I Π

(d2c)t
Π
(d3c)t

. . . Π
(dkc)t

I Π
(d3c)2t

Π
(d4c)2t

. . . Π
(d(k+1)c)2t

.
1 Π

(djc)(j−1)t Π
(dj+1c)(j−1)t . . . Π

(d(j+k−2)c)(j−1)t

⎤
⎦ ,

where I represents the m × m identity matrix and Πσ

represents an m×m permutation matrix for the permutation
σ ∈ P. In particular, the matrix Πσ has a one in the σ(i)th
row and ith column, for i = 1, 2, . . . ,m and 0’s elsewhere.

Using the relation that dc = csd from the structure of P,
we can show that the permutations in M generate P. Any
permutation in P can be expressed as cadb for some integers
a, b. With some manipulation, it can be seen that an element
from the subgroup generated by c appears as a product of
some permutations in M . Thus, the group generated by the
elements appearing in M is isomorphic to P and from the
discussion in Section 3, the derived graph is connected.

C. Optimized General Construction

An optimal code construction would search over all permu-
tations in P to find the voltage assignments for the edges of
the co-tree that satisfy the guidelines and result in a derived
graph with the best performance. This is only feasible when
the group size is not too large (i.e., for designing short to
moderate length codes) and in general, this search over the
permutations in P is more efficient than searching over the
permutations in Sm to optimize randomly designed protograph
codes, especially when the guidelines are incorporated. Due
to the careful structure of P, even a randomly chosen set
of permutations from P that satisfy the above guidelines can
result in a derived group with as good a performance as that of
a randomly designed protograph code. Hence, a small enough
search to choose the permutations more judiciously from P
can yield a derived graph with improved performance.

V. GIRTH AND MINIMUM DISTANCE

Let Npq be the nonabelian group descibed in Section 4, and
let p > q ≥ 5.

Theorem 5.1: Let Hb be a 2×3 base array with the identity
entry in the first row and the first column, and having non-
identity permutations c and d from the group Npq in the
remaining entries. Then the Tanner graph Ĝ of the LDPC code
C (having blocklength N = 3q and dimension K ≥ q+1) that
corresponds to the permutation derived graph has girth g = 4q,
and the LDPC code C has a minimum distance dmin = 2q.

Proof: The voltage graph whose incidence matrix is given
by Hb is K2,3. The smallest closed walk in this base graph
has length four and its net-voltage is a non-identity element in
Npq . Since each non-identity element in Npq is a permutation
whose cycle representation has cycle lengths equal to or larger
than q, we have by Theorem 3.1 that the closed walk of length
four gives rise to cycles of length 4q or larger in the derived
graph Ĝ.

Let W be a closed walk of length 2k in the base graph,
for some integer 2 ≤ k ≤ q − 1. The net voltage on W is a

product of 2k permutations π1, π2, . . . , π2k , where the number
of non-identity permutations is between 1 and q−1. The non-
identity permutations that can appear on this closed walk are
c, c−1, d, and d−1 with orders p, p, q, q, respectively (i.e.,
each is at least q). Hence, the net voltage on W has a cycle
decomposition consisting of either p cycles or q cycles, and
by Theorem 3.1, W lifts to cycles of length at least 2kq in Ĝ.

Now consider a walk W ′ of length 2(q + t) in the base
graph, for 0 ≤ t ≤ q − 1. The net voltage on W ′ is a
product of 2(q + t) permutations. The maximum number of
non-identity permutations on such a walk is q + t. The non-
identity permutations in Hb are c (and c−1) and d (and d−1),
and each contributes at most (q+t)/2 (i.e. less than q) times to
the net voltage. Thus, the net voltage on W ′ is a non-identity
permutation with order at least q. By Theorem 3.1 a cycle of
length at least 2(q + t)q is obtained in the lifted graph Ĝ.

Finally, consider a walk of length 4q in the base graph that
traverses the edge with voltage d a total of q times and edges
assigned the identity voltage on the remaining 3q steps. Such
a walk has net voltage equal to the identity since d has order
q. Thus, by Theorem 3.1 a cycle of length 4q results in the
lifted graph Ĝ. Hence, the girth of Ĝ is 4q.

Further, since all variable nodes in the graph have degree
two, the lift Ĝ corresponds to a cycle code [21], yielding a
minimum distance equal to 2q (i.e, girth/2) for the code C. �

Theorem 5.1 shows that a voltage assignment on K2,3 can
yield a lift and corresponding LDPC code whose girth and
minimum distance grow with q. On the other hand, if the
voltage group is abelian, the girth of the resulting permutation
derived graph cannot exceed 12 and the minimum distance
cannot exceed 6 [6]. Thus, the use of appropriately assigned
non-commuting voltages can help surpass the girth and
minimum distance limitations of abelian voltages in the
design of algebraic protograph codes.

Theorem 5.2: Let G ∼= Npq . Let Hb be a j × k base array
with k > j ≥ 2, the identity entry in the first row and
column, and having non-identity pairwise non-commuting per-
mutations from Npq in the remaining entries. Then the Tanner
graph Ĝ of the LDPC code C (having block length N = kq
and dimension K ≥ (k − j)q + (j − 1)) that corresponds to
the permutation derived graph has girth g ≥ 6, and the LDPC
code C has a minimum distance dmin(C) ≥ j + 1.

Proof: Consider the voltage graph with incidence matrix
Hb. This base graph is bipartite with j check nodes and k
variable nodes, and its smallest closed walk has length four.
Since no two non-identity permutations assigned to the edges
of G are the same, any closed walk of length 4 has a net
voltage that is a non-identity permutation in Npq whose order
is at least q. By Theorem 3.1, this 4-cycle lifts to a cycle of
length at least 4q in Ĝ. Thus the smallest cycle in Ĝ must be
greater than four. Since Ĝ is bipartite, the girth of Ĝ is at least
6. This, along with the tree-bound on the minimum distance
derived in [28] shows that the minimum distance of the LDPC
code C represented by the Tanner graph Ĝ is dmin(C) ≥ j+1.
�

KELLEY: ALGEBRAIC DESIGN AND IMPLEMENTATION OF PROTOGRAPH CODES USING NON-COMMUTING PERMUTATION MATRICES 915

We note that typically the girth and the minimum distance
are significantly larger than the bound in Theorem 5.2. The ac-
tual girth and minimum distance can be further improved. For
example, one can incorporate a simple optimization criterion
that ensures that the girth in the lifted graph corresponding to
any K2,3 subgraph of the base graph is as large as possible.
This optimization can be extended to larger subgraphs in the
base graph such as K2,t, for t > 3, or Kx,y, for x > 2, y > 3
to further optimize the girth and distance. As nonabelian
groups with larger p, q are chosen, the minimum distance
of the proposed codes can exceed the minimum distances
of protograph LDPC codes designed using abelian groups.
Moreover, using the results in [29], the lower bounds in
Theorems 5.1 and 5.2 also lower bound the minimum stopping
set size and pseudocodeword weight of the codes.

VI. SIMULATION RESULTS

In this section, we show the performance of our codes
proposed in the construction example of Section IV.B (labeled
in the figures as Consturction 1) using the groups in Example
4.2, and the performance of voltage codes where voltages
were chosen semi-randomly from these groups (labeled in the
figures as Construction 2). We compare the performance of our
proposed codes in each figure to A) random regular LDPC
codes, B) random protograph codes (i.e the permutations
are chosen randomly from Sm where m = |P |), C) a
code of comparable parameters deisigned using the algebraic
techniques proposed in [6], [7] (TSF-construction) and [8], [9]
(array construction), and D) progressive edge growth (PEG)7

based LDPC codes [30]. The codes in [6], [7] and [8], [9]
use permutations corresponding to shifted identity permuta-
tion matrices (i.e. generate an abelian group). Performances
are compared on the binary input additive white Gaussian
noise channel (BIAWGNC) under sum-product decoding. The
maximum number of iterations is limited to 50 in all of our
simulations.

Figure 3 shows the performance of (2, 3)-regular LDPC
codes over the BIAWGNC under sum-product decoding. The
figure shows the bit-error-rate (BER) performance as a func-
tion of the channel signal to noise ratio (SNR) of our voltage
graph-based LDPC code, where the voltage graph is K2,3,
and the corresponding derived graph is obtained by assigning
voltages to K2,3 to P ∼= N55 as described in Section 4. The
block length of the resulting codes is 165 and the code rate
is approximately 0.33. Also shown are the performances of
(2, 3) LDPC codes having similar block lengths and code rates
from the other constructions mentioned above. Our optimized
version substantially outperforms these other constructions.
The proposed codes have a gain of approximately 1 dB at
a bit error rate (BER) of 10−4 compared to a randomly
designed graph, and a gain of more than 1 dB compared to
the array/TSF-type construction and random protograph code.

Figure 4 shows the analogous performance of Figure 3
for the group N203 (as described in Example 4.3). The

7The PEG based LDPC codes were designed using the
online software available at David MacKay’s website: http :
//www.inference.phy.cam.ac.uk/mackay/PEG ECC.html

1 2 3 4 5 6 7
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
it

e
rr

o
r

ra
te

 (
B

E
R

)

Performance of blocklength 165 (2,3) LDPC codes over the memoryless additive white Gaussian noise (AWGN) channel

SNR (dB)

(50 BP iterations)

Optimized construction
Construction 1
Construction 2
Array/TSF construction
Random construction
Random permutations in a voltage graph construction
PEG construction

Fig. 3. Performance of block length 165, code rate 0.33, (2,3) LDPC codes
on the binary-input additive white Gaussian noise channel under sum-product
decoding.

1 2 3 4 5 6 7
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
it

e
rr

o
r

ra
te

 (
B

E
R

)

Performance of block length ~609 (2,3) LDPC codes over the memoryless additive white Gaussian noise (AWGN) channel

SNR (dB)

(50 BP iterations)

Optimized construction
Construction 1
Construction 2
Array/TSF construction
Random construction
Random permutations in a voltage graph construction
PEG construction

Fig. 4. Performance of block length 609, code rate 0.33, (2,3) LDPC codes
on the binary-input additive white Gaussian noise channel under sum-product
decoding.

resulting codes have a block length of 609 and a code rate
of approximately 0.33. Again, our codes perform significantly
better, showing a gain of more than 1.5 dB at a BER of 10−4 in
comparison to the array/TSF-type and random constructions.
The proposed codes perform as well as the PEG LDPC codes
at this block length and code rate.

Figure 5 shows the performance of (3, 5)-regular LDPC
codes over the BIAWGNC under sum-product decoding. The
figure shows the performance of our proposed codes using
voltages from N55 applied to the edges of the base graph
K3,5. All of the codes in Figure 5 have block length 275
and code rate approximately 0.4. Construction 1 and the
optimized version perform comparably to the array/TSF-type
construction and the PEG construction for these chosen pa-
rameters. However, Construction 2 performs slightly worse.
Overall, the algebraic constructions using commutative or non-
commutative voltages perform significantly better than the
random constructions by at least 0.5 dB at a BER of 10−5.

Figure 6 shows the analogous performance of Figure 5 for
the group N203. All of the codes shown have a block length
of 1015 and a code rate of approximately 0.4 except the TSF

916 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
it

e
rr

o
r

ra
te

 (
B

E
R

)

Performance of block length 275 (3,5) LDPC codes over the memoryless additive white Gaussian noise (AWGN) channel

SNR (dB)

(50 BP iterations)

Optimized construction
Construction 1
Construction 2
Array/TSF construction
Random construction
Random permutations in a voltage graph construction
PEG construction

Fig. 5. Performance of block length 275, code rate 0.4, (3,5) LDPC codes
on the binary-input additive white Gaussian noise channel under sum-product
decoding.

1 1.5 2 2.5 3 3.5 4
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
it

e
rr

o
r

ra
te

 (
B

E
R

)

Performance of block length 1015 (3,5) LDPC codes over the
memoryless additive white Gaussian noise (AWGN) channel

SNR (dB)

(50 BP iterations)

Optimized construction
Construction 1
Construction 2
Array/TSF construction
Random construction
Random permutations in a voltage graph construction
PEG construction

Fig. 6. Performance of block length 1015, code rate 0.4, (3,5) LDPC codes
on the binary-input additive white Gaussian noise channel under sum-product
decoding.

code, which has a block length of 1055. The results show
that our Construction 1 and the optimized version perform
comparably to an array/TSF-type construction in the waterfall
region. However, the TSF-type construction has a distance
upper bounded by (3 + 1)! = 24, whereas the proposed
codes do not have such a limitation. The proposed codes
(optimized construction, Construction 1) also perform better
than the PEG construction at high SNRs due to a better
minimum distance. Construction 2 does not perform as well
as the rest for the chosen set of parameters. Overall, all of the
algebraic constructions perform significantly better than the
random constructions by at least 0.25 dB.

We have shown that our codes perform comparably to
other algebraically designed codes and can outperform random
constructions. Thus, using non-commuting permutations in the
design has the potential to provide significant performance
improvement over commuting permutations. We believe that
when the general relationship between minimum distance and
voltage assignments is better understood, it will be possible
to describe more effective voltages in later constructions.

VII. IMPLEMENTATION

Due to their inherent algebraic structure, the codes proposed
in Section 4 have a succinct description that make them attrac-
tive candidates for implementation in practical applications. In
this section we address the complexity and hardware imple-
mentation aspects of these codes. One important observation
is that the proposed codes belong to the class of matched-lifted
LDPC codes presented in [31]. While the discussion in [31]
is mostly general, all of the examples given in [31] assume
the (abelian) group of shifted identity matrices in designing
the protograph LDPC codes. We can apply similar techniques
from [31] to encode and decode the codes proposed in this
paper.

A. Alternate representation

Let G = {π1, π2, . . . , πm} be a permutation voltage group
of order m. The elements πi for i = 1, 2, . . . ,m correspond to
permutation matrices P i, where P i

πi(�),�
= 1, � = 1, 2, . . . ,m.

The group operation πi · πj = πk is equivalent to the product
of permutation matrices P iP j = P k. As in [31], a group-ring
F2[G] can be defined having elements that can be represented
as binary vectors of length m. In particular, a binary vector
u = (u1, u2, . . . , um) is identified with the sum

∑m
i=1 uiπi.

Adding two length m binary vectors u and v in this group-ring
is defined by the componentwise addition of u and v over F2.
Multiplying two vectors u · v in F2[G] is defined as follows,
where all summations shown are over F2.

(
m∑

i=1

uiπi)(
m∑

j=1

vjπj) =
m∑

i=1

n∑

j=1

uivjπiπj

=

k∑

i=1

(
∑

(i,j):πiπj=πk

uivj)πk =

m∑

k=1

(
∑

(i,j):πi(j)=k

uivj)πk

=
m∑

k=1

(
m∑

i=1

uiv
π
−1
i

(k)
)πk.

As each πi corresponds to the m ×m permutation matrix
P i, the sum

∑m
i=1 uiπi can be interpreted as the matrix sum

M(u) =
∑m

i=1 uiP
i. We show that M(u) is a matrix over F2

not only when G is the group of shifted identity permutations
but also for more general permutation groups such as those
used in this paper.

Lemma 7.1: The map M(·) defined above for the non-
abelian permutation group G ∼= Npq, ensures that for any
length m binary vector u, M(u) is a matrix with only binary
entries.

Proof: M(u) is not binary if and only if there exist two
permutations in G, call them πi and πj for some i �= j,
i, j ∈ {1, . . . ,m}, where πi(k) = πj(k) for some k ∈
{1, 2, . . . ,m}. This is equivalent to having π−1

j · πi(k) = k.
However, π−1

j · πi ∈ G, and the only permutation in G that
contains a fixed point in its cycle representation is the identity
permutation. This yields that i = j, a contradiction. Thus,
M(u) is always a binary matrix. �.

While the above result is not true for all permutation
groups, it holds for the permutation groups used in this paper.
Furthermore, this sum

∑m
i=1 uiP

i uniquely determines u. The
length m basis vector ei = (0, 0, . . . , 0, 1, 0, . . . , 0), where the

KELLEY: ALGEBRAIC DESIGN AND IMPLEMENTATION OF PROTOGRAPH CODES USING NON-COMMUTING PERMUTATION MATRICES 917

ith entry is a 1 and the remaining entries are 0 corresponds to
permutation matrix P i under the map M(·) defined above.
Without loss of generality, we can assume the vector e1
denotes the identity permutation in G and corresponds to the
identity matrix P 1 of size m.

The constructions in Section 4 start with a bipartite base
graph G that yields the base parity-check matrix Hb of size j×
k. The edges of G are assigned permutation voltages from the
permutation voltage group G ∼= Npq . These edge assignments
can be represented as entries of Hb. Now if we replace each
entry in Hb with a binary vector of length m that corresponds
to the permutation on that edge in G, we get a j× km binary
matrix. As in [31], applying the map M(·) to each component
vector of length m gives a jm×km parity-check matrix of the
lifted code. Further, the resulting binary LDPC code is the set
of solutions x to the equation M(Hb)x

T = 0T . If we write
x = (x1, . . . , xn), where each xi is a binary vector of length
m, then the equation M(Hb)x

T = 0T is also equivalent to
Hbx

T = 0T , where now each xi is interpreted as an element
of F2[G]. Thus, we can relate the binary LDPC code associated
with the matrix M(Hb) with the LDPC code over the group
ring F2[G] associated with the matrix Hb.

We note here that not all random protograph codes that use
random permutations satisfy the property of Lemma 7.1, and
therefore, not all protograph LDPC codes can use the F2[G]
group algebra framework shown above.

B. Encoding

As we have shown a similar group-theoretic framework as
in [31] in relating the lifted LDPC binary matrix for our
proposed codes to the base LDPC matrix over F2[G], we
can follow the procedure from [31] to design an efficient
encoder for these codes. We will highlight the main points
of this procedure and refer the reader to [31] for more details.
The encoding procedure uses the low-complexity encoding
technique presented in [32]. However, instead of applying this
technique on the parity-check matrix of the larger lifted graph
M(Hb), we apply this technique to the parity-check matrix
of the smaller base graph Hb, where the entries are in F2[G].
By row and column operations in the group-ring F2[G] and
row-column swaps, Hb is transformed to a matrix of the form

H ′′
b =

[
A B T

−ET−1A+ C −ET−1B +D 0

]
, where T is

a lower triangular matrix and the entries of A, B, T , C, D,
E are all matrices with entries in F2[G].

Let φ = −ET−1B+D and let the columns in H ′′
b spanning

the matrix B correspond to the parity bits p1, the columns
spanning matrix T correspond to the parity bits p2, and the
columns spanning matrix A correspond to the information bits
s. Then, given the information sequence s, we solve for the
parity bit sequences p1 and p2 from the following relations:
As+Bp1 + Tp2 = 0, (−ET−1A+ C)s+ φp1 = 0.

All of the above operations are carried out in F2[G] arith-
metic since the proposed construction can be viewed as a code
over F2[G]. While the encoding complexity, in terms of the
number of arithmetic operations, may still be O(N + g2),
where g is the size of the φ matrix and N is the block
length of the code, the hardware for the encoder may be

implemented efficiently by taking advantage of the group-
theoretic framework described above.

C. Decoding

The decoding techniques for matched lifted LDPC codes
may be applied to the codes proposed in this paper and we
refer the reader to [31] for more details.

VIII. CONCLUSIONS

We presented a construction methodology for codes based
on permutation voltage graphs. These constructions use non-
commuting permutation matrices and yield families of alge-
braic protograph codes. The construction specifies a permuta-
tion assignment from a base graph to a nonabelian group,
and is designed to ensure that the resulting derived graph
is connected and has no short cycles. Our method may
be applied to any base graph, such as those with optimal
degree distributions. The performance of the proposed codes
is shown to be better than that of random constructions
and comparable to other good algebraic constructions. The
inherent algebraic structure in the design makes the codes
well suited for practical implementation, as demonstrated by
the simple encoding and decoding techniques presented. We
have also discussed how the girth and the minimum distance
for these codes can be strengthened further by optimizing the
voltage assignments in specially chosen subgraphs of the base
graph. We conclude that codes based on algebraic lifts have
the potential to outperform random codes, as well as those
based on random lifts.

ACKNOWLEDGMENT

The author would like to thank the three anonymous re-
viewers for their detailed comments that helped improve the
quality of this paper.

REFERENCES

[1] J. Thorpe, “LDPC codes constructed from protographs,” IPN Progress
Report, pp. 42–154, JPL, Aug. 2003.

[2] J. Thorpe, K. Andrews, and S. Dolinar, “Methodologies for designing
LDPC codes using protographs and circulants,” in Proc. 2004 IEEE Intl.
Symp. Inf. Theory, p. 236.

[3] D. Divsalar, S. Dolinar, and C. Jones, “Construction of protograph LDPC
codes with minimum distance linearly growing with block size,” in Proc.
2005 IEEE Globecom, pp. 1152–1156.

[4] J. L. Gross and T. W. Tucker, Topological Graph Theory. Wiley, 1987.
[5] C. A. Kelley and J. L. Walker, “LDPC codes from voltage graphs,” in

Proc. 2008 Intl. Symp. Inf. Theory.
[6] R. M. Tanner, D. Sridhara, and T. E. Fuja, “A class of group-structured

LDPC codes,” in Proc. 2001 Intl. Symp. Commun. Theory Appl., pp.
365–370.

[7] D. Sridhara, T. E. Fuja, and R. M. Tanner, “Low density parity check
codes from permutation matrices,” in 2001 Conf. Inf. Sci. Syst.

[8] J. L. Fan, “Array codes as low-density parity-check codes,” in Proc.
2000 Intl. Symp. Turbo Codes Appl., pp. 543–546.

[9] O. Milenkovic, N. Kashyap, and D. Leyba, “Shortened array codes of
large girth,” IEEE Trans. Inf. Theory, vol. 5, no. 8, pp. 3707–3722, Aug.
2006.

[10] S. Song, L. Lan, S. Lin, and K. A-Ghaffar, “Construction of quasi-cyclic
LDPC codes based on the primitive elements of finite fields,” in Proc.
2006 Conf. Inf. Syst. Sciences, pp. 835–838.

[11] R. M. Tanner, “Quasi-cyclic repeat accumulate codes,” in Proc. 1999
Allerton Conf. Commun., Control Comput., pp. 249–259.

[12] C. A. Kelley, “On codes designed via algebraic lifts of graphs,” in Proc.
2008 Allerton Conf. Commun., Control, Comput.

918 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

[13] N. Linial and E. Rozenman, “Random lifts of graphs: perfect match-
ings,” Combinatorica, vol. 25, pp. 407–424, 2005.

[14] A. Amit and N. Linial, “Random lifts of graphs II: edge expansion,”
Combinatorics, Probability Comput., vol. 15, pp. 317–332, 2006.

[15] A. Amit, N. Linial, and J. Matousek, “Random lifts of graphs: indepen-
dence and chromatic number,” Random Structures Alg., vol. 20, no. 1 ,
pp. 1–22, Jan. 2002.

[16] G. Exoo, “Voltage graphs, group presentations, and cages,” Electron. J.
Combinatorics, vol. 11, no. 1, 2004.

[17] L. Brankovic, M. Miller, J. Plesnik, J. Ryan, and J. Siran, “Large graphs
with small degree and diameter: a voltage assignment approach,” J.
Combinatorial Math. Combinatorial Computing, vol. 24, pp. 161–176,
1997.

[18] L. Brankovic, M. Miller, J. Plesnik, J. Ryan, and J. Siran, “A note
on constructing large Cayley graphs of given degree and diameter by
voltage assignments,” Electron. J. Combinatorics, vol. 5, no. 1, R9,
1998.

[19] D. Archdeacon, J.-H. Kwak, J. Lee, and Y. Sohn, “Bipartite covering
graphs,” Discrete Mathematics, vol. 214, pp. 51–63, 2000.

[20] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from
circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no.
8, pp. 1788–1793, 2004.

[21] D. J. C. MacKay and M. C. Davey, “Evaluation of Gallager codes for
short block length and high rate applications,” in Codes, Systems, and
Graphical Models, B. Marcus and J. Rosenthal, editors., vol. 123 of IMA
Volumes in Mathematics and its Appl., pp. 113–130. Springer, 2000.

[22] R. Smarandache and P. O. Vontobel, “On regular quasi-cyclic LDPC
codes from binomials,” in Proc. 2004 IEEE Intl. Symp. Inf. Theory.

[23] O. Y. Takeshita, “A new construction for LDPC codes using permutation
polynomials over integer rings,” arXiv:cs/0506091v1, 2005.

[24] K. Yang and T. Helleseth, “On the minimum distance of array codes as
LDPC codes,” IEEE Trans. Inf. Theory, vol. 49, no. 12, Dec. 2003.

[25] R. Smarandache and P. O. Vontobel, “Quasi-cyclic LDPC codes: in-
fluence of proto- and Tanner-graph structure on minimum Hamming
distance upper bounds,” submitted to IEEE Trans. Inf. Theory, Jan. 2009.

[26] B. K. Butler and P. H. and Siegel, “On distance properties of quasi-
cyclic protograph-based LDPC codes,” in Proc. 2010 IEEE Intl. Symp.
Inf. Theory, pp. 809–813.

[27] J. Chen, R. M. Tanner, J. Zhang, and M. P. C. Fossorier, “Construction
of irregular LDPC codes by quasi-cyclic extension,” IEEE Trans. Inf.
Theory, vol. 53, no. 4, pp. 1479–1483, Apr. 2007.

[28] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. IT-27, pp. 533–547, Sept. 1981.

[29] C. A. Kelley, D. Sridhara, and J. Rosenthal, “Tree-based construction of
LDPC codes having good pseudocodeword weights,” IEEE Trans. Inf.
Theory, vol. 53, no. 4, pp. 1460–1478, Apr. 2007.

[30] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Progressive edge-growth
Tanner graphs,” in Proc. 2001 IEEE GLOBECOM, pp. 995–1001.

[31] T. J. Richardson and R. L. Urbanke, Modern Coding Theory. Cambridge
University Press, 2008.

[32] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density
parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 638–
656, Feb. 2001.

[33] C. A. Kelley and J. Kliewer, “Algebraic constructions of graph-based
nested codes from protographs,” in Proc. 2010 IEEE Intl. Symp. Inf.
Theory.

[34] T. W. Hungerford, Algebra, Grad. Texts in Mathematics, vol. 73.
Springer-Verlag, 1974.

[35] P. J. Cameron, Permutation Groups, London Mathematical Society
Student Texts, vol. 45. Cambridge University Press, 1999.

[36] M. M. Mansour and N. R. Shanbhag, “High-throughput LDPC de-
coders,” IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol.
11, no. 6, pp. 976–996, Dec. 2003.

Christine A. Kelley is an Assistant Professor in
the Department of Mathematics at the University
of Nebraska-Lincoln. She received her Ph.D. in
math from the University of Notre Dame in 2006.
Before coming to Nebraska, she was a Postdoctoral
Fellow at the Fields Institute in Toronto, and in
the Department of Mathematics at The Ohio State
University. Dr. Kelley’s research is in coding theory
and applied discrete mathematics. One emphasis is
on graph-based codes and algorithms, and the design
and analysis of such codes using algebraic methods.

Another research interest is in applying algebraic and combinatorial methods
to coding for flash memory storage. Her research is currently being supported
by an NSA Young Investigator grant (Spring 2011-Spring 2013) and has been
supported by an NSF EPSCoR First Award (2009-2010).

In Spring 2010, Dr. Kelley received the University of Nebraska’s Harold and
Esther Edgerton Junior Faculty Award for “creative research, extraordinary
teaching abilities, and academic promise,” and she was the Harold and Esther
Edgerton Assistant Professor from 2010-2012.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2013

	Algebraic Design and Implementation of Protograph Codes using Non-Commuting Permutation Matrices
	Christine A. Kelley

	TCOM-11-0513.dvi

