137 research outputs found

    LBP-based periocular recognition on challenging face datasets

    Get PDF

    LBP-based periocular recognition on challenging face datasets

    Get PDF
    This work develops a novel face-based matcher composed of a multi-resolution hierarchy of patch-based feature descriptors for periocular recognition - recognition based on the soft tissue surrounding the eye orbit. The novel patch-based framework for periocular recognition is compared against other feature descriptors and a commercial full-face recognition system against a set of four uniquely challenging face corpora. The framework, hierarchical three-patch local binary pattern, is compared against the three-patch local binary pattern and the uniform local binary pattern on the soft tissue area around the eye orbit. Each challenge set was chosen for its particular non-ideal face representations that may be summarized as matching against pose, illumination, expression, aging, and occlusions. The MORPH corpora consists of two mug shot datasets labeled Album 1 and Album 2. The Album 1 corpus is the more challenging of the two due to its incorporation of print photographs (legacy) captured with a variety of cameras from the late 1960s to 1990s. The second challenge dataset is the FRGC still image set. Corpus three, Georgia Tech face database, is a small corpus but one that contains faces under pose, illumination, expression, and eye region occlusions. The final challenge dataset chosen is the Notre Dame Twins database, which is comprised of 100 sets of identical twins and 1 set of triplets. The proposed framework reports top periocular performance against each dataset, as measured by rank-1 accuracy: (1) MORPH Album 1, 33.2%; (2) FRGC, 97.51%; (3) Georgia Tech, 92.4%; and (4) Notre Dame Twins, 98.03%. Furthermore, this work shows that the proposed periocular matcher (using only a small section of the face, about the eyes) compares favorably to a commercial full-face matcher

    Cross-Spectral Full and Partial Face Recognition: Preprocessing, Feature Extraction and Matching

    Get PDF
    Cross-spectral face recognition remains a challenge in the area of biometrics. The problem arises from some real-world application scenarios such as surveillance at night time or in harsh environments, where traditional face recognition techniques are not suitable or limited due to usage of imagery obtained in the visible light spectrum. This motivates the study conducted in the dissertation which focuses on matching infrared facial images against visible light images. The study outspreads from aspects of face recognition such as preprocessing to feature extraction and to matching.;We address the problem of cross-spectral face recognition by proposing several new operators and algorithms based on advanced concepts such as composite operators, multi-level data fusion, image quality parity, and levels of measurement. To be specific, we experiment and fuse several popular individual operators to construct a higher-performed compound operator named GWLH which exhibits complementary advantages of involved individual operators. We also combine a Gaussian function with LBP, generalized LBP, WLD and/or HOG and modify them into multi-lobe operators with smoothed neighborhood to have a new type of operators named Composite Multi-Lobe Descriptors. We further design a novel operator termed Gabor Multi-Levels of Measurement based on the theory of levels of measurements, which benefits from taking into consideration the complementary edge and feature information at different levels of measurements.;The issue of image quality disparity is also studied in the dissertation due to its common occurrence in cross-spectral face recognition tasks. By bringing the quality of heterogeneous imagery closer to each other, we successfully achieve an improvement in the recognition performance. We further study the problem of cross-spectral recognition using partial face since it is also a common problem in practical usage. We begin with matching heterogeneous periocular regions and generalize the topic by considering all three facial regions defined in both a characteristic way and a mixture way.;In the experiments we employ datasets which include all the sub-bands within the infrared spectrum: near-infrared, short-wave infrared, mid-wave infrared, and long-wave infrared. Different standoff distances varying from short to intermediate and long are considered too. Our methods are compared with other popular or state-of-the-art methods and are proven to be advantageous

    On the ethnic classification of Pakistani face using deep learning

    Get PDF
    • …
    corecore