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Abstract

Cross-Spectral Full and Partial Face
Recognition: Preprocessing, Feature Extraction and Matching

Zhicheng Cao

Cross-spectral face recognition remains a challenge in the area of biometrics. The problem
arises from some real-world application scenarios such as surveillance at night time or in
harsh environments, where traditional face recognition techniques are not suitable or limited
due to usage of imagery obtained in the visible light spectrum. This motivates the study
conducted in the dissertation which focuses on matching infrared facial images against visible
light images. The study outspreads from aspects of face recognition such as preprocessing
to feature extraction and to matching.

We address the problem of cross-spectral face recognition by proposing several new op-
erators and algorithms based on advanced concepts such as composite operators, multi-level
data fusion, image quality parity, and levels of measurement. To be specific, we experiment
and fuse several popular individual operators to construct a higher-performed compound
operator named GWLH which exhibits complementary advantages of involved individual
operators. We also combine a Gaussian function with LBP, generalized LBP, WLD and/or
HOG and modify them into multi-lobe operators with smoothed neighborhood to have a
new type of operators named Composite Multi-Lobe Descriptors. We further design a novel
operator termed Gabor Multi-Levels of Measurement based on the theory of levels of mea-
surements, which benefits from taking into consideration the complementary edge and feature
information at different levels of measurements.

The issue of image quality disparity is also studied in the dissertation due to its common
occurrence in cross-spectral face recognition tasks. By bringing the quality of heterogeneous
imagery closer to each other, we successfully achieve an improvement in the recognition
performance. We further study the problem of cross-spectral recognition using partial face
since it is also a common problem in practical usage. We begin with matching heterogeneous
periocular regions and generalize the topic by considering all three facial regions defined in
both a characteristic way and a mixture way.

In the experiments we employ datasets which include all the sub-bands within the infrared
spectrum: near-infrared, short-wave infrared, mid-wave infrared, and long-wave infrared.
Different standoff distances varying from short to intermediate and long are considered too.
Our methods are compared with other popular or state-of-the-art methods and are proven
to be advantageous.
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Chapter 1

Introduction

The term biometrics is derived from the Greek word bÐoc, bios, “life” and the suffix m 'etron,

metron, “measure”. It refers to measuring human physiological or behavioral characteristics

such as face, fingerprint, iris, retina, DNA, hand geometry, voice, gait and signature [2–7].

Biometrics has now become a science of measuring a person’s characteristics to identify or

verify her/his identity automatically by means of computers. A system implementing this

is called a biometric system which processes, encodes and matches some given traits against

similar data in a database.

Biometric systems can be used to carry out identification or verification tasks depending

on the specific request given to the system. An identification system selects the best match-

ing subject out of a long list of candidates using trait measurements of the input subject,

while a verification system matches the input subject against the claimed identity and then

confirms or rejects that claim. Applications of biometrics include access control, surveillance,

general identity management and human-computer interaction (HCI) (e.g. multi-media en-

vironments). They can be found in all kinds of scenarios such as consumer and residential,

financial, health care, justice and law enforcement applications. As a result, biometrics is

used on the front doors of thousands of businesses around the world, at the doors to the

tarmacs of major airports, and at the entrances of other facilities where the combination of

security and convenience is desired.

This dissertation is devoted to the biometrics using face as the trait known as face

recognition. Compared with other biometric modalities, one important advantage of face
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recognition is that it does not require the cooperation of the test subject. The main case

of interest discussed in this work is matching face images acquired in the infrared (IR)

band of the electromagnetic wave against face images acquired in visible light, in other

words cross-spectral face recognition. The IR band includes near-infrared (NIR), short-wave

infrared (SWIR), mid-wave infrared (MWIR) and long-wave infrared (LWIR). The main

focus of this dissertation is to develop new high performance operators for cross-spectral

face and partial face recognition.

1.1 Face Recognition: A Glance through History

Humans use faces to recognize individuals on a daily basis. Sir Francis Galton was

the first to study this subject using face profiles to describe and identify individuals [8].

Advancements in computing capability over the past few decades now enable this process

to be accomplished automatically. Pioneers of automated facial recognition include Woody

Bledsoe, Helen Chan Wolf and Charles Bisson who during the 1960s developed the first semi-

automated system for facial recognition. Their system required an administrator to locate

features – such as eyes, ears, nose, and mouth – on photographs before it calculated distances

and ratios to a common reference point, which were then compared to reference data. In the

early 1970s, Goldstein, Harmon and Lesk used 21 specific subjective markers such as hair

color and lip thickness to automate the recognition [9]. The problem of measurements and

locations being manually computed still resides with their solutions. Later on, Kanade et

al. [10] employed simple image processing methods to extract fiducial markers on the face

and defined a vector of 16 facial parameters – ratios of distances, areas. They used a simple

Euclidean distance measure for matching and achieved a peak performance of 75% on a

database of 20 different people using 2 images per person.

Since the 1990s face recognition attracted more and more attention of researchers and

has been an active research topic. The work of Kirby and Sirovich on Principal Component

Analysis (PCA) [11] represents a milestone in the area of face recognition technique. They

showed that less than one hundred values were required to accurately code a suitable aligned

and normalized face. As a follow up, Turk and Pentland [12] discovered that while using the
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eigenfaces techniques, the residual error could be used to detect faces in images, a discovery

that enabled reliable real-time automated face recognition systems. As researchers’ interest

in face recognition continued, many other algorithms were developed. Of these methods the

predominant ones can be categorized into two: geometric and photometric. Popular examples

of the methods in face recognition literature are PCA, Linear Discriminant Analysis (LDA)

[13], Elastic Bunch Graph Matching (EBGM) [14], the hidden Markov model (HMM) [15,16],

Gabor filters [17], Local Binary Patterns (LBP) [18], etc.

The US Government has performed multiple evaluations to determine the capabilities and

limitations of face recognition, and to encourage and direct future developments. The Face

Recognition Technology Evaluation (FERET) [19] was sponsored by the Defense Advanced

Research Products Agency (DARPA) from 1993 through 1997. It was an effort to encourage

the development of face recognition algorithms and technology by assessing the prototypes

of face recognition systems.

Face Recognition Vendor Tests (FRVT) [20] was performed in 2000, 2002, and 2006.

These evaluations built upon the work of FERET. The two goals were to assess the capabil-

ities of commercially available facial recognition systems and to educate the public on how

to properly present and analyze results.

Face Recognition Grand Challenge (FRGC) [21] was the next step in the government

development and evaluation process – to promote and advance face recognition technology

designed to support existing face recognition efforts of the US Government. It evaluated the

latest face recognition algorithms available. High-resolution face images, 3D face scans, and

iris images were used in the tests.

1.2 Face Recognition System

A full face recognition system usually comprises the following blocks: image acquisition,

face detection, preprocessing and normalization, feature extraction and matching.

• Image acquisition: Acquisition of a face image using cameras such as charge-coupled

device (CCD) cameras, 3D cameras, IR cameras, etc. (See Figure 1.1 for an example);
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• Face detection: Detection of the face region in the image (An example is shown in

Figure 1.2);

• Preprocessing and normalization: The adjustment of pixel intensity, cropping, geomet-

rical transformation, etc.;

• Feature extraction: Extraction of features characterizing the face pertaining to a spe-

cific subject;

• Matching: Comparison of the input feature set (the probe) with the reference sets (the

gallery) using a certain metric (the matching score) and finally decision of whether the

two images come from the same subject.

Figure 1.1: Image acquisition using a thermal infrared camera

Figure 1.2: An example of face detection
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A typical face recognition system has two operation modes: (a) enrollment and (b)

recognition. The first time an individual uses such a system is called enrollment. During

the enrollment, face information from an individual is captured and stored. The individual

usually stands at a close distance from the capturing camera. In subsequent uses, face

information is detected and compared with the information stored at the time of enrollment.

Note that it is crucial that storage and retrieval of such systems themselves be secure if

the face recognition system is to be robust. A block diagram of a face recognition system

working in the enrollment mode is shown in Fig. 1.3.

Quality 
Assessment 

Preprocessing 

Geometrical 
Normalization 

Feature 
Extraction 

   Template 
𝑥1, 𝑥2, … , 𝑥𝑁 
 

 
Acquisition 
(Camera)) 

 

Detection 

         Quality 
   Check 

   Template 
   Database 

Figure 1.3: A face recognition system working in the enrollment mode.

The enrollment process in Fig. 1.3 can be summarized as follows: (1) a video frame

(image) is acquired; (2) face and additional landmarks are detected; (3) a vector of quality

measures is generated for the biometric sample; (4) the acquired face sample is discarded

or retained depending on its quality; (5) the face image is geometrically normalized to a

canonical form; (6) the normalized face image is pre-processed (transformed to gray scale,

convolved with a filter, etc.); (7) a feature vector is extracted from the processed face image

(encoding stage); (8) the obtained feature vector is stored as a template in the database to

form a gallery image in a gallery set and (optionally) the quality measures of the sample are

stored together with the template.

When the face recognition system is working in the recognition mode, the probe image

can be acquired at a close or far distance and the individual may or may not be aware of

being captured by a camera. The face recognition process is depicted in Fig. 1.4. In Fig.

1.4, note that the first seven steps (1)-(7) of the recognition process overlap with the steps
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Quality 
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         Quality 
              Check 

   Template 
   Database 

Matching 
 

Result 

Figure 1.4: A face recognition system working in the recognition mode.

of the enrollment procedure. The last blocks perform matching: (8) the probe feature vector

is compared against a gallery set of templates previously stored in a database and matching

scores are generated. The matching block may employ a distance (dissimilarity) measure as

a matching score or alternatively adopts a similarity score; (9) a verification or identification

result is produced depending on the specific case.

The verification case performs a 1-to-1 matching. A probe is claimed to belong to a

specific entry in the gallery. Therefore, it is compared to only this entry. In this mode of

operation, biometric systems compare the obtained matching score to a given threshold to

produce a genuine or impostor decision. In the identification case (1-to-N matching) the face

recognition system searches through the entire gallery set by comparing each gallery entry

to a probe. In this case, the obtained matching scores can be sorted by value to define the

best match. This sorting results in ranking.

The implementation in this work follows the schematics depicted in Fig. 1.3 and Fig.

1.4. However, the focus is placed on designing the preprocessing, feature extraction and

matching modules.

1.3 Evaluation and Performance

To evaluate the accuracy of a biometric system, score distributions for genuine and im-

postor comparisons are generated for the whole dataset. The precision of a biometric system

is characterized by its ability to separate between the two distribution functions. It defines



Zhicheng Cao Chapter 1. Introduction 7

a threshold setting the boundary between the two distributions: if the score of a comparison

is bellow the threshold, it is considered as genuine. Otherwise, it is considered as impostor.

In an ideal case, the two distribution functions do not overlap with each other. The

system can therefore perfectly distinguish between the genuine class and the impostor class

(See Figure 1.5 (a)). However, in reality, the two distributions do overlap (See Figure 1.5

(b)). As a result, some of the genuine matching will be mistakenly taken as impostors

which yields the false rejection rate (FRR). Likewise, some of the impostor matching will

be mistakenly considered as a genuine class which yields the false acceptance rate (FAR).

Impostor Genuine 

Threshold 

Match Score 

D
is

tr
ib

u
ti

o
n

 

(a)

Impostor Genuine 

Threshold 

Match Score 

D
is

tr
ib

u
ti

o
n

 

False reject rate False accept rate 

(b)

Figure 1.5: Distribution of genuine and impostor scores: (a) ideal case; (b) real case.

As explained earlier, the evaluation of a biometric system is done using the genuine and

impostor distributions for a reference database. Estimation of FAR and FRR for a given

threshold t is:

FAR(t) =

∫ ∞
t

p(s|H0)ds, (1.1)

FRR(t) =

∫ t

−∞
p(s|H1)ds, (1.2)

An illustration of FAR and FRR vs different thresholds is shown in Figure 1.6 (a). When

putting FAR and FRR or genuine acceptance rate (GAR) (i.e., 1 − FRR) together in one

plot, one gets the receiver operating characteristic (ROC) curve, as shown in Figure 1.6 (b).
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Figure 1.6: (a) Plot of FRR and FAR with different thresholds and (b) ROC curve.

1.4 New Topics

Although lots of advances in the research and applications of face recognition have been

witnessed, many problems and difficulties still exist. One of them is that most methods

developed for face recognition require a constrained condition. Unfortunately, the human

face is not a unique or rigid object and there are numerous factors that cause the appearance

of the face to vary. This problem becomes worse when the variations between the images

of the same face due to these factors are larger than image variations due to change in

face identity, which is not a rare case. The sources of variation in facial appearance [22]

can be categorized into two groups: (a) intrinsic factors and (b) extrinsic ones. Intrinsic

factors are due purely to the physical nature of the face and are independent of the observer.

Examples include age, facial expression, and facial paraphernalia (e.g. facial hair, glasses,

cosmetics). Extrinsic factors cause the appearance of the face to alter via the interaction

of light with the face and the observer. These factors include illumination, pose, scale and

imaging parameters (e.g., resolution, focus, imaging, noise, etc.).

Since factors such as illumination, age, facial expression and pose plague face recognition

systems and prevent them from achieving high performance, recent research efforts have

been made to explore alternate face modalities such as IR [23] and 3-D face model for face

recognition [24]. New studies have also been devoted to fusion of multiple face modali-
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ties and results have demonstrated improved performance compared with single modal face

recognition [25]. There is also attention paid to the topics of aging in face recognition [26],

expression recognition [27] and gender classification [28].

In the following subsections we will give a brief introduction to the first two topics: face

recognition in the infrared spectrum and 3D face recognition.

1.4.1 Face Recognition in the Infrared Spectrum

IR is invisible electromagnetic radiation with longer wavelength than that of visible light,

extending from the nominal red edge of the visible spectrum at 700 nm (frequency 430 THz)

to 1 mm (300 GHz). Figure 1.7 shows the IR band in the electromagnetic spectrum. Most of

the thermal radiation emitted by objects near room temperature is IR. Objects emit different

amounts of IR energy according to their temperature and characteristics. Therefore, IR

images or thermograms are good for capturing of the patterns associated with heat emission

of an object. The range of human face and body temperature is quite uniform, varying from

35.5◦C to 37.5◦C providing a consistent thermal signature. It is known that even identical

twins have different thermal patterns [29]. The range and sensitivity are well within the

specification of current IR imaging technology. An example of LWIR images is shown in

Figure 1.8.

Since an external source of illumination is not required for thermal IR or less affected by

the illumination source for active IR (i.e., NIR and SWIR), it is obviously an advantage for

face recognition using IR that it is less susceptible to lighting condition. This is in contrast

to the difficulties encountered in the visible light spectrum due to physical diversity coupled

with lighting, color, and shadow effects. Another advantage of face recognition in IR is seen

when conducting surveillance at night or in harsh environments, which is one of the most

recent applications of face recognition. Latest advancements in manufacturing of small and

cheap imaging devices sensitive in active infrared range (near- and short- infrared) [30, 31]

and the ability of these cameras to see through fog, rain, at night and operate at long ranges

provided researchers with new type of imagery and posed new research problems [32–40].

As observed, active IR energy is less affected by scattering and absorption by smoke or dust
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Figure 1.7: The infrared and visible bands in the electromagnetic spectrum.

Figure 1.8: An example of LWIR images

than visible light.
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1.4.2 3-Dimensional Face Recognition

Face recognition from 3D range image data is a newly emerging trend which has been

claimed to achieve improved recognition accuracy [41]. As a face is inherently a 3D object, it

is beneficial to exploit information about the 3D structure of a face, such as the 3D contour

and curvature of the forehead, eye sockets, cheeks, jaw, and chin [42]. An example of 3D

face images is shown in Figure 1.9.

Figure 1.9: Face data from [1]: (a) two-dimensional intensity image, (b) a 2.5-D range image,
and (c) a 3-D mesh (courtesy of [1]).

One advantage of 3D facial recognition is that it is not affected by changes in lighting

like other techniques. It can also identify a face from a range of viewing angles, including

a profile view [42, 43]. 3D data points from a face vastly improve the precision of facial

recognition. To acquire 3D face data, one needs a stereo camera system, a structured light

sensor, or a laser range scanner. The output is either range images or 3D polygonal meshes

(or clouds). 3D research is enhanced by the development of sophisticated sensors that do

a better job of capturing 3D face imagery. The sensors work by projecting structured light

onto the face. Up to a dozen or more of these image sensors can be placed on the same

CMOS chip – each sensor captures a different part of the spectrum [44].

With all the advantages mentioned above, 3D face recognition nonetheless has the follow-

ing drawbacks or issues: (a) The complexity and computational cost is relatively high [45];

(b) Capture devices are more expensive. Compared with 2D cameras, existing 3D sensor

technologies are still immature for practical applications. Existing problems include noise

and artifacts, small depth of field, long acquisition time, and issues related to eye safety,

points sampling, and accuracy; (c) Expression variation is still an issue. Even a perfect 3D
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matching technique could be sensitive to expressions [27].

1.5 Dissertation Outline

This dissertation is dedicated to the topic of cross-spectral face recognition. It focuses

on matching face images acquired in the electromagnetic wave spectrum of infrared against

face images acquired in visible light.

Traditional face recognition systems are designed to process short range images acquired

by a color camera. In this scenario (e.g. e-passport, and access control.) state-of-the-art face

recognition algorithms are able to achieve high recognition rates (e.g. > 99%). However,

in a surveillance scenario where the acquisition is faced with difficult environments or has

to be done at night time, the recognition task becomes very challenging. The conventional

recognition algorithms are unable to perform. To improve the recognition rates of face algo-

rithms operating in difficult settings, other imaging modalities operating within a different

range of the electromagnetic spectrum (such as NIR, SWIR, MWIR and LWIR) have been

introduced. In such applications, the cross-spectral recognition task can be very challenging

due to the very distinct properties of the different imaging modalities.

This dissertation comprises seven chapters. Chapter 1 provides an introduction to the

problem of face recognition. It reviews the history of face recognition, describes the typical

structure of a face recognition system, explains the evaluation method for recognition per-

formance and introduces new research topics in the area of face recognition (this dissertation

falls into the scope of one of the new topics). Then it gives the outlines of the dissertation

and summarizes the contributions of this work.

Chapter 2 discusses the problem of cross-spectral face recognition. It gives a detailed

literature review of related research work on this topic, describes the framework for the cross-

spectral face recognition system used throughout the dissertation, and finally compares and

studies the performance of several baseline algorithms and several advanced algorithms for

feature extraction.

In Chapter 3, we discuss three newly proposed methods for feature extraction in cross-

spectral face recognition, namely Composite Multi-Lobe Descriptor (CMLD), Gabor-WLD-
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LBP-HOG (GWLH) and Gabor Multi-Levels of Measurement (GMLM). The methods are

evaluated on the Tactical Imager for Night/Day Extended-Range Surveillance (TINDERS)

and Pre-Tactical Imager for Night/Day Extended-Range Surveillance (Pre-TINDERS) datasets.

Chapter 4 is devoted to a discussion of the problem of cross-spectral periocular recogni-

tion. The definition and reviews of this problem are given. All the methods talked about in

previous chapters are compared.

Chapter 5 raises the problem of partial face recognition. Efforts are made to first define

this problem and later identify the regions in a face image, which are the most informative for

the purpose of cross-spectral face recognition. Methods from previous chapters are employed

to find out the answer.

In Chapter 6 a technique called image quality parity is proposed for cross-spectral face

recognition when there is a quality disparity between probes and a gallery. A quality measure

named Adaptive Sharpness Measure is utilized. Quality parity by blurring using a Gaussian

kernel function and enhancement with denoising and sharpening is proposed. An overview

of related research work on image quality for biometric systems is also provided.

Chapter 7 summarizes the results developed in the previous chapters and concludes with

a short description of items proposed as the future work.

1.6 Summary of Contributions

The main contributions of this dissertation are as follows:

1. A thorough comparative study on cross-spectral face recognition using some of the cur-

rently available or well-known operators has been conducted. We provided an overview

of recent advances in the field of heterogeneous face recognition, emphasizing local op-

erators developed for matching IR face probes to a gallery composed of high quality

visible face images. A brief description of each individual and composite operators (10

in total) was provided. The list of individual operators included Gabor filters, LBP,

GLBP, WLD and HOG. Composite operators include Gabor+LBP, Gabor+GLBP,

Gabor+WLD, GOM, and Gabor+LBP+GLBP+WLD.
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2. Three novel operators/encoding algorithms are designed for cross-spectral recognition

between IR (NIR, SWIR, MWIR or LWIR) and visible spectral bands. The meth-

ods are demonstrated on two datasets each composed of data from 48 subjects: Pre-

TINDERS and TINDERS datasets. Pre-TINDERS involves images acquired at a short

distance (1.5 meters). TINDERS dataset includes long range images captured at two

different operational distances (50 and 106 meters). The algorithms are shown to

outperform or be comparable to the other basic and advanced algorithms currently

available in the literature, in terms of performance.

3. The dissertation raises a new research topic – periocular recognition in the cross-

spectral context. It reviews recent research work on periocular recognition as well as

discusses the advantage of using periocular recognition as a new modality over face

recognition. It then addresses the new problem by utilizing our proposed operators as

the tool for feature extraction and compare them with other baseline algorithms. It

further presents the results of matching SWIR, NIR and MWIR periocular probes to

a gallery of visible periocular images. Both short (1.5 m) and long (50 m and 106 m)

standoff distances were considered.

4. The new problem of cross-spectral partial face recognition is studied. We presented the

results of partial face matching with probes being SWIR, NIR, and MWIR data and

the gallery composed of visible face images. The heterogeneous face was partitioned

into three non-overlapping regions in two different ways: the horizontal way and the

characteristic way. In the first way we conducted two experiments – covering two out

of three regions and sequential covering of the face, to find out which region is the

most informative in terms of matching performance. In the second way we conducted

an experiment to find out the most informative region by comparing the performance

of the facial regions.

5. The dissertation addresses the problem of image quality disparity by proposing two

approaches: blurring of the high-quality visible light images and enhancement of the

low-quality infrared images. Both approaches are shown to be beneficial for cross-
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spectral face recognition in presence of image quality disparity. An overview of related

research work on image quality for biometric systems is also provided.
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Chapter 2

Cross-Spectral Face Recognition

This chapter provides a comparative study of local operators recently proposed for het-

erogeneous face recognition. It also analyzes performance of each individual operator and

demonstrates performance of composite operators. Basic local operators include Local Bi-

nary Patterns (LBP), Generalized Local Binary Patterns (GLBP), Weber Local Descrip-

tors (WLD), Gabor filters, and Histograms of Gradients (HOG). They are directly applied

to normalized face images. The composite operators dicussed are Gabor filters followed

by LBP (Gabor+LBP), Gabor filters followed by WLD (Gabor+WLD), Gabor filters fol-

lowed by GLBP (Gabor+GLBP), Gabor filters followed by LBP, GLBP and WLD (Ga-

bor+WLD+LBP+GLBP), and Gabor Ordinal Measures (GOM).

When applying a composite operator to face images, images are first normalized and

processed with a bank of Gabor filters and then local operators or a combination of local

operators are applied to the outputs of Gabor filters. After a face image is encoded using the

local operators, the outputs of local operators are converted to a histogram representation

and then concatenated, resulting in a very long feature vector. Each component in the feature

vector appears to contribute a small amount of information needed to generate a high fidelity

matching score. A matching score is generated by means of the Kullback-Leibler distance

between two feature vectors. The cross matching performance of heterogeneous face images

is demonstrated on two data sets composed of active infrared and visible light face images.

Both short and long standoff distances are considered.
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2.1 Introduction

2.1.1 Topic Overview

Face recognition has been an active area of research over the past few decades. Many

major advances have been reported in the literature. New applications have triggered new

challenges, and new challenges have called for new research solutions. Surveillance at night

or in harsh environments [46–48] is one of the most recent applications of face recognition.

Latest advancements in manufacturing of small and cheap imaging devices sensitive in active

infrared range (near- and short- infrared) [30, 31, 49] and the ability of these cameras to see

through fog, rain, at night and operate at long ranges provided researchers with new type

of imagery and posed new research problems [32–40]. As observed, active IR (ie. NIR and

SWIR. See Table 2.1 for a detailed definition) energy is less affected by scattering and

absorption by smoke or dust than visible light. SWIR cameras produce high signal-to-noise

ratio (SNR) images under low light conditions or at night time. Also, SWIR light beams are

not visible for the human eye which makes ongoing survailance unnoticeable during night

time [31]. Furthermore, unlike visible spectrum imaging, active IR imaging can be used to

extract not only exterior but also useful subcutaneous anatomical information [50]. Another

advantage of the use of IR for face recognition over visible light is that thermal IR imaging

is apparently invariant to changing illumination since the human face emits thermal energy,

not reflected incident light. Therefore, changes in illumination appear to play less of a role in

thermal infrared images, as opposed to the problem of illumination with visible light images,

which is one of the most challenging problems to solve (See Chapter 1 Section 1.4).

All these advantages result in a very different appearance of face images in active and

thermal IR range compared to face images in visible spectrum. Acknowledging these differ-

ences, many related questions can be posed. What type of information should be extracted

from active and thermal IR images to successfully solve the problem of face recognition?

How to match a face image in visible range to a face image in active IR and thermal range?

The latter falls in the scope of heterogeneous face recognition. In the next subsection, we

will first provide an overview of two existing general approaches to solve the problem of face

recognition and later conduct a thorough review of recent research work related to ours and
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discuss how the described approaches are utilized in these research work.

Table 2.1: Sub-division of the infrared band

Sub-Division

Name
Abbreviation Frequency Wavelength Photon Energy

Near-infrared NIR 214–400 THz 0.75–1.4 µm 886–1653 meV

Short-wave infrared SWIR 100–214 THz 1.4–3 µm 413–886 meV

Mid-wave infrared MWIR 37–100 THz 3–8 µm 155–413 meV

Long-wave infrared LWIR 20–37 THz 8–15 µm 83–155 meV

Far-infrared FIR 0.3–20 THz 15–1,000 µm 1.2–83 meV

2.1.2 Review of Related Research

The literature identified two general categories of approaches to address the problem of

face recognition: the holistic approach (also known as subspace analysis) and the local feature

approach. The former represents the global photometric information of a human face using

subspace projections. Examples include Principal Component Analysis (PCA), Independent

Component Analysis (ICA), Linear Discriminant Analysis (LDA), Canonical-Correlation

Analysis (CCA), Multilinear Subspace Learning (MSL) and their derivatives. Sirovich and

Kirby [11] showed that PCA could be applied to a collection of face images to form a set of

basis features which are known as eigenfaces. Later, Turk and Pentland [12, 51] expanded

these results and presented the method of eigenfaces as well as a system for automated

face recognition using eigenfaces. They showed a way of calculating the eigenvectors of a

covariance matrix in such a way that makes it possible for computers at that time to perform

eigen-decomposition on a large number of face images. Jutten and Herault [52] introduced

the general framework for ICA and then Comon [53] refined it. ICA can be seen as a

generalization of PCA, in which ICA generates a set of basis vectors that possess maximal

statistical independence while PCA uses eigenvectors to determine basis vectors that capture

maximal image variance. Motivated by the fact that much of the important information may

be contained in the high-order relationship rather than that of the second-order, Bartlett at

el. [54, 55] applied ICA to the problem of face recognition.
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Fisher was the first to introduce the idea of LDA [13]. LDA determines a set of optimal

discriminant basis vectors so that the ratio of the inter- and intra-class scatter matrices is

maximized. It is primarily used to reduce the number of features to a more manageable

number before classification. Each of the new dimensions is a linear combination of pixel

values, which form a template. CCA was first introduced by Hotelling in 1936 [56]. Given

two random vectors X = (X1, ..., Xn) and Y = (Y1, ..., Ym), and assuming a correlation

among the variables, CCA finds the linear combinations of Xi and Yj that results in the

maximum correlation with each other. Melzera et al. [57] applied CCA to face recognition

and proposed appearance models based on kernel canonical correlation analysis.

The second category of approaches use local operators instead and have advantages such

as more robustness to illumination and occlusion, less strictly controlled conditions, and

involvement of very small training sets. Examples of operators used in this category include

Gabor filters, Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG), Weber

Local Descriptor (WLD) and their generalizations and variants. Gabor filter is known to be a

robust directional filter used for edge detection [17]. It has been found that simple cells in the

visual cortex of mammalian brains can be modeled by Gabor functions [58,59]. A set of Gabor

filters parameterized by different frequencies and orientations are shown to perform well as

an image feature extraction tool. Therefore it has been widely used in image processing

and pattern analysis applications [60–63]. LBP is a particular case of the texture spectrum

model proposed by Wang et.al [64]. It was first introduced by Ojala and Pietikäinen [18,65]

for texture classification and found to be a powerful tool. LBP was thereafter applied to

face recognition as well as object detection [66, 67]. Due to its discriminative power and

computational simplicity as well as robustness to monotonic changes of image intensity

caused by illumination variations, LBP has been expanded into several variant forms (see

for example, [68, 69] ). HOG analysis was introduced by Dalal et al. [70] and was initially

used for the purpose of object detection. This operator is similar to other operators such

as edge orientation histograms and scale-invariant feature transform, but differs in that it

is computed on a dense grid of uniformly spaced cells and uses overlapping local contrast

normalization for improved accuracy. Chen et. al [71] introduced the WLD operator inspired

by Weber’s law - an important psychological law quantifying the perception of change in a
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given stimulus [72].

Most of the described methods above have been developed for intra-spectral matching,

to be more specific to match visible light images. Some operators were tuned to work with

heterogeneous face images. In the work of Chen et al. [73] a study of face recognition in

thermal IR and visible spectral bands is performed, using PCA [10] and Faceit G5. It is

shown that the performance of PCA in the visible light band is higher compared to the

performance of PCA in the thermal IR bands, and that these data fused at the matching

score level result in performance similar to the performance of the algorithm in visible band.

Pan et al. [74] demonstrate effectiveness of a hyperspectral approach within the NIR

spectral band. They collect a dataset of face images acquired at 31 narrow spectral bands in

the range 0.7-1.0 . Then a spectral reflectance vector evaluated in few face (square) regions

at the different wavelengths is employed as the feature vector. The experiments performed

on a hyperspectral dataset show that the adopted features are robust for recognition of

individuals having different poses and facial expression.

In their work, Kong et al. [75] perform fusion of NIR and thermal IR face images in

the Discrete Wavelet Transform domain employing images from the NIST/Equinox and the

UTKIRIS [76] databases. They show that, when the fused images are fed to the Faceit

recognition software, the resulting matching performance improves with respect to the case

when the same face classes are compared within the same spectral band, NIR or thermal IR

in this case.

Li et al. [77] propose a method to compare face images within the NIR spectral band

with different illumination scenarios. Their face matcher is based on LBP operator to achieve

illumination invariance and is applied to NIR images acquired at a short distance (less than

one meter).

In their recent works Akhloufi and Bendada experimented with images from Equinox

Database [49] (it includes visible, SWIR, MWIR, and LWIR images) and Laval University

Multispectral Database [78] (includes visible, NIR,MWIR, LWIR data). The first work [79]

evaluates recognition performance within each spectral band by using a set of known face

matching techniques. In the second work (performed on the same data) [80] a classic Local

Ternary Pattern (LTP) and a new Local Adaptive Ternary Pattern (LATP) operators are
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adopted to extract features from images. The authors involve multi-resolution analysis in

the“texture space” to fuse images from different spectral bands. They report that the fusion

of face images from different spectral bands leads to improved recognition rates with respect

to the case when images are matched within the same spectral band.

Lin et al. [81] introduce a Common Discriminant Feature Extraction (CDFE) method

that brings images from different modalities (visible light – optical images and photographs,

NIR and sketches) in a common feature space. It is shown that the proposed algorithm

outperforms PCA, LDA (Linear Discriminant Analysis), kernel PCA and kernel LDA [82]

in the visible (optical) versus NIR comparison and also when visible (photo) images are

matched against sketches.

Liao et al. [83] apply a Multiscale Block Local Binary Patterns (MB-LBP) descriptor

to NIR and visible face images. Both types of images are preprocessed with Difference of

Gaussian (DOG) filters and then encoded with the MB-LBP operator. A Gentle AdaBoost

is applied to select features, and a regularized LDA method is used to match processed

data. The method is tested on a multispectral dataset of 52 face classes. The implemented

approach is shown to outperform CDFE, PCA-CCA and LDA-CCA [84] methods when

visible images are matched against NIR images.

In their paper Yi et al. [85] encode images captured at NIR and visible spectrum by

adopting a Laplacian of Gaussian (LoG) filter. The filtered images are further converted into

binary images that are locally partitioned in small patches. The method compares common

patches (partial faces) in visible and NIR images. The experiments are performed on MBGC

data [86,87]. The proposed method is compared to CDFE, PCA-CCA and LDA-CCA.

The work of Klare and Jain [88] employs a method based on LBP and Histogram of

Gradient (HOG) features, followed by a random sampling LDA algorithm to reduce the

dimensionality of feature vectors. This encoding strategy is applied to NIR and color images

for their cross-spectral matching. The results are shown to outperform Cognitec’s FaceVACS

[89].

Maeng et al. [90] are the first to report the results of long range cross spectral face

matching, where long range NIR images are matched against visible face images. The pa-

per introduces a new long range NIR database called Near-Infrared Face Recognition at a
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Distance Database (NFRAD-DB). Face recognition performance was evaluated using Face-

VACS, DoG-SIFT, and DoG-MLBP methods. The experiments involve 50 long range NIR

classes and more than 10,000 short range visible face images. The achieved rank 1 recogni-

tion performance is 28 percent, which is a promising result for long range cross spectral face

recognition.

This chapter focuses on a discussion of local operators (algorithms from the second cat-

egory) for heterogeneous face recognition. The methodology for feature extraction and het-

erogeneous matching adopted in this chapter does not require training data, which justifies

its importance in practice. Once local operators are developed, they can be applied to any

heterogeneous data (we particularly focus on matching visible images to active IR images)

and do not require any estimation or learning of parameters or retraining of the overall face

recognition system.

We present and compare several feature extraction approaches applied to heterogeneous

face images. Face images (in visible spectrum and active IR) may be first processed with

a bank of Gabor filters parameterized by orientation and scale parameters followed by an

application of a bank of local operators. The operators encode both the magnitude and phase

of filtered (or non-filtered) face images. The application of an operator to a single image

results in multiple magnitude and phase outputs. The outputs are mapped into a histogram

representation, which constitutes a long feature vector. Feature vectors are cross-matched by

applying a symmetric Kullback-Leibler distance. The combination of Gabor filters and local

operators offers an advantage of both the selective nature of Gabor filters and the robustness

of these operators.

In addition to known local operators such as LBP, generalized LBP (GLBP), WLD and

HOG, we also present a recently developed operator named Gabor Ordinal Measures by Chai

et al. [91]. Performance of Gabor filters, LBP, GLBP, WLD, and HOG used both individually

and in combinations are demonstrated on both the Pre-TINDERS and TINDERS datasets

[92]. These datasets contain color face images, NIR and SWIR face images acquired at a

distance of 1.5, 50,and 106 meters.
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2.2 Recognition System Framework

As discussed in Section 1.2 from Chapter 1, a typical face recognition (the same as

heterogeneous face recognition) system can be described by five modules: image acquisition,

face detection, preprocessing, feature extraction and matching. Since our work focuses on

the latter three modules, we omit the former two in the following chapters hereafter. A

simplified version of such a heterogeneous face recognition system is shown in the block-

diagram in Figure 2.1. In this work, the preprocessing module implements an alignment,

cropping and normalization of heterogeneous face images. The feature extraction module

performs filtering, applies local operators and represents the outputs of local operators in

a form of histograms. The matching module applies a symmetric Kullback-Leibler distance

to histogram representations of heterogeneous face images to generate a matching score. A

functional description of each of the three modules is provided in the following subsections.

Figure 2.1: A block diagram of a typical face recognition system.

2.2.1 Preprocessing

In this work, the preprocessing module implements image alignment, cropping, and nor-

malization. For alignment, positions of the eyes are used to transform the face to a canonical

representation. Geometric transformations such as rotation, scaling and translation are ap-

plied to each face image with the objective to project eyes to a fixed position. Figure 2.2

(a), (b) and (d) illustrate the processing steps. In our work, the anchor points - the fixed

positions of the eyes - are manually selected. However, this process can be automated by

means of a Haar-based detector trained on heterogeneous face images [93], as an example.

The aligned face images are further cropped to an area of size 120× 112 (see Figure 2.2

(b) and (d)). After being cropped, images undergo an intensity normalization. Color images

are converted to grayscale images using a simple linear combination of the original R, G and
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B channels (see Figure 2.2 (c)). Active IR images - SWIR and NIR images - are preprocessed

using a simple nonlinear transformation given by log(1 + X), where X is the input image,

as shown in Figure 2.2 (e). The log-transformation redistributes the original darker pixels

over a much broader range and compresses the range of the original brighter pixels. The

transformed image is brighter and has a better contrast than the original image while the

gray variation (trend) of the pixels is still preserved since the transformation is monotonic.

(a) (b) (c) (d) (e)

Figure 2.2: Preprocessing of the face: (a) original color image, (b) aligned and cropped
color face, (c) gray scale conversion of (b), (d) aligned and cropped SWIR face, and (e)
log-tranformation of (d).

2.2.2 Feature Extraction

Gabor Filter

As recently demonstrated by Tan et al. [94], Xie et al. [95], and Nicolo et al. [37, 38], a

two-step encoding of face images, where encoding with local operators is preceded by Gabor

filtering, leads to considerably improved recognition rates. Therefore, many combinations of

operators analyzed in this chapter, involve filtering with a bank of Gabor filters as a first

step. The filter bank includes 2 different scales and 8 orientations resulting in a total of 16

filter responses. The mathematical description of the filter is given as:

G(z, θ, s) =
‖K(θ, s)2‖

σ2
exp

[
−‖K(θ, s)‖2‖z‖2

2σ2

] [
eiK

T (θ,s)z − e−
σ2

2

]
, (2.1)

where K(θ, s) is the wave vector and σ2 is the variance of the Gaussian kernel. The magnitude

and phase of the wave vector determine the scale and orientation of the oscillatory term and

z = (x, y) is a pixel in an input image. The wave vector can be expressed as

K(θ, s) = Ks(cosφθ, sinφθ), (2.2)
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where Ks is known as a scale parameter and φθ is an orientation parameter. The adopted

parameters for the complex vector in the experiments of this chapter are set to Ks = (π/2)s/2

with s ∈ N and φθ = θπ/8 with θ = 1, 2, ..., 8. The Gaussian kernel has the standard deviation

σ = π.

A normalized and preprocessed face image I(z) is convolved with a Gabor filter G(z, θ, s)

at orientation φθ and scale Ks resulting in a filtered image Y (z, θ, s) = I(z)∗G(z, θ, s), where

∗ stands for convolution.

Weber Local Descriptor

The WLD operator consists of two joint parts: a differential excitation operator and

a gradient orientation descriptor. In this chapter we adopt only the differential excitation

operator to encode the magnitude filter response, resulting in a robust representation of face

features.

The differences between the neighboring pixels of a central pixel are calculated and

normalized by the pixel value itself. The summation of these normalized differences is further

normalized by a monotonic function such as a tangent function. Finally, quantization is

performed to output the WLD value.

The mathematical definition of WLD used in this chapter is given as:

WLDl,r,N(x) = Ql

{
tan−1

[
N∑
i=1

(
xi − x
x

)]}
, (2.3)

where xi are the neighbors of x at radius r and N is the total number of neighbors (see

Figure 2.3). Ql is a uniform quantizer with l quantization levels.

Figure 2.3: Illustration of the neigboring pixels (N=12) of a central pixel at different radii:
the left corresponds r=1; the right r=2.
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Local Binary Pattern

A uniform LBP operator is described as

LBP Ur,N(x) = U

{
N∑
i=1

I{xi − x}2i
}
, (2.4)

where xi are the neighbors of the pixel x at radius r, N is the total number of neighbors. U

is the uniform pattern mapping and I(·) is the unit step function:

I(x) =

1, x > 0

0, x ≤ 0
(2.5)

A binary pattern is uniform if it contains at most two bit-wise transitions from 0 to

1 or from 1 to 0 when the bit sequence is recorded circularly. For example, the sequence

011111111000 is a 12-bit uniform pattern while the sequence 010001011111 is not uniform.

The uniform mapping U(d) is defined as

U(d) =

d, if dB is uniform

M, otherwise
(2.6)

where dB is the binary form of a number d and M is the total number of uniform patterns

formed using N bits. Throughout this chapter, we work with N = 12-bit sequences, which

results in M = 134 uniform patterns.

Generalized Local Binary Pattern

A uniform GLBP operator is a generalization of the encoding method introduced in [96]

by introducing a varying threshold t rather than a fixed one. Encoding of Gabor phase

response by GLBP adds up to encoding of Gabor magnitude response using LBP and leads

to improved performance compared to the performance of each of them [38]. The uniform

generalized binary operator is defined as

GLBP Ur,N,t(x) = U

{
N∑
i=1

Tt{xi − x}2i
}
, (2.7)

where xi is the i-th neighbor of x at radius r (we set r = 1, 2 in our experiments) and

N is the total number of neighbors. U(·) is the uniform pattern mapping described in the
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previous subsection (see Sec. 2.2.2). Tt(·) is a thresholding operator based on threshold t.

It is defined as

Tt(x) =

1, |x| ≤ t

0, |x| > t
(2.8)

The values for the thresholds in this chapter were evaluated experimentally and set to t =

π/2.

Gabor+WLD+LBP+GLBP

A fusion of extracted features often leads to improved recognition performance. As shown

in [38,97], LBP and WLD applied to the magnitude of Gabor filtered images combined with

GLBP applied to the phase of Gabor filtered images yielded a significant performance boost.

Details of this fusion scheme can be found in [38,97]. A block diagram of the fusion approach

is displayed in Figure 2.4.

MAGNITUDE 
LOCAL 

HISTOGRAM 

LOCAL 

HISTOGRAM 

LOCAL 

HISTOGRAM 

LBP 

SWLD 

GLBP PHASE 

 

BANK OF 

GABOR 

FILTERS     

  

INPUT 

IMAGE 

 
ALIGNMENT 

CROPPING 

ENHANCEMENT 

 

MATCH 

SCORE 

MATCHING 

Figure 2.4: A block diagram of the fusion scheme of Gabor+WLD+LBP+GLBP.

Gabor Ordinal Measures

Gabor Ordinal Measures (GOM) is a recently developed local feature operator [91]. This

operator combines Gabor filters (see Sec. 2.2.2) with ordinal measures, a measurement level

which records the information about ordering of multiple quantities [98]. Following GOM,

Chai et al. extracted a histogram representation and applied a dimensionality reduction by

means of LDA to filtered and encoded face data.
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The ordinal measure in [91] is modified using a smoothed neighborhood described by a

Gaussian smoothing function. Therefore, the ordinal measure filter fom(z) can be expressed

as:

fom(z) = Cp

Np∑
i=1

1√
2πσp,i

exp

[
−(z− µp,i)T (z− µp,i)

2σ2
p,i

]

−Cn
Nn∑
i=1

1√
2πσn,i

exp

[
−(z− µn,i)T (z− µn,i)

2σ2
n,i

] (2.9)

where z = (x, y) is the location of a pixel. µp,i and σp,i denote the central position and the

scale of the i-th positive lobe of a 2D Gaussian function, while µn,i and σn,i denote that of the

i-th negative lobe of the same Gaussian function. Np and Nn are the numbers of positive and

negative lobes, respectively, while constant coefficients Cp and Cn keep the balance between

positive and negative lobes, i.e., CpNp = CnNn.

2.2.3 Matching

Each encoded response (the output of each local operator) is divided into 210 non-

overlapping square blocks of size 8× 8. Blocks are displayed in the form of histograms and

the number of bins is chosen the same as the level of the encoders mentioned in the previous

section (eg. 135 in our experiments). Then 135-bin histograms of all blocks are normalized

and concatenated to be treated as a probability mass function, resulting in a vector of length

135×210 = 28, 350 for each encoded response. The length of the feature vector was selected

empirically to maximize the cross-matching performance. Vectors of all encoded responses

will be further concatenated and thus the total size of a feature vector corresponding to an

input face image is 28, 350× P , where P is the number of encoded responses, (E.g., P = 96

for both the case of combination of operators. See subsections 2.2.2 ).

When the distance between two feature vectors (histograms in our case) is evaluated, it

is expressed as a sum of distances for all feature vector pairs. A sum of two Kullback-Leibler

distances [99] is used as the distance metric to compare the feature vectors of heterogeneous

images (refer to the work of Nicolo for comparison of using different distance metrics [97]).

For two images A and B with the feature vectors HA and HB, respectively, the symmetric
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Kullback-Leibler distance is defined as:

DKL(A,B) =
K∑
k=1

(HA(k)−HB(k)) log
HA(k)

HB(k)
, (2.10)

where K is the length of the feature vectors HA or HB.

2.3 Datasets

In our experiments we use two datasets Pre-TINDERS (Tactical Imager for Night/-

Day Extended-Range Surveillance) and TINDERS collected by the Advanced Technologies

Group, West Virginia High Tech Consortium (WVHTC) Foundation [100]. A summary of

the datasets can be found in Table 2.2.

Pre-TINDERS is composed of 48 frontal face classes of total 576 images acquired at three

wavelengths – visible light, 980 nm NIR and 1550 nm SWIR. Images are acquired at a short

standoff distance of 1.5 m in a single session. Four images per class are available in each

spectral band. A 980 nm light source is used to illuminate the face in the NIR spectral band

while a 1550 nm light source is used in the SWIR spectral band. The original resolutions

of the acquired images (see Figure 2.5) are 640× 512 (png format) for both NIR and SWIR

images and 1600× 1200 (jpg format) for color images.

TINDERS is composed of 48 frontal face classes each represented by visible, NIR (980

nm) at two standoff distances (50 and 106 m), and SWIR at two standoff distances (50 and

106 m) images. At each distance and spectrum, four or five images per class are available. A

total of 478 images with the resolution 640× 512 (png format) are available in SWIR band.

A total of 489 images with the resolution 640 × 512 (png format) are available in the NIR

band. The visible (color) images with the resolution 480 × 640 (jpg format) are collected

at a short distance and in two sessions (3 images per session), and all of them have neutral

expression, resulting in a total of 288 images. Sample images from the Pre-TINDERS and

TINDERS datasets are shown in Figure 2.5.

It is important to note that although the original resolution of images in Pre-TINDERS

and TINDERS is varying, we crop and normalize them to be the same size for each experi-

ment described below. This is done to ensure a fair comparison.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2.5: Sample images: (a) visible, (b) SWIR at 1.5 m, (c) SWIR at 50 m, (d) SWIR at
106 m, (e) NIR at 1.5 m, (f) NIR at 50 m, and (g) NIR at 106 m.

2.4 Performance Evaluation

In this section, we analyze the performance of various local operators used for encoding

heterogeneous face images. In our experiments, galleries are composed of visible light face

images, while NIR and SWIR face images are presented as probes. We match NIR and

SWIR face images collected at 1.5, 50, and 106 m to visible light face images acquired at a

distance 1.5 m.

For both SWIR and NIR spectra (at both short and long standoff distances), a total

of 10 operators (including individual operators and their combinations) are implemented.

We order and number them as: (1) LBP, (2) WLD, (3) GLBP, (4) HOG, (5) Gabor filter,

(6) Gabor filter followed by LBP applied to the magnitude image (Gabor+LBP), (7) Gabor

filter followed by WLD applied to the magnitude image (Gabor+WLD), (8) Gabor filter

followed by GLBP applied to the phase image (Gabor+GLBP), (9) Gabor filter followed by

LBP, GLBP and WLD (Gabor+LBP+GLBP+WLD) and (10) GOM. The parameters in the

experiments are chosen as follows. The number of orientations and radii for Gabor filters
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Table 2.2: Summary of the datasets

Dataset Class
Total #

Images
Spectrum Distance

Original

Resolution

Pre-TINDERS 48 576

visible

NIR

SWIR

1.5 m

visible: 1600× 1200

NIR: 640× 512

SWIR: 640× 512

TINDERS 48 1255

visible

NIR

SWIR

visible: 1.5 m

NIR & SWIR:

50 m and 106 m

visible: 640× 480

NIR: 640× 512

SWIR: 640× 512

are set to 8 and 2, respectively. The number of radii for LBP, GLBP, and WLD is chosen as

2, and the number of neighbors around the central pixel is set to 12. The same parameters

are used in operators to encode short and long range images.

The results of matching are displayed in the form of Receiver Operating Characteristic

(ROC) curves. We plot Genuine Accept Rate (GAR) versus False Accept Rate (FAR).

Summaries of Equal Error Rates (EER), d-prime values, and GARs at the FAR set to 0.1

and 0.001 are provided in tables.

2.4.1 Matching SWIR Probes against Visible Gallery

Our first experiment involves matching SWIR face images to visible face images. The

heterogeneous images are encoded using the ten individual or composite operators as de-

scribed earlier in this section. The performance of the individual encoders can be treated

as benchmarks. The results of matching parameterized by different standoff distances are

shown in Figures 2.6, 2.7 and 2.8. In these experiments, visible light images form the gallery

set. All SWIR images are used as probes.

Short Standoff Distance

For the case of the short standoff distance (the Pre-TINDERS dataset), the performance

of single operators such as HOG, LBP, WLD, GLBP and Gabor filters is inferior to the

performance of the composite operators where Gabor filters are followed by LBP, WLD,
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Figure 2.6: ROC curves: matching SWIR probes at 1.5 m to visible gallery.
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Figure 2.7: ROC curves: matching SWIR probes at 50 m to visible gallery.

and GLBP. It is also inferior to the performance of Gabor+LBP+GLBP+WLD and GOM,

the other two composite multi-lobe operators. Within the group of single operators, HOG

outperforms the other four operators closely followed by LBP and then Gabor filters. WLD

appears to be less suitable for encoding heterogeneous face images in the framework of the

cross-spectral matching.
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Figure 2.8: ROC curves: matching SWIR probes at 106 m to visible gallery.

Within the group of composite operators, the top four, following closely together, are Ga-

bor+LBP+GLBP+WLD, GOM, Gabor+LBP, and Gabor+WLD. Gabor+GLBP performs

slightly inferior to the top four. Table 2.3 presents a summary of EERs, d-prime values and

GAR values at FAR set to 0.1 and 0.001 values.

Long Standoff Distance

SWIR images at longer standoff distances (50 and 106 m in the case of TINDERS dataset)

experience some loss of quality due to air turbulence, insufficient illumination, and opti-

cal effects during data acquisition. This immediately reflects on the values of matching

scores. Figure 2.7 and Figure 2.8 display the results of cross-spectral comparison param-

eterized by 50 m and 106 m standoff distances, respectively. Gallery images are retained

from the previous session. Note that in both figures, Gabor+LBP, Gabor+WLD and GOM

display a very similar performance. They are closely followed by Gabor+GLBP. The top

performance in both cases is demonstrated by Gabor+LBP+GLBP+WLD. Once again,

composite operators outperform single operators, which was anticipated. However, at longer

standoff distances matching performance of all the operators and their combinations but Ga-

bor+LBP+GLBP+WLD drops nearly two times for the case of 50 m and 2.5 times for the
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Table 2.3: EERs and GAR values: matching SWIR probes at 1.5 m to visible gallery.

Method
GAR (%)

at FAR = 10−1

GAR (%)

at FAR = 10−3
EER(%) d-prime

WLD 15.89 0.39 41.40 0.40

LBP 70.70 29.56 20.61 1.66

GLBP 39.71 2.60 33.46 0.98

Gabor 54.04 14.71 27.35 1.24

HOG 80.47 32.55 15.36 1.86

Gabor+WLD 94.14 71.88 7.68 2.74

Gabor+LBP 97.27 75 4.82 3.09

Gabor+GLBP 89.19 53.39 10.68 2.35

GOM 98.18 78.78 3.64 3.18

Gabor+WLD+LBP+GLBP 99.09 83.59 3.13 3.24

Table 2.4: EERs and GAR values: matching SWIR probes at 50 m to visible gallery.

Method
GAR (%)

at FAR = 10−1

GAR (%)

at FAR = 10−3
EER(%) d-prime

WLD 11.55 0.21 49.59 0.045

LBP 57.29 13.45 25.28 1.24

GLBP 31.86 3.71 37.07 0.65

Gabor 43.35 8.33 34.97 0.82

HOG 57.42 7.56 25.42 1.25

Gabor+WLD 85.57 40.90 12.74 2.19

Gabor+LBP 85.01 46.15 12.89 2.25

Gabor+GLBP 70.10 30.18 20.51 1.56

GOM 86.41 39.98 11.97 2.27

Gabor+WLD+LBP+GLBP 91.88 62.11 8.90 2.57

case of 106 m. EERs, d-prime values and GARs at FAR set to 0.1 and 0.001 are summarized

in Tables 2.4 and 2.5.
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Table 2.5: EERs and GAR values: matching SWIR probes at 106 m to visible gallery.

Method
GAR (%)

at FAR = 10−1

GAR (%)

at FAR = 10−3
EER(%) d-prime

WLD 11.39 0.10 48.69 0.0038

LBP 49.79 13.19 31.11 0.94

GLBP 29.31 0.49 36.49 0.57

Gabor 52.57 4.31 28.67 1.09

HOG 41.04 4.44 33.68 0.78

Gabor+WLD 77.57 29.31 16.96 1.83

Gabor+LBP 80.00 31.81 15.83 1.99

Gabor+GLBP 53.06 18.19 32.65 0.88

GOM 80.07 32.78 14.78 2.02

Gabor+WLD+LBP+GLBP 82.50 44.79 14.17 2.00

2.4.2 Matching NIR Probes against Visible Gallery

In the second experiment, NIR face images (probes) are matched to short range visible

face images (gallery). The results of matching parameterized by the standoff distances of

1.5 m, 50 m, and 106 m are shown in Figures 2.9, 2.10 and 2.11, respectively.

Short Standoff Distance

Among the group of single operators, LBP and HOG outperform the other operators,

followed by GLBP and Gabor. Similar to the the case of SWIR probe images, WLD op-

erator performs poorly. All composite operators demonstrate a relatively high performance

with ROC curves closely following one another. Gabor+WLD+LBP+GLBP appears to

outperform the other four composite operators. It is closely followed by GOM and then by

Gabor+WLD, Gabor+LBP and Gabor+GLBP. Table 2.6 summarizes the values of EERs,

d-primes and GARs at FAR equal to 0.1 and 0.001.
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Figure 2.9: The results of cross matching short range (1.5 m) NIR probes and visible gallery
images.
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Figure 2.10: The results of cross matching long range (50 m) NIR probes and visible gallery
images.
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Figure 2.11: The results of cross matching short range (106 m) NIR probes and visible gallery
images.

Table 2.6: EERs and GAR values: matching NIR probes at 1.5 m to visible gallery.

Method
GAR (%)

at FAR = 10−1

GAR (%)

at FAR = 10−3
EER(%) d-prime

WLD 29.82 2.47 44.27 0.44

LBP 82.03 32.81 14.36 2.12

GLBP 66.54 6.38 20.57 1.467

Gabor 61.46 21.09 23.57 1.43

HOG 65.23 23.96 22.03 1.68

Gabor+WLD 89.19 71.098 10.54 2.38

Gabor+LBP 86.98 56.77 11.82 2.29

Gabor+GLBP 86.20 61.595 12.23 2.29

GOM 90.89 73.31 9.27 2.59

Gabor+WLD+LBP+GLBP 91.93 68.88 8.73 2.48

Long Standoff Distance

Long range NIR probes display a cardinally different performance. As can be seen from

Figure 2.5, NIR images at 106 m have much lower contrast and overall quality compared to

NIR images at 50 m. This difference in image quality immediately reflects on the matching
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Table 2.7: EERs and GAR values: matching NIR probes at 50 m to visible gallery.

Method
GAR (%)

at FAR = 10−1

GAR (%)

at FAR = 10−3
EER(%) d-prime

WLD 5.39 0.1 48.12 0.072

LBP 34.17 7.70 31.74 0.99

GLBP 11.06 0.1 49.01 0.12

Gabor 68.98 17.23 19.98 1.66

HOG 44.68 7.35 29.98 1.16

Gabor+WLD 89.85 53.011 10.07 2.40

Gabor+LBP 86.13 56.79 12.54 2.33

Gabor+GLBP 92.02 69.89 8.66 2.73

GOM 90.06 64.29 10.00 2.65

Gabor+WLD+LBP+GLBP 92.23 68.21 8.71 2.66

Table 2.8: EERs and GAR values: matching NIR probes at 106 m to visible gallery.

Method
GAR (%)

at FAR = 10−1

GAR (%)

at FAR = 10−3
EER(%) d-prime

WLD 7.91 0.1 49.40 0.067

LBP 16.95 3.18 43.30 0.45

GLBP 10.52 0.1 50.21 0.038

Gabor 29.66 2.61 36.87 0.72

HOG 21.12 0.64 42.87 0.52

Gabor+WLD 45.97 5.23 30.48 1.05

Gabor+LBP 49.72 7.84 28.43 1.10

Gabor+GLBP 60.88 13.14 23.16 1.44

GOM 67.30 15.53 21.65 1.58

Gabor+WLD+LBP+GLBP 64.48 13.28 23.24 1.49

performance of the two sets of probes (50 m probes and 106 m probes). This also reflects on

the interplay among 10 operators. Figure 2.10 and Figure 2.11 display the cross matching re-

sults for the two stand off distances (50 m and 106 m, respectively). Comparing the composite

operators in terms of their performance, NIR at 50 m shows that Gabor+LBP+GLBP+WLD
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and GOM perform equally well. Their performance is very close to the performance they

demonstrate at 1.5 m. Note it is only slightly degraded. These three ROCs are closely

followed by the ROCs of Gabor+GLBP and Gabor+WLD. At 106 m NIR probes do not

perform as well. In fact, the performance of NIR images encoded with composite operators

drops at least three times compared to the performance of the same operators applied to

NIR at 50 m. Figure 2.11 indicates that GOM followed by Gabor+LBP+GLBP+WLD and

Gabor+GLBP, where GLBP is applied to phase images, seem to be more robust to degraded

image quality in NIR spectrum compared to other composite operators. Among single op-

erators, Gabor and HOG still outperform other single operators for both standoff distances.

Tables 2.7 and 2.8 present a summary of EERs, d-primes and GARs at FAR set to 0.1 and

0.001 for the case of 50 m and 106 m standoff distances, respectively.

In addition to matching performance, computation time is also evaluated and compared

among all the operators that appear in this chapter. We evaluate both the encoding time and

matching time for each operator. Both mean and standard deviation (std.) are calculated.

The computation time is evaluated on a PC with an Intel Core i5 CPU at 3.2 GHz and a

8 GB RAM memory. An example of the computation time for the case of encoding and

matching SWIR 1.5 m probes is provided in Table 2.9.

2.5 Summary

This chapter presented an overview of recent advances in the field of heterogeneous

face recognition, emphasizing the topic of local operators developed for matching IR face

probes to a gallery composed of high quality visible face images. A brief description of each

individual and composite operator (10 in total) was provided. The list of individual operators

included LBP, GLBP, WLD and Gabor filters. Composite operators included Gabor+LBP,

Gabor+GLBP, Gabor+WLD, GOM, and Gabor+LBP+GLBP+WLD.

We considered a very specific framework for cross-matching heterogeneous face images,

assuming that each image is aligned, cropped and enhanced at first. It was then filtered

and encoded using local operators. The output images were converted into a histogram
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Table 2.9: Comparison of computation time: Encoding and matching of SWIR probes at 1.5
m.

Method

Computation Time

for Encoding (s)

Computation Time

for Matching (s)

Mean Std. Mean Std.

WLD 0.1591 0.0051 0.0129 0.0009

LBP 0.1649 0.0077 0.0135 0.0011

GLBP 0.1568 0.0047 0.0124 0.0011

Gabor 2.6248 0.0259 0.3202 0.0037

HOG 0.0340 0.0262 0.0043 0.0009

Gabor+WLD 2.9444 0.0780 0.1710 0.0046

Gabor+LBP 2.7791 0.0378 0.1610 0.0045

Gabor+GLBP 2.7733 0.0468 0.1452 0.0044

GOM 6.5721 0.1321 0.3048 0.0059

Gabor+WLD+LBP+GLBP 3.4120 0.0552 0.4735 0.0108

representation and compared against histogram representations of images in the gallery by

means of a symmetric Kullback-Leibler distance. This cross-matching approach does not

require any training or learning and it is shown to be robust when applied to a variety of

heterogeneous datasets.

We presented the results of matching SWIR and NIR facial images to visible facial images.

Both short (1.5 m) and long (50 m and 106 m) standoff distances were considered. The results

were documented in figures and tables. We presented ROC curves as well as GARs at two

specific levels of FAR, EERs and d-prime values. Conclusions from the experimental results

are made as follows:

• The combination of Gabor filters followed by other local operators substantially out-

performed the original LBP and the other individual operators;

• As the standoff distance increased, the matching performance of all the methods

dropped. This drop was attributed to a relatively low quality of imagery at long

standoff distances (SWIR vs. visible and NIR vs. visible).
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Chapter 3

New Operators for Feature Extraction

The purpose of this chapter is to develop a family of powerful operators capable of im-

proving the performance of cross-spectral face recognition systems (which can also be applied

to partial face). We will describe three novel operators, namely Gabor+WLD+LBP+HOG

(GWLH), Composite Multi-Lobe Descriptor (CMLD) and Gabor Multi-Levels of Measure-

ment (GMLM). GWLH is a composite operator which combines individual operators LBP,

Histograms of Gradients (HOG) and Weber Local Descriptor (WLD) preceded by Gabor

filters. CMLD is realized by combing the multi-lobe forms of individual operators (such as

LBP) which are modified to consider local information within a smoothed neighbourhood.

GMLM is based on the concept of multiple levels of measurement [98]. It employs operations

at different levels of measurement on a face image to extract different types of information

and fuses them together to take advantage of the complementary information.

After feature extraction using one of the new operators, matching scores are generated

by means of a Kullback-Leibler distance between two feature vectors. The cross matching

performance of the three operators is demonstrated on three datasets composed of heteroge-

neous face images acquired in the NIR, SWIR, MWIR, LWIR and visible light spectra. To

demonstrate the advantages of the three operators, we compare them with both basic and

advanced methods employed for face recognition. Both short and long standoff distances are

considered.

The outline of this chapter is as follows. Section 3.1 provides an introduction to two

different categories of methods for face recognition and points out our goal of designing
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operators belonging to the second category. Section 3.2 explains the structure of GWLH.

Section 3.3 describes the details how CMLD is constructed and illustrates its advantage.

Section 3.4 introduces the operator GMLM and demonstrates its advantage. Section 3.5

summarizes the work described in this chapter and presents our observations and conclusions.

3.1 Introduction

In the literature there exists two general categories of approaches for addressing the

problem of face recognition: the holistic approach (or image-based) and the configurative

(or local feature-based) approach. The former analyzes the global photometric information

of a human face using subspace projections. Examples include Principal Component Analy-

sis (PCA) [12], Independent Component Analysis (ICA) [55], Linear Discriminant Analysis

(LDA) [13], Canonical-Correlation Analysis (CCA) [56], and other subspace methods. The

second category of approaches has been introduced more recently. They rely on the appli-

cation of local operators, filters and descriptors to extract local features. The approaches

have many advantages such as a requirement of very small training sets, more robustness

to illumination and occlusion, and less strict controlled conditions. Examples of local op-

erators and descriptors include Gabor filters [17, 60–63], Histogram of Oriented Gradients

(HOG) [70], Local Binary Patterns (LBP) [65–67], Weber Local Descriptor (WLD) [71, 72]

and their generalizations and variants.

Most of the methods mentioned above were developed for intra-spectral matching, to be

more specific for matching visible light images versus visible light images. Some operators

were tuned to work with heterogeneous face images. For example, Chen et al. [73] conducted

a face recognition study in thermal IR and visible spectral bands using PCA and Faceit G5.

They showed that the performance of PCA in visible spectral band is higher compared to the

performance of PCA in thermal IR spectral band, and that these data fused at the matching

score level resulted in a performance similar to the performance of the algorithm in visible

band. Li et al. [77] proposed a method to compare face images within the NIR spectral band

under different illumination scenarios. Their face encoder involved the LBP operator to

achieve illumination invariance and was applied to NIR images acquired at a short distance.
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Akhloufi et al. [79] experimented with images from database including visible, SWIR, MWIR,

and thermal infrared images. They adopted a classic Local Ternary Pattern (LTP) and a

new Local Adaptive Ternary Pattern (LATP) operator for feature extraction. The work

of Klare and Jain [101] employed a method based on LBP and HOG features, followed by

a random sampling LDA algorithm to reduce the dimensionality of feature vectors. This

encoding strategy is applied to NIR and color images for their cross-spectral matching. The

results are shown to outperform Cognitec’s FaceVACS [89].

The focus of this chapter is on the development of new operators falling in the second

category. We propose three different operators: Gabor+WLD+LBP+HOG (GWLH), Com-

posite Multi-Lobe Descriptor (CMLD) and Gabor Multi-Levels of Measurement (GMLM).

They are introduced with the purpose to ensure a robust recognition performance when

matching IR (NIR, SWIR or MWIR) face probes to visible face image galleries. The first

method GWLH fuses Gabor filters with WLD, LBP and HOG to extract more useful infor-

mation from the face which are complementary to each other. The second method combines

a Gaussian bell function with LBP, generalized LBP, and WLD and modifies them into

multi-lobe operators with smoothed neighborhood. When applied to a face image previously

processed with Gabor filters, the operator encodes both the intensity and the information

about the location and orientation of edges in the image. It demonstrates robustness to

noise and poor image quality. The third method is based on the concept of levels of mea-

surement proposed by Stevens [98]. It suggests a grouping of all possible operators that can

only be applied to pixels in an image into levels. Each level is then applied to an image to

extract features relevant to this specific level. Since the operators used at different levels

are very distinct, they often extract useful complimentary information from an image. This

information can be later fused resulting in a successful matching. Like the first and second

methods, the multiple levels of measurements are applied to the Gabor filter responses of

the face images to ensure robustness.

After feature extraction utilizing those three methods, face images are converted into the

form of histograms, and a symmetric Kullback-Leibler distance is applied to the histograms

to generate a matching score. Performance of the proposed operator is demonstrated on two

active IR datasets, Pre-TINDERS and TINDERS [100], and is compared to the performance
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of two basic operators, LBP and HOG, and two composite operators, Gabor followed by

LBP and Gabor Ordinal Measures (GOM).

3.2 Gabor+WLD+LBP+HOG

In this work, we describe a new composite operator that involves a bank of Gabor filters

followed by the application of three local operators. They are WLD, LBP and HOG applied

to magnitude and/or phase of the output of Gabor filters. The composite operator is used

to encode heterogeneous face images. We compare performance of the composite operator

with the performance of (1) single local operators such as LBP, HOG, and Gabor filters,

(2) a combination of LBP and HOG [102], and (3) two state-of-the-art composite operators

such as Gabor filters followed by WLD, LBP and GLBP [38] and Gabor filters followed by

LBP and HOG [103]. We further demonstrate that the new composite operator outperforms

the other operators when applied to match NIR, SWIR or MWIR probe images to a gallery

of visible light face images. In addition to varying the spectral band of the probes, we also

consider a short (1.5 m) and long (50 and 105 m) standoff distances in the case of NIR and

SWIR. The poor performance of the operators at the long standoff distances is linked to the

quality of heterogeneous face images at that distances. We also show that the performance

gap in matching heterogeneous face images increases as the quality of active IR face images

increases. The quality of the heterogeneous images is measured in terms of the sharpness

metric introduced by Yao et al. [104].

3.2.1 Histogram of Oriented Gradients

HOG was introduced by Dalal and Triggs in their work [70]. The essential thought

behind the HOG operator is that local object appearance and shape within an image can be

described by the distribution of intensity gradients or edge directions.

An input image is computed using Gaussian smoothing followed by a derivative mask

such as the following basic 1-D mask [−1, 0, 1]. The directional derivatives can be expressed



Zhicheng Cao Chapter 3. New Operators for Feature Extraction 45

as {
Gx(x, y) = I(x+ 1, y)− I(x− 1, y)

Gy(x, y) = I(x, y + 1)− I(x, y − 1),
(3.1)

where I(x, y) is the input image, and Gx(x, y), Gy(x, y) denote the derivatives along x and

y directions respectively. Then the magnitude and phase components of the gradient can be

calculated as {
M(x, y) =

√
Gx(x, y)2 +Gy(x, y)2

α(x, y) = tan−1[Gy(x, y)/Gx(x, y)],
(3.2)

where M(x, y) and α(x, y) are the magnitude and phase, respectively.

The next step is spatial and orientation binning. A weighted vote is calculated at each

pixel for an edge orientation histogram channel based on the orientation of the gradient at

that pixel, and the votes are accumulated into orientation bins over small local regions called

cells (cells can be either rectangular or circular). The orientation bins are evenly spaced over

0◦ − 180◦ (“unsigned” gradient) or 0◦ − 360◦ (“signed” gradient). The vote is a function of

the gradient magnitude at the pixel, very often the magnitude itself. The descriptor vector

is thereafter normalized over non-overlapping blocks using the L1 or L2 norms, or their

variants. An example of using L2 normalization is given as:

v∗ = v/
√
‖v‖22 + ε2, (3.3)

where v is the non-normalized descriptor vector and ε is a small constant.

3.2.2 Fusion of Operators

In this work we fuse Gabor filters with WLD, LBP and HOG to form a new composite

operator named Gabor+WLD+LBP+HOG (GWLH). The details of Gabor filters, LBP and

WLD can be found in Section 2.2.2 in Chapter 2. A detailed description of HOG is provided

in Section 3.2.1 in this chapter. The combination of WLD, LBP and HOG encodes both the

orientation and intensity information residing in edges and their distribution in an image.

A bank of Gabor filters at different orientations and scales are applied to an input image to

generate a set of filter responses. The magnitude and phase of the output of a filter is then

entered simultaneously into three single operators, WLD, LBP, and HOG. WLD and LBP
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are applied to the magnitude of the output, and HOG and LBP are applied to the phase of

the output. After the application of each operator, the encoded outputs are converted into a

histogram representation and concatenated to obtain the final feature vector (see Sec. 2.2.3

for more details). A block diagram demonstrating the details of the proposed fusion scheme

is displayed in Figure 3.1.
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Figure 3.1: Block diagram of the fusion scheme.

3.2.3 Experimental Results and Analysis

This subsection presents the numerical results and analysis of matching heterogeneous

face images. The heterogeneous faces are encoded using six algorithms: (1) LBP, (2) HOG,

(3) Gabor filters, (4) Gabor filters combined with LBP (Gabor+LBP), (5) Gabor filters

combined with LBP, GLBP and WLD (Gabor+LBP+GLBP+WLD), and (6) our proposed

operator, Gabor+WLD+LBP+HOG (or GWLH). The first three operators are applied as

single operators, while the latter three are compound operators fused using different com-

binations of the three simple operators and WLD. The performance of the six considered

schemes is displayed as Receiver Operating Characteristic (ROC) curves in Figure 3.2 -

Figure 3.5.
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Matching SWIR to Visible Images

Our first experiment involves matching SWIR face images to visible face images. Visible

light images form the gallery while all SWIR images are used as test images. Both the SWIR

and visible images are encoded using the six algorithms mentioned above. The results of

matching are shown in Figure 3.2 (a) - (c) for the standoff distances 1.5 m, 50 m and 106 m,

respectively. A summary of GARs, EERs and d-prime values is given in Table 3.1, 3.2 and

3.3.

The comparison in each of the three cases of standoff distances clearly demonstrates the

advantage of using the three compound operators, Gabor+LBP, Gabor+LBP+GLBP+WLD,

GWLH, over the other three individual operators, LBP, HOG and Gabor filters. However,

as the standoff distance increases to 50 m and then to 106 m, the difference in matching per-

formance of three compound operators and the others three individual operators diminishes.

Performance of all algorithms drops significantly. Note that the useful information that

helps matching heterogeneous images is contained in the gradients of intensity and in their

relative distribution, that is, their relative location and their density. Due to long standoff

distances the overall quality of SWIR images in TINDERS dataset is reduced. This, in turn,

affects the quality of informative gradients and their distribution in SWIR images compared

to visible images or SWIR images in Pre-TINDERS dataset.

Among the three compound operators, Gabor+LBP+GLBP+WLD appears to be the

best for the cases of 1.5 m and 50 m standoff distances while GWLH appears to be the best

for the cases of 106 m standoff distance.

Matching NIR to Visible Images

The results of matching NIR face images to visible face images are shown in Figure 3.3 (a)

- (c). The analyzed standoff distances are 1.5 m, 50 m and 106 m. A summary of the GARs,

EERs and d-prime values are shown in Table 3.4, Table 3.5 and Table 3.6 for each of the

considered cases of standoff distances. Again, this experiment demonstrates the advantage

of the compound operators over other operators, especially our proposed GWLH operator.

In all cases of standoff distances, GWLH, Gabor+LBP+GLBP+WLD and Gabor+LBP are
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Figure 3.2: Cross-spectral matching of face using GWLH: (a) SWIR 1.5 m, (b) SWIR 50 m
and (c) SWIR 106 m.
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Table 3.1: GARs, EERs and d-prime values: matching SWIR probes at 1.5 m to visible
gallery using GWLH.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 70.70 29.56 20.61 1.66

HOG 80.47 32.55 15.36 1.86

Gabor 54.04 14.71 27.35 1.24

Gabor+LBP 97.27 75 4.82 3.09

Gabor+WLD

+LBP+GLBP
99.09 83.59 3.13 3.24

GWLH 99.09 81.12 3.25 3.23

Table 3.2: GARs, EERs and d-prime values: matching SWIR probes at 50 m to visible
gallery using GWLH.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 57.29 13.45 25.28 1.24

HOG 57.42 7.56 25.42 1.25

Gabor 43.35 8.33 34.97 0.82

Gabor+LBP 85.01 46.15 12.89 2.25

Gabor+WLD

+LBP+GLBP
91.88 62.11 8.90 2.57

GWLH 91.60 60.22 8.90 2.62

shown to have better performance than LBP, HOG and Gabor filters, though the performance

of all algorithms becomes poorer as the standoff distance increases. This requires taking the

quality of images into account, since NIR images at large standoff distances are extremely

noisy due to insufficient illumination (see Figure 2.5).

Matching MWIR to Visible Images

In the third experiment, we match MWIR face images to a gallery of visible face images.

The results shown in Figure 3.4 are for 200 classes. Color images (one per class) form the

gallery while MWIR images (two per class) serve as the probes. It is clear that both our
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Figure 3.3: Cross-spectral matching of face regions using GWLH: (a) NIR 1.5 m, (b) NIR
50 m and (c) NIR 106 m.
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Table 3.3: GARs, EERs and d-prime values: matching SWIR probes at 106 m to visible
gallery using GWLH.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 49.79 13.19 31.11 0.94

HOG 41.04 4.44 33.68 0.78

Gabor 52.57 4.31 28.67 1.09

Gabor+LBP 80.00 31.81 15.83 1.99

Gabor+WLD

+LBP+GLBP
82.50 44.79 14.17 2.00

GWLH 84.65 49.44 13.13 2.20

Table 3.4: GARs, EERs and d-prime values: matching NIR probes at 1.5 m to visible gallery
using GWLH.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 82.03 32.81 14.36 2.12

HOG 65.23 23.96 22.03 1.68

Gabor 61.46 21.09 23.57 1.43

Gabor+LBP 86.98 56.77 11.82 2.29

Gabor+WLD

+LBP+GLBP
91.93 68.88 8.73 2.48

GWLH 92.58 75.65 8.07 2.63

algorithm and other algorithms are not designed to deal with such a large spectral gap

between visible light and MWIR. Nevertheless, the three compound operators are shown to

be more powerful than the other three individual operators, with GWLH to be the best.

Due to different imaging nature, MWIR images are determined by the distribution of

heat radiation at a subject’s face while visible images are formed as patterns characterizing

the reflectivity properties of subject’s skin. The only common information for heterogeneous

matching is the gradient lines and their relative distribution and density. MWIR and visible

face regions do not contain much of this type of information in common. A summary of the

GARs, EERs and d-prime values is shown in Table 3.7.
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Table 3.5: GARs, EERs and d-prime values: matching NIR probes at 50 m to visible gallery
using GWLH.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 34.17 7.70 31.74 0.99

HOG 44.68 7.35 29.98 1.16

Gabor 68.98 17.23 19.98 1.66

Gabor+LBP 86.13 56.79 12.54 2.33

Gabor+WLD

+LBP+GLBP
92.23 68.21 8.71 2.66

GWLH 94.68 76.33 6.58 3.01

Table 3.6: GARs, EERs and d-prime values: matching NIR probes at 106 m to visible gallery
using GWLH.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 16.95 3.18 43.30 0.45

HOG 21.12 0.64 42.87 0.52

Gabor 29.66 2.61 36.87 0.72

Gabor+LBP 49.72 7.84 28.43 1.10

Gabor+WLD

+LBP+GLBP
64.48 13.28 23.24 1.49

GWLH 77.26 26.48 16.52 1.93

Matching LWIR to Visible Images

In the last experiment, we match LWIR face images to a gallery of visible face images:

color images form the gallery while LWIR images serve as the probes. The results are shown

in Figure 3.5. Again, all the six operators achieve low performance due to the great gap

between the heterogeneous bands. Same as in the case of matching MWIR face images to

visible light images, LWIR images display heat distribution while visible light images char-

acterize the reflectivity properties. Nonetheless, the three compound operators are shown

to be superior than the other three individual ones. A summary of the GARs, EERs and

d-prime values is shown in Table 3.8.
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Figure 3.4: Cross-spectral matching of the face using GWLH: MWIR.

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

FAR

G
A

R

 

 

LBP
HOG
Gabor
Gabor+LBP
Gabor+LBP
+GLBP+WLD
LWIR: GWLH

Figure 3.5: Cross-spectral matching of the face using GWLH: LWIR.
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Table 3.7: GARs, EERs and d-prime values: matching MWIR probes to visible gallery using
GWLH.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 27.75 1.75 37.00 0.70

HOG 25.00 1.50 39.27 0.57

Gabor 17.75 0.75 45.05 0.34

Gabor+LBP 48.25 8.25 32.25 0.97

Gabor+WLD

+LBP+GLBP
53.50 12.25 29.01 1.18

GWLH 57.00 12.25 26.50 1.25

Table 3.8: GARs, EERs and d-prime values: matching LWIR probes to visible gallery using
GWLH.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 9.26 0.001 49.08 0.04

HOG 21.30 2.59 41.18 0.41

Gabor 27.41 1.11 39.82 0.38

Gabor+LBP 38.89 6.48 34.64 0.74

Gabor+WLD

+LBP+GLBP
40.74 5.93 34.08 0.71

GWLH 39.44 5.37 33.52 0.68

Quality and Performance

As anticipated, the quality of active and passive IR (i.e., SWIR, NIR, MWIR and LWIR)

probes affects the matching performance. In this work, the quality of the probes is a function

of the standoff distance. We use an adaptive sharpness measure [104] to calculate the image

quality of the probes in SWIR, NIR , MWIR and LWIR spectra at all the standoff distances,

as shown in Table 3.9. From the results, the sharpness measure value decreases as standoff

distance increases in both cases of SWIR and NIR spectra. This is in consistence with the

visual perception of the quality of images in the datasets. The overall sharpness measure

values of SWIR images are higher compared to the sharpness measure values of NIR images.
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It is further observed that although the matching performance of SWIR images at the short

standoff distance is lower than that of NIR images in general, the performance of SWIR data

degrades with increasing standoff distance slower than that of NIR data does.

Table 3.9: Sharpness measure of the SWIR, NIR, MWIR and LWIR images at different
standoff distances

STATISTICS OF

SHARPNESS

MEASURE

SWIR

1.5 m

SWIR

50 m

SWIR

106 m

NIR

1.5 m

NIR

50 m

NIR

106 m
MWIR LWIR

Mean 0.5835 0.5112 0.4391 0.4390 0.3910 0.3741 0.3496 0.2946

Standard

Deviation
0.0707 0.0732 0.0730 0.0595 0.0461 0.0642 0.0633 0.1429

3.3 Composite Multi-Lobe Descriptor

3.3.1 General Structure

Chai et al. [91] have recently shown that the application of Gabor filters to visible light

images followed by the application of multi-lobe ordinal measures to filtered images yields a

robust feature extraction method. Inspired by this result, we introduce two smooth multi-

lobe kernel functions, with features specified by the original LBP and WLD, with multiple

smooth lobes specified by a Gaussian bell function and their parameters, and with a discrete

function specifying lobe placement parameters.

We thereafter construct a new compound operator – Composite Multi-Lobe Descriptor

(CMLD) [105, 106], which combines multi-lobe kernel functions and LBP, GLBP and WLD

and modifies their original forms into multi-lobe functions with smoothed neighborhoods.

The new descriptor encodes both the magnitude and phase information of an input image.

They are applied to the outputs of Gabor filters. The introduction of the multi-lobe functions

with smoothed neighborhoods makes CMLD robust against noise and poor image quality. An

example illustrating their robustness is presented in Figure 3.6. The three number matrices

positioned in the middle of the figure demonstrate the process of generating a noisy 3 × 3

image (at the bottom of the figure). The left side of the figure presents the result of encoding
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Figure 3.6: An example illustrating the robustness of MLLBP.

the original clean image with LBP and the result of encoding the noisy image with LBP.

Note that the expected code (encoding of the original image) and the actual code (encoding

of the noisy image) disagree. The right side of the figure presents encoding of the original

and the noisy images with MLLBP. In this case, the actual and expected codes are the same.

3.3.2 Multi-Lobe Descriptors

The kernel function of multi-lobe LBP (MLLBP) denoted as fMLLBP (z; θ, L) is mathe-

matically described as

fMLLBP (z; θ, L) = Cp

Np∑
l=1

1√
2πσl,θ,L

exp

[
−(z− µl,θ,L)T (z− µl,θ,L)

2σ2
l,θ,L

]

−Cn
Nn∑
k=1

1√
2πσ̂k,θ,L

exp

[
−(z− µ̂k,θ,L)T (z− µ̂k,θ,L)

2σ̂2
k,θ,L

] (3.4)

where z = (x, y) is the location of a pixel. µl,θ,L and σl,θ,L denote the central position

and the scale of the l-th positive lobe of the kernel function with orientation θ and total

number of lobes L, while µ̂k,θ,L and σ̂k,θ,L denote the central position and the scale of the

k-th negative lobe of the same kernel. Np and Nn are the numbers of positive and negative

lobes, respectively. Coefficients Cp and Cn balance the contribution of positive and negative
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lobes, i.e., CpNp = CnNn. An illustration of the constructed functions is provided in Figure

3.7.

(a) (b)

Figure 3.7: Examples of multi-lobe kernel functions at different orientations: (a) bi-lobe and
(b) tri-lobe.

To encode an image with MLLBP, the kernel function fMLLBP (z) is applied to an image

I(z) (the magnitude response of a Gabor filter as given in (2.1)) followed by the application

of the binary quantizer and the uniform pattern mapping as specified in (2.6) and (3.10),

MLLBPN(z) = U

{
N∑
i=1

I
[
I(z) ∗ f (i)

MLLBP (z)
]
·2i
}
, (3.5)

where ∗ stands for convolution, and f
(i)
MLLBP (z) denotes the i-th member in the ensemble of

all the kernel functions for MLLBP at all orientations and numbers of lobe, {fMLLBP (z; θ, L) :

θ = 1, 2, ...,Θ;L = 2, 3, ...,M}, with Θ and M being the total number of orientations and

the maximum number of lobes, respectively.

The multi-lobe version of GLBP (MLGLBP) involves the same kernel function as MLLBP.

After application of fMLLBP (z) to an image I(z), the output is processed with the thresh-

olding function Tt(·) and the uniform pattern mapping U(·) described in (2.7) and (2.8),

respectively:

MLGLBPN(z) = U

{
N∑
i=1

Tt
[
I(z) ∗ f (i)

MLLBP (z)
]
·2i
}
. (3.6)

The multi-lobe WLD (MLWLD) kernel function is designed following the outline for

developing the MLLBP kernel function with the difference that MLWLD involves the original

WLD operator instead of the original LBP. The mathematical expression for the kernel

function of MLWLD is as follows

fMLWLD(z; θ, L) =
L∑
l=1

Cl√
2πσl,θ,L

exp

[
−(z− µl,θ,L)T (z− µl,θ,L)

2σ2
l,θ,L

]
, (3.7)
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where µl,θ,L and σl,θ,L are the center and the scale of the kernel function at orientation θ,

and number of lobes L, respectively. {Cl} are the coefficients to keep a balance between

the positive and negative lobes. The ensemble of all the kernel functions for MLWLD at

each orientation and number of lobes is denoted by {fMLWLD(z; θ, L) : θ = 1, 2, ...,Θ;L =

2, 3, ...,M}, where Θ is the total orientations and M is the maximum number of lobes.

To complete the feature extraction with MLWLD, the kernel function fMLWLD(z) is ap-

plied to an input image I(z) (again, I(z) is the magnitude of a Gabor filter response described

in (2.1)) and then transformed by means of the arctangent function and the quantizer Ql as

specified in (2.3):

MLWLDN(z) = Ql

{
tan−1

[
N∑
i=1

I(z) ∗ f (i)
MLWLD(z)

I(z)

]}
, (3.8)

where f
(i)
MLWLD(z) is the i-th element of {fMLWLD(z; θ, L)}.

The multi-lobe version of the individual operators (ie. LBP, GLBP and WLD) can be

viewed as a generalization of their original forms. Alternatively, the original forms can be

seen as the limits of their multi-lobe kernel functions. An illustration of the relationship

between MLLBP and LBP is provided in Figure 3.8. It demonstrates the transformation of

MLLBP to LBP as the number of filter lobes, L reduces to 2 and the skewness of the lobes,

σ approaches zero.

𝐿 → 2 

𝜎 → 0 
… 

… 

Figure 3.8: Illustration of the relationship between multi-lobe LBP and LBP (in 1D).

3.3.3 Experimental Results

In this section we describe several cross spectral matching experiments and summarize

the results of matching SWIR and NIR probe images to a gallery of high quality visible

images. Results are presented for both short and long standoff distances. The heterogeneous
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images are encoded using five operators: (1) LBP, (2) HOG, (3) Gabor followed by LBP

(Gabor+LBP), (4) GOM, and (5) CMLD. The results of matching are displayed in the form

of Receiver Operating Characteristic (ROC) curves. We plot Genuine Accept Rate (GAR)

versus False Accept Rate (FAR). Summaries of Equal Error Rates (EER), d-prime values,

and GARs at the FAR set to 0.1 and 0.001 are provided in tables.

Matching SWIR Probes against Visible Gallery

The first experiment involves matching SWIR face images (the probes) to visible face

images (the gallery). The performance of the individual original operators such as HOG

and LBP can be treated as benchmarks. The results of matching parameterized by different

stand-off distances are shown in Figure 3.9, 3.10 and 3.11.

Short Standoff Distance For the case of the short standoff distance (Pre-TINDERS

dataset), the performance of the single operators, LBP and HOG, is inferior to the per-

formance of the combined operators Gabor+LBP, GOM and CMLD. Among the combined

operators, CMLD performs best. Table 3.10 presents a summary of EERs, d-prime values

and GAR values at FAR set to 0.1 and 0.001 values.
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Figure 3.9: ROC curves: matching SWIR probes at 1.5 m to visible gallery using CMLD.
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Table 3.10: EERs, d-prime and GAR values: matching SWIR probes at 1.5 m to visible
gallery using CMLD.

Method
GAR (%)

at FAR = 10−1

GAR (%)

at FAR = 10−3
EER(%) d-prime

LBP 70.70 29.56 20.61 1.66

HOG 80.47 32.55 15.36 1.86

Gabor+LBP 97.27 75.00 4.82 3.09

GOM 98.18 78.78 3.64 3.18

CMLD 99.09 83.72 3.12 3.29

Long Standoff Distance SWIR images at longer standoff distances (50 m and 106 m in

the case of TINDERS dataset) experience some loss of quality due to air turbulence, insuffi-

cient illumination, and optical effects during data acquisition. This immediately reflects on

the matching performance. Figure 3.10 and 3.11 display the results of cross-spectral match-

ing for 50 m and 106 m standoff distances, respectively. Gallery images are retained from the

previous session. Once again, the three composite operators outperform the single operators,

which was anticipated. However, at longer standoff distances their matching performance

(especially the values of GAR at FAR=10−3) drops nearly 2 times for the case of 50 m and

2.5 times for the case of 106 m. EERs, d-prime values and GARs at FAR set to 0.1 and

0.001 are summarized in Table 3.11 and 3.12.

Table 3.11: EERs, d-prime and GAR values: matching SWIR probes at 50 m to visible
gallery using CMLD.

Method
GAR (%)

at FAR = 10−1

GAR (%)

at FAR = 10−3
EER(%) d-prime

LBP 57.29 13.45 25.28 1.24

HOG 57.42 7.56 25.42 1.25

Gabor+LBP 85.01 46.15 12.89 2.25

GOM 86.41 39.98 11.97 2.27

CMLD 86.76 45.73 12.03 2.31
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Figure 3.10: ROC curves: matching SWIR probes at 50 m to visible gallery using CMLD.
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Figure 3.11: ROC curves: matching SWIR probes at 106 m to visible gallery using CMLD.

Matching NIR Probes against Visible Gallery

In the second experiment, NIR face images (probes) are matched to short range visible

face images (gallery). The results of matching parameterized by three stand-off distances

are shown in Figure 3.12, 3.13 and 3.14, respectively.
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Table 3.12: EERs, d-prime and GAR values: matching SWIR probes at 106 m to visible
gallery using CMLD.

Method
GAR (%)

at FAR = 10−1

GAR (%)

at FAR = 10−3
EER(%) d-prime

LBP 49.79 13.19 31.11 0.94

HOG 41.04 4.44 33.68 0.78

Gabor+LBP 80.00 31.81 15.83 1.99

GOM 80.07 32.78 14.78 2.02

CMLD 80.28 35.97 15.76 2.04

Short Standoff Distance Similar to the the case of SWIR probe images, all composite

operators demonstrate a relatively high performance compared to the individual operators.

CMLD appears to outperform the other two composite operators, Gabor+LBP and GOM.

Table 3.13 summarizes the EERs, d-primes and GARs at FAR equal to 0.1 and 0.001 for

this case.
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Figure 3.12: ROC curves: matching NIR probes at 1.5 m to visible gallery using CMLD.

Standoff Distance Long range NIR probes display a cardinally different performance. As

can be seen from Figure 2.5, NIR images at 106 m have much lower contrast and overall

quality compared to NIR images at 50 m. This difference in image quality immediately
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Table 3.13: EERs, d-prime and GAR values: matching NIR probes at 1.5 m to visible gallery
using CMLD.

Method
GAR (%)

at FAR = 10−1

GAR (%)

at FAR = 10−3
EER(%) d-prime

LBP 82.03 32.81 14.36 2.12

HOG 65.23 23.96 22.03 1.68

Gabor+LBP 86.98 56.77 11.82 2.29

GOM 90.89 73.31 9.27 2.59

CMLD 92.71 77.21 7.68 2.72

reflects on the matching performance of the two sets of probes (50 m probes and 106 m

probes). This also reflects on the interplay among the 5 operators. Figure 3.13 and Figure

3.14 display the cross matching results for 50 m and 106 m standoff distances, respectively.

Comparing the composite operators in terms of their performance, NIR at 50 m shows that

CMLD performs slightly better than GOM, followed by Gabor+LBP. At 106 m NIR probes

do not perform as well. In fact, the performance of composite operators drops at least three

times compared to the performance of the same operators applied to NIR at 50 m. Figure

3.14 presents the only case in our experiments when GOM performs slightly better than

CMLD. Similar to the results of all other experiments, the composite operators substantially

outperform the individual operators.

Table 3.14 and Table 3.15 present a summary of EERs, d-primes and GARs at FAR set

to 0.1 and 0.001 for the case of 50 m and 106 m standoff distances, respectively.

Table 3.14: EERs, d-prime and GAR values: matching NIR probes at 50 m to visible gallery
using CMLD.

Method
GAR (%)

at FAR = 10−1

GAR (%)

at FAR = 10−3
EER(%) d-prime

LBP 34.17 7.70 31.74 0.99

HOG 44.68 7.35 29.98 1.16

Gabor+LBP 86.13 56.79 12.54 2.33

GOM 90.06 64.29 10.00 2.65

CMLD 90.76 67.51 9.52 2.65
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Figure 3.13: ROC curves: matching NIR probes at 50 m to visible gallery using CMLD.
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Figure 3.14: ROC curves: matching NIR probes at 106 m to visible gallery using CMLD.
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Table 3.15: EERs, d-prime and GAR values: matching NIR probes at 106 m to visible
gallery using CMLD.

Method
GAR (%)

at FAR = 10−1

GAR (%)

at FAR = 10−3
EER(%) d-prime

LBP 16.95 3.18 43.30 0.45

HOG 21.12 0.64 42.87 0.52

Gabor+LBP 49.72 7.84 28.43 1.10

GOM 67.30 15.53 21.65 1.58

CMLD 64.12 14.62 22.55 1.51

3.4 Gabor Multi-Levels of Measurement

3.4.1 Levels of Measurement

A level of measurement, also known as a scale of measure, refers to the nature of in-

formation within the values assigned to a variable (some quantity) to be measured and the

relationship among the values. Psychologist Stanley S. Stevens proposed a typology (the best

known one) with four levels: the nominal, the ordinal, the interval, and the ratio levels [98].

The nominal level is often referred to as the qualitative level, and measurements made at

the other three levels are called quantitative data. Usage of the concept has been witnessed

in many disciplines such as natural sciences, linguistics and political science. Examples of

these classifications include taxonomic ranks in biology, parts of speech in grammar and

political affiliation in politics. A very common case can be seen in describing the gender of

human beings, as given in Figure 3.15.

The nominal level of measurement simply “names” the attributes of a variable to be

measured uniquely by assigning certain numerical values (as in the gender example in Figure

3.15). Neither ordering of the attributes is implied, nor arithmetic or logical operations on

the assigned values are meaningful. In ordinal measurement, however, the attributes can

be rank-ordered. Larger values suggest a greater amount of a certain quality. Nonetheless,

the distances (the difference) between values can not be defined. Therefore, the interval

between any two values is not interpretable in such an ordinal measure. When it comes

to interval measurement the distances between attributes do have meanings. For instance,
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Variable 

Attribute 

Value 

Relationship 

Female Male 

Gender 

1 2 

Figure 3.15: Nominal measurement for the gender.

when measuring the temperature (in Celsius), the distance between 15◦ and 25◦ is the same

as the distance between 30◦ and 40◦. But note that ratios between values still do not make

sense – 40◦ is not twice as hot as 20◦. Finally, in ratio measurement ordering, distance and

ratio are all meaningful and there is always an absolute zero defined. This means that one

can construct a meaningful fraction (or ratio) with a ratio variable. Practice of this level

of measurement is commonly seen in sciences such as measuring length, mass and force, to

name a few.

The four levels of measurement have increasing complexity (from nominal to ratio) and

measure different types of information. Different mathematical or logical operations are

defined at each level. Different operators or encoders used for face recognition can be clas-

sified into corresponding levels by examining the core operations involved in the operator.

A summary of the four levels of measurement and their properties as well as example face

recognition operators are given in Table 3.16.

In this section we design another new operator, named Interval Measure Descriptor

(IMD), in addition to the other two new operators we designed in previous sections of this

chapter. So far no other operators (to the best of our knowledge) described in the literature

are working at this level. We further propose to fuse it with operators at other levels to see

if a performance improvement can be gained by utilizing the complementary information.

The fused operator is named Gabor Multi-Levels of Measurement (GMLM).
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Table 3.16: Summary of the four levels of measurement with example operators.

Measurement
Arithmetic and

Logical Operations
Complexity Meaning

Example

Operator

nominal =, 6= lowest categories none

ordinal =, 6=, <, > mediate orders LBP

interval =, 6=, <, >, +, − mediate
distance

meaningful
IMD (ours)

ratio =, 6=, <, >, +, − , ×, ÷ highest
absolute zero

meaningful
HOG, WLD

3.4.2 Operator at the Interval Level

We propose an operator acting at the interval level of measurement and name it Interval

Measurement Descriptor (IMD). Given an input image, the operator encodes the difference

of every pixel and its neighbors (In our work we consider 8 neighbors). The range of the

difference is divided into K intervals, uniformly or non-uniformly. An illustration of a K-

interval division scheme is given in Figure 3.16. Each interval will then be assigned an integer

code. The final encoding is generated by concatenating the codes of all the neighbors. The

mathematical definition of IMD is given by

IMD(x) =
8∑
i=1

S(xi − x)Ki, (3.9)

where xi is a neighbor of the central pixel x within the input image and K is the total

number of intervals used. S(·) is the assigning function defined as (assuming K = 4)

S(x) =



0, −255 ≤ x < −128,

1, −128 ≤ x < 0,

2, 0 ≤ x < 128,

3, 128 ≤ x ≤ 255.

(3.10)

3.4.3 Gabor Multi-Levels of Measurement

In order to boost the recognition performance by utilizing complementary information

contained in the different levels of measurement, we further propose to fuse IMD with oper-
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Figure 3.16: Encoding with Interval Measurement Descriptor.

ators at other levels. An input image is first passed through a bank of Gabor filters. Then

the responses of the Gabor filters are passed through a set of operators working at three

different levels of measurement: LBP at the ordinal level, the proposed operator IMD at the

interval level, and HOG and WLD at the ratio level. The encoding results after the set of op-

erators will be concatenated. The final compound operator is named Gabor Multi-Levels of

Measurement (GMLM). A block diagram explaining the structure of this design is provided

in Figure 3.17.

3.4.4 Experimental Results

In this subsection we present the cross-spectral matching results using the proposed new

operator GMLM. The datasets involved are: Pre-TINDERS and TINDERS which consist of

SWIR and NIR images collected at both short and long standoff distances, PCSO which con-

sists of MWIR images collected at a short standoff distance, and Q-FIRE consisting of LWIR

images collected at a short standoff distance. More details for the datasets can be found

in Table 3.17. The matching performance using GMLM is compared to the performance

using two other operators: Gabor+LBP+GLBP+WLD and Gabor+LBP. The results are
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Figure 3.17: Block diagram for Gabor Multi-Levels of Measurement.

displayed as ROC curves. We plot Genuine Accept Rate (GAR) versus False Accept Rate

(FAR). Summaries of Equal Error Rates (EER), d-prime values, and GARs at the FAR set

to 0.1 and 0.001 are provided in tables.

Table 3.17: Summary of the datasets.

DATASET CLASS
TOTAL #

IMAGES
SPECTRUM

ACQUISITION

DISTANCE

ORIGINAL

RESOLUTION

Pre-

TINDERS

48 576

visible

NIR

SWIR

1.5 m

visible: 1600× 1200

NIR: 640× 512

SWIR: 640× 512

TINDERS 48 1255

visible

NIR

SWIR

visible: 1.5 m

NIR & SWIR :

50 m and 106 m

visible: 480× 640

NIR: 640× 512

SWIR: 640× 512

PCSO 1000 3000
visible

MWIR
1.5 m

visible: 480× 600

MWIR: 480× 640

Q-FIRE 82 431
visible

LWIR
2 m

visible: 1920× 1080

LWIR: 726× 480

Matching SWIR to Visible Images

The first experiment involving GMLM is conducted to match SWIR face images (the

probes) to visible face images (the gallery). The performance of the other two operators
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can be treated as benchmarks. The results of matching parameterized by different stand-off

distances are shown in Figure 3.18 (a) - (c).

For the case of the short standoff distance (1.5 m), the performance of Gabor+LBP+GLBP+WLD

and GMLM is better than the performance of Gabor+LBP, with the performance of the for-

mer two operators being very close to each other. As the standoff distance increases, the

performance gap between the former two operators and the third operator becomes larger.

When the distance reaches 106 m, GMLM performs better than Gabor+LBP+GLBP+WLD.

A summary of GAR at FAR=0.1 and 0.001, EER and d-prime values is given in Tables 3.18,

3.19 and 3.20 for the cases of 1.5 m, 50 m and 106 m, respectively.

Table 3.18: GAR, EER and d-prime:Matching SWIR images at 1.5 m against visible light
images using GMLM.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

Gabor+LBP 97.27 75.00 4.82 3.09

Gabor+LBP

GLBP+WLD
99.09 83.59 3.13 3.24

GMLM 99.09 81.38 3.50 3.24

Table 3.19: GAR, EER and d-prime:Matching SWIR images at 50 m against visible light
images using GMLM.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

Gabor+LBP 85.01 46.15 12.89 2.25

Gabor+LBP

GLBP+WLD
91.88 62.11 8.90 2.57

GMLM 91.60 58.54 8.89 2.60

Matching NIR to Visible Images

The second experiment is for matching probes of NIR face images against a gallery of

visible face images. Again, the performance of the two other operators can be treated as
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Figure 3.18: Matching SWIR against visible light images using GMLM: (a) SWIR 1.5 m,
(b) SWIR 50 m, and (c) SWIR 106 m.
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Table 3.20: GAR, EER and d-prime:Matching SWIR images at 106 m against visible light
images using GMLM.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

Gabor+LBP 80.00 31.81 15.83 1.99

Gabor+LBP

GLBP+WLD
82.50 44.79 14.17 2.00

GMLM 84.24 47.85 13.26 2.19

benchmarks. The results of matching parameterized by different stand-off distances are

shown in Figure 3.19 (a) - (c).

For all cases of the standoff distances, i.e., 1.5 m, 50 m and 106 m, the performance of

GMLM is the best among the three, with GMLM and Gabor+LBP+GLBP+WLD signif-

icantly better than Gabor+LBP. As the standoff distance increases, the gap between the

former two operators and the third operator becomes larger. Furthermore, GMLM appears

to be more advantageous than the other two operators especially when the distance becomes

larger. More matching parameters such as EER, d-prime can be found in Table 3.21, 3.22

and 3.23.

Table 3.21: GAR, EER and d-prime:Matching NIR images at 1.5 m against visible light
images using GMLM.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

Gabor+LBP 86.98 56.77 11.82 2.29

Gabor+LBP

GLBP+WLD
91.93 68.88 8.73 2.48

GMLM 90.89 74.74 9.38 2.55

Matching MWIR to Visible Images

The third experiment is conducted to match MWIR face probes against the visible light

face gallery. Again, the performance of the two other operators can be treated as benchmarks.

The results of matching parameterized by different stand-off distances are shown in Figure
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Figure 3.19: Matching NIR against visible light images using GMLM: (a) NIR 1.5 m, (b)
NIR 50 m, and (c) NIR 106 m.
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Table 3.22: GAR, EER and d-prime:Matching NIR images at 50 m against visible light
images using GMLM.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

Gabor+LBP 86.13 56.79 12.54 2.33

Gabor+LBP

GLBP+WLD
92.23 68.21 8.71 2.66

GMLM 93.70 74.86 7.38 2.92

Table 3.23: GAR, EER and d-prime:Matching NIR images at 106 m against visible light
images using GMLM.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

Gabor+LBP 49.72 7.84 28.43 1.10

Gabor+LBP

GLBP+WLD
64.48 13.28 23.24 1.49

GMLM 72.95 24.29 18.13 1.79

3.20.

For the only case of short standoff distance (the PCSO dataset), the performance of

GMLM is slightly better than Gabor+LBP+GLBP+WLD and they both are better than

Gabor+LBP. More matching parameters such EER, d-prime can be found in Table 3.24.

Table 3.24: GAR, EER and d-prime:Matching MWIR images against visible light images
using GMLM.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

Gabor+LBP 48.25 8.25 32.25 0.97

Gabor+LBP

GLBP+WLD
53.50 12.25 29.01 1.18

GMLM 57.00 12.00 26.75 1.22
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Figure 3.20: Matching MWIR against visible light images using GMLM.

Table 3.25: GAR, EER and d-prime:Matching LWIR images against visible light images
using GMLM.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

Gabor+LBP 38.89 6.48 34.64 0.74

Gabor+LBP

GLBP+WLD
40.74 5.93 34.08 0.71

GMLM 39.44 4.63 34.25 0.66

Matching LWIR to Visible Images

The last experiment is conducted to match LWIR face probes against the visible light

face gallery. The other two operators, Gabor+LBP+GLBP+WLD and Gabor+LBP, serve

as benchmarks. The results of matching parameterized by different stand-off distances are

shown in Figure 3.21.

For the only case of standoff distance at 2 m (the Q-FIRE dataset), the performance of

all the three operators is very close to each other: all lower than the performance of their

own in the SWIR, NIR and MWIR cases. More matching parameters such EER, d-prime

can be found in Table 3.25.
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Figure 3.21: Matching LWIR against visible light images using GMLM.

Table 3.26: Comparison of computation time: Encoding and matching of SWIR probes at
1.5 m.

Method

Computation Time

for Encoding (s)

Computation Time

for Matching (s)

Mean Std. Mean Std.

CMLD 10.2252 0.2328 0.8871 0.0250

GWLH 8.3186 0.0837 1.2698 0.0743

GMLM 13.2129 0.0883 1.4694 0.0441

3.5 Summary

This chapter focuses on designing local feature-based operators. Three new operators,

CMLD, GWLH and GMLM, are proposed for extraction and encoding of facial features.

After implementing the three operators, we present and analyze the experimental results

of matching SWIR, NIR or MWIR facial images to visible light images. Different standoff

distances varying from short (1.5 m) to long (50 m and 106 m) are considered.

The new operators outperform other popular operators such as LBP, HOG, Gabor fol-

lowed by LBP (Gabor+LBP), and GOM. As the standoff distance increases, the matching

performance of all operators drops. This drop is attributed to a relatively low quality of

SWIR and NIR face images at long standoff distances.
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Computation time – in addition to matching performance, is also evaluated and compared

among the three newly proposed operators (See Section 2.4 of Chapter 2 for more details).

An example for the case of encoding and matching SWIR 1.5 m probes is provided in Table

3.26.
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Chapter 4

Cross-Spectral Periocular Recognition

This chapter is dedicated to a new problem termed cross-spectral periocular recognition.

Due to its advantages over other biometric modalities (such as face and iris) in some special

aspects, periocular recognition has attracted attention from researchers but mostly in the

intra-spectral case. In this chapter we consider the cross-spectral case of periocular recog-

nition which gains its own importance in some special application scenarios. We look into

the feasibility of using the periocular region as a modality in a cross-spectral recognition

context. We experiment with the usage of two operators that we have recently developed for

the purpose of cross-spectral face recognition, namely CMLD and GWLH (See Chapter 3).

To demonstrate the advantages of the two operators, we compare them with both basic and

state-of-the-art methods. The cross matching performance of the two operators is demon-

strated on periocular datasets generated from three heterogeneous face datasets with images

acquired in NIR, SWIR, MWIR and visible light spectra. Both short and long standoff

distances are considered.

The outline of this chapter is as follows. Section 4.1 provides an introduction to the new

problem of cross-spectral periocular recognition. Section 4.2 defines the periocular region

used in this chapter and describes the datasets involved. Section 4.3 describes the general

structure of the recognition system. Section 4.4 presents experimental results when using

some baseline algorithms for this new problem. In Section 4.5 we present the performance

evaluation of using our newly proposed operator CMLD while in Section 4.6 we present the

performance evaluation for another new operator GWLH. The final section 4.7 summarizes
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the observations and conclusions of this chapter.

4.1 Introduction

Periocular recognition has been an active research area in the past several years [107–109].

Periocular regions can be categorized as a part of face, perhaps most visible in the presence

of face occlusion (See Figure 4.1). On the other hand, it can add to reliable iris recognition

(in visible and NIR spectra), especially when the quality of iris images is low. Although

many research challenges such as unconstrained subject’s presentation, uneven illumination,

and partial occlusions have been previously addressed in the literature [107,110–112], many

challenges remain. Furthermore, as new practical applications evolve, new challenges offered

by the applications arise and hence a need for development of new algorithms to mitigate

them.

Figure 4.1: Advantage of periocular recognition under face occulsion.

Surveillance at night or in harsh environments is one of the most recent applications. The

latest advances in manufacturing of small and cheap imaging devices sensitive in the active

infrared range (NIR and SWIR) [30,31] and the ability of these cameras to see through fog,

rain, at night and operate at long ranges provided researchers with a new type of imagery

and posed new research problems [35–38, 105, 113]. As observed, active IR energy is less

affected by scattering and absorption by smoke or dust than visible light. Also, unlike visible
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spectrum imaging, active IR imaging can be used to extract not only exterior but also useful

subcutaneous anatomical information. This results in a very different appearance of images

in active IR range compared to image in visible spectrum. Acknowledging these differences,

many related questions can be posed. What type of information should be extracted from

active IR images to successfully solve the problem of periocular recognition? How can we

match a periocular image in the active IR or MWIR spectral band to a periocular image in

the visible light band? The latter falls in the scope of heterogeneous periocular recognition.

However, results of heterogeneous matching of periocular regions have been barely re-

ported so far [39, 40, 114], which motivates the research work conducted in this chapter. If

addressed, heterogeneous matching of periocular regions will provide a baseline for the de-

velopment of new improved algorithms for heterogeneous face and periocular recognition at

night or in challenging environments. In addition to cross-spectral matching we explore the

effect of varying standoff distances on the recognition performance.

A few publications on cross-spectral face recognition have appeared in the literature.

Most of them were focused on algorithms for and analyses of matching NIR, SWIR, MWIR or

LWIR face images to a gallery of visible face images [38,83,101,115–117]. Some publications

assumed short standoff distances, while others explored the case of varying standoff distances

[35,38,115]. Popular algorithms such as Local Binary Pattern (LBP), Scale-Invariant Feature

Transform (SIFT), Histogram of Oriented Gradients (HOG) [70], Gabor Ordinal Measures

(GOM) [91] and their variants have been used for feature extraction and matching in the

past [118]. In this work, we use three composite operators, Gabor+WLD+LBP+GLBP,

GWLH and CMLD (see Chapter 2), and compare them with other individual and composite

operators. We demonstrate that the three operators can be adapted to successfully match

heterogeneous periocular regions at short (1.5 m) and long (50 and 106 m) standoff distances.

4.2 Periocular Region and Datasets

The periocular region is defined as the rectangular region centered around an eye in our

work. For simplification, we only choose the right eye for usage in the experiments. Figure

4.2 gives an illustration of the defined geometry of the periocular region.
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Figure 4.2: Definition of the periocular region

In our experiments we use four face datasets. The first two datasets, Pre-TINDERS

(Tactical Imager for Night/Day Extended-Range Surveillance) and TINDERS are collected

by the Advanced Technologies Group, West Virginia High Tech Consortium (WVHTC)

Foundation. A detailed description of the two datasets is provided in Section 2.3 from

Chapter 2. The third dataset is collected by Pinellas County Sheriff’s Office (PCSO) [119].

The fourth dataset Quality-Face/Iris Research Ensemble (Q-FIRE) is collected by Clarkson

University [120].

The PCSO dataset is composed of color and MWIR images of 1000 subjects. Images

are acquired at a short standoff distance of 1.5 m. Each class is represented by two MWIR

images collected in two different sessions and one color image. The resolution of all images

in both visible and MWIR spectral bands is 620× 480. Images collected in both bands are

in JPEG format.

The Q-FIRE dataset comprises color and LWIR face images of 82 subjects. Images are

acquired at a short standoff distance of 2 m. Each class is represented by two or four color

and two or four LWIR images collected in two different visits. The resolution of all images in

the visible band is 1920×1080 while the resolution for the MWIR spectral band is 726×480.

All images are in BMP format.

A summary of all the four datasets can be found in Table 3.17 from Chapter 3. Sample



Zhicheng Cao Chapter 4. Cross-Spectral Periocular Recognition 82

periocular images cropped from the original face images in the PCSO and Q-FIRE datasets

are shown in Figure 4.3.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Sample periocular images cropped from the original face images in the four
datasets: (a) visible light, (b) SWIR 1.5 m, (c) SWIR 50 m, (d) SWIR 106 m, (e) NIR 1.5
m, (f) NIR 50 m, (g) NIR 106 m and (h) LWIR 2 m.

4.3 Recognition System Framework

4.3.1 Preprocessing and Matching

The preprocessing and matching steps are the same as those used for cross-spectral face

recognition (see Section 2.2 of Chapter 2). Preprocessing steps include image alignment,

cropping and a simple intensity normalization. Geometric transformations are applied to all

original face images and then alignment using the position of the eyes and nose is imple-

mented. Fig. 4.4 (a)-(d) gives an illustration of the preprocessing step.

During matching, each encoded response of an operator is divided into non-overlapping

square blocks. Then histograms of each block are normalized and concatenated, resulting in

a template of features. The distance (the matching score) between two images is evaluated
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(a) (b) (c) (d)

Figure 4.4: Preprocessing of the periocular region: (a) aligned and cropped face, (b) aligned
and cropped eye, (c) original eye in SWIR and (d) log-transformed eye.

as a sum of symmetric I-divergence.

4.3.2 Feature Extraction

The next step after preprocessing is feature extraction. In this chapter, we employ

operators Gabor+WLD+LBP+GLBP, CMLD, GWLH and compare them with other basic

operators. The details of CMLD, GWLH can be found in Section 3.3 and Section 3.2 of

Chapter 3, respectively. An example of the feature extraction step using GWLH is given in

Fig. 4.5.

(a) (b) (c) (d) (e)

Figure 4.5: Filtering and encoding of a periocular image: (a) - (b) the magnitude and phase
of a Gabor filter response at scale 3 and orientation 0◦, respectively; (c) - (e) the results of
encoding Gabor magnitude with WLD, Gabor magnitude with LBP, and Gabor phase with
LBP, respectively (all at radius 1).
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4.4 Cross-Spectral Periocular Recognition Using Ga-

bor+WLD+LBP+GLBP

The combined operator Gabor+WLD+LBP+GLBP adopts a Gabor filter-based ap-

proach at the initial encoding stage, followed by an encoding scheme that involves three

operators (as described in Section 4.3.2) – WLD, LBP and GLBP to extract robust fea-

tures across different spectral bands. These three operators are designed to encode both

magnitude and phase of filtered images. Details of this scheme can be found in [38].

4.4.1 Matching SWIR against visible

Our first experiment involves matching SWIR periocular regions to visible periocular re-

gions. The heterogeneous images are encoded using three algorithms: (1) Gabor+Weber+LBP+

GLBP (our algorithm), (2) the original LBP and (3) the GOM-based algorithm [91]. The

performance of the LBP is used as a benchmark. The results of matching are displayed as

Receiver Operating Characteristic (ROC) curves in Figure 4.6. Visible light images form

the gallery. All SWIR images are involved as the test images. The results are shown for

right eye only. The curves are parameterized by three standoff distances. Note that for the

case of short standoff distance (Pre-TINDERS dataset) the value of Genuine Accept Rate

(GAR) is 0.75 at False Accept Rate (FAR) set to 0.01 for our algorithm compared to the

GAR of 0.28 and 0.56 at the same FAR for LBP and GOM, respectively. This comparison

clearly demonstrates the advantage of using our algorithm over both LBP and GOM for short

standoff distances. However, as the standoff distance increases to 50 m and then to 106 m,

the difference in matching performance of the three algorithms diminishes too. Performance

of all algorithms drops significantly.

Note that the useful information that helps matching heterogeneous images is contained

in the gradients of intensity and in their relative distribution, that is, in their relative location

and their density. Due to long standoff distances, the overall quality of SWIR images in the

TINDERS dataset is reduced. This, in turn, affects the quality of informative gradients and

their distribution in SWIR images compared to visible images or SWIR images in the Pre-
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TINDERS dataset. As demonstrated, these low quality gradients can be detected equally

well (or equally poorly) by LBP, GOM and our algorithm.
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1.5m: our method
50 m: our method
106 m: our method
1.5 m: LBP
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106 m: LBP
1.5 m: GOM
50m: GOM
106 m: GOM

Figure 4.6: Matching SWIR vs. visible. Short and long standoff distances.

4.4.2 Matching NIR against visible

The results of matching NIR periocular regions to visible periocular regions are shown

in Figure 4.7. Two standoff distances are tested: 50 m and 106 m. At 50 m, our algorithm

reaches a GAR value of 0.44 at FAR set to 0.1 while LBP and GOM reach GAR values of 0.37

and 0.40 at the same value of FAR, respectively. When the standoff distance increases to 106

m, our algorithm, LBP and GOM produce GAR values of 0.22, 0.15 and 0.17, respectively,

at FAR equal to 0.1. Again, this experiment demonstrates that a small region of the face

becomes a weak identifier for the case of heterogeneous face matching. Apart from this, NIR

images at large standoff distances are extremely noisy due to insufficient illumination (see

Fig. 4.3). This requires taking the quality of the images into account.

4.4.3 Matching MWIR against visible

In our last experiment, we match MWIR periocular regions to visible periocular regions.

The results shown in Figure 4.8 are for 200 periocular classes (right eye only). Color images
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Figure 4.7: Matching NIR vs. visible. Long standoff distance.

constitute the gallery while MWIR images (two per class) are test images. Again, LBP, GOM

and our algorithm are not designed to deal with such a large spectral gap between MWIR

and visible light. Due to very distinct imaging nature, MWIR and visible periocular regions

do not contain much intensity distribution and edge information in common. Nevertheless,

we achieved GAR of 0.35, 0.24 and 0.36 at FAR set to 0.1 by applying our algorithm, LBP

and GOM respectively.

4.5 Cross-Spectral Periocular Recognition Using CMLD

In this section we utilize the operator CMLD [105] proposed for cross-spectral face recog-

nition (refer to Chapter 3 for details) to study the problem of cross-spectral periocular

recognition and present the numerical results and analysis of matching heterogeneous peri-

ocular regions. Prior to matching, heterogeneous periocular regions are extracted from the

heterogeneous face images as mentioned in Section 4.3.1. To demonstrate the advantage

of our CMLD operator, we compare it with two other operators – one individual and one

compound: (1) LBP and (2) Gabor+HOG+LBP (or GLH). The performance of the three

considered schemes is displayed as ROC curves in Fig. 4.9 - Fig. 4.12.
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Figure 4.8: Matching MWIR vs. visible. Short standoff distance.

4.5.1 Matching SWIR to visible images

Our first experiment involves matching SWIR periocular images to visible periocular

images. Visible light images form the gallery while all SWIR images are involved as test

images. Both the SWIR and visible images are encoded using the seven algorithms mentioned

above. The results of matching are shown in Fig. 4.13 (a) - (c) for the standoff distances

1.5 m, 50 m and 106 m, respectively. A summary of GARs, EERs and d-prime values are

shown in Tables 4.1, 4.2 and 4.3.

The comparison in each of the three cases of standoff distances clearly demonstrates

the advantage of using our operator, CMLD, over the other two aoperators. However, as

the standoff distance increases to 50 m and then to 106 m, the difference in matching

performance of our algorithm and the others diminishes too. Performance of all algorithms

drops significantly.

Note that the useful information that helps matching heterogeneous images is contained

in the gradients of intensity and in their relative distribution, that is, their relative location

and their density. Due to long standoff distances the overall quality of SWIR images in

TINDERS dataset is reduced. This, in turn, affects the quality of informative gradients

and their distribution in SWIR images compared to visible images or SWIR images in the
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Pre-TINDERS dataset.

Table 4.1: GARs, EERs and d-prime values: matching SWIR probes at 1.5 m to visible
gallery using CMLD.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 50.26 13.28 27.87 1.22

GLH 82.55 40.23 14.07 2.23

CMLD 93.62 46.09 7.83 2.61

Table 4.2: GARs, EERs and d-prime values: matching SWIR probes at 50 m to visible
gallery using CMLD.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 19.82 0.100 40.98 0.46

GLH 38.52 6.65 32.01 0.96

CMLD 44.89 5.32 31.09 1.01

Table 4.3: GARs, EERs and d-prime values: matching SWIR probes at 106 m to visible
gallery using CMLD.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 19.24 0.100 42.80 0.32

GLH 30.76 3.13 35.49 0.75

CMLD 34.44 1.74 35.40 0.70

4.5.2 Matching NIR to visible images

The results of matching NIR periocular images to visible periocular images are shown in

Fig. 4.10 (a) - (c). The analyzed standoff distances are 1.5 m, 50 m and 106 m. A summary of

the GARs, EERs and d-prime values are shown in Table 4.4, Table 4.5 and Table 4.6 for each

of the considered cases. The results demonstrate the advantage of CMLD over the other two

operators in the case of short standoff distance but not at longer standoff distances. Again,
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the performance of all algorithms drops in the cases of long standoff distances. This requires

taking the quality of images into account, since NIR images at large standoff distances are

extremely noisy due to insufficient illumination (see Fig. 4.3).

Table 4.4: GARs, EERs and d-prime values: matching NIR probes at 1.5 m to visible gallery
using CMLD.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 95.18 45.83 7.03 2.89

GLH 89.97 56.12 10.02 2.54

CMLD 98.31 73.70 4.52 3.22

Table 4.5: GARs, EERs and d-prime values: matching NIR probes at 50 m to visible gallery
using CMLD.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 44.12 4.13 28.86 1.14

GLH 26.89 2.73 40.23 0.52

CMLD 33.54 2.24 33.52 0.87

Table 4.6: GARs, EERs and d-prime values: matching NIR probes at 106 m to visible gallery
using CMLD.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 22.46 0.42 39.01 0.49

GLH 12.43 0.10 46.27 0.18

CMLD 15.25 0.07 44.12 0.31

4.5.3 Matching MWIR to visible images

In our third experiment, we match MWIR periocular images to a gallery of visible peri-

ocular images. The results shown in Fig. 4.11 are for 200 periocular classes. Color images

(one per class) form the gallery while MWIR images (two per class) serve as the probes. It
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is clear that both our algorithm and the other algorithms are not designed to deal with such

a large spectral gap. MWIR images display the distribution of heat in a subject’s periocular

region while visible images characterize the reflectivity properties of subject’s skin. Again,

the only common information for heterogeneous matching lies at the edge gradients and their

relative distribution and density. MWIR and visible periocular regions do not share much

of this type of information. Nonetheless, CMLD is shown to be of higher performance than

the other two operators. A summary of the GARs, EERs and d-prime values is shown in

Table 4.7.

Table 4.7: GARs, EERs and d-prime values: matching MWIR probes to visible gallery using
CMLD.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 23.60 0.76 39.85 0.48

GLH 23.86 0.76 40.07 53.51

CMLD 32.49 1.02 34.26 0.78

4.5.4 Matching LWIR to visible images

In our last experiment, we match LWIR periocular images to a gallery of visible periocular

images. The results of cross-spectral matching are shown in Fig. 4.12. Visible images

form the gallery while LWIR images serve as the probes. As expected, the largest spectral

gap considered results in quite degraded performance of matching heterogeneous periocular

regions. LWIR and visible periocular regions do not contain significant edge information in

common. Nonetheless, CMLD is shown to more powerful than the other two operators. A

summary of the GARs, EERs and d-prime values is shown in Table 4.8.

4.6 Cross-Spectral Periocular Recognition Using GWLH

This section presents numerical results and an analysis of matching heterogeneous pe-

riocular regions using GWLH [121] (Refer to Chapter 3 for details). Prior to matching,
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Table 4.8: GARs, EERs and d-prime values: matching MWIR probes to visible gallery using
CMLD.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 23.60 0.76 39.85 0.48

GLH 23.86 0.76 40.07 53.51

CMLD 32.49 1.02 34.26 0.78

heterogeneous periocular regions are extracted from the heterogeneous face images as men-

tioned in Section 4.3.1. To demonstrate the advantage of our GWLH operator, we compare

it with six other operators: (1) LBP, (2) HOG, (3) Gabor filter, (4) HOG+LBP, (5) Ga-

bor+HOG+LBP (or GLH), and (6) Gabor+WLD+LBP+GLBP. The first three operators

are applied as single operators, while the latter three are compound operators fused using

different combinations of the three simple operators and WLD. The performance of the seven

considered schemes is displayed as ROC curves in Figs. 4.6 - Fig. 4.8.

4.6.1 Matching SWIR to visible images

Our first experiment involves matching SWIR periocular images to visible periocular

images. Visible light images form the gallery while all SWIR images are involved as test

images. Both the SWIR and visible images are encoded using the seven algorithms mentioned

above. The results of matching are shown in Fig. 4.13 (a) - (c) for the standoff distances

1.5 m, 50 m and 106 m, respectively. A summary of GARs, EERs and d-prime values are

shown in Tables 4.9, 4.10 and 4.11.

The comparison in each of the three cases of standoff distances clearly demonstrates the

advantage of using our algorithm, GWLH, over the other six algorithms. However, as the

standoff distance increases to 50 m and then to 106 m, the difference in matching performance

of our algorithm and the others diminishes too. The performance of all algorithms drops

significantly.
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Table 4.9: GARs, EERs and d-prime values: matching SWIR probes at 1.5 m to visible
gallery.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 50.26 13.28 27.87 1.22

Gabor 62.50 13.80 22.93 1.38

HOG 64.58 13.93 20.96 1.56

HOG+LBP 52.34 14.06 25.14 1.34

GLH 82.55 40.23 14.07 2.23

Gabor+WLD

LBP+GLBP
91.67 57.42 8.99 2.62

GWLH 93.88 64.19 7.32 2.73

Table 4.10: GARs, EERs and d-prime values: matching SWIR probes at 50 m to visible
gallery.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 19.82 0.100 40.98 0.46

Gabor 26.05 2.31 40.45 0.44

HOG 28.99 1.26 35.44 0.63

HOG+LBP 22.06 0.35 37.81 0.57

GLH 38.52 6.65 32.01 0.96

Gabor+WLD

LBP+GLBP
50.21 8.61 26.71 1.21

GWLH 56.23 7.56 24.87 1.33
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Table 4.11: GARs, EERs and d-prime values: matching SWIR probes at 106 m to visible
gallery.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 19.24 0.100 42.80 0.32

Gabor 20.49 1.74 45.21 0.27

HOG 22.29 0.69 40.15 0.39

HOG+LBP 18.89 0.21 42.27 0.37

GLH 30.76 3.13 35.49 0.75

Gabor+WLD

LBP+GLBP
40.07 4.65 32.70 0.85

GWLH 44.58 5.83 31.18 0.98

4.6.2 Matching NIR to visible images

The results of matching NIR periocular images to visible periocular images are shown in

Fig. 4.14 (a) - (c). The analyzed standoff distances are 1.5 m, 50 m and 106 m. A summary

of the GARs, EERs and d-prime values are shown in Table 4.12, Table 4.13 and Table 4.14

for each of the considered cases. Again, this experiment demonstrates the advantage of

GWLH over other operators, in general, although the performance of all algorithms drops

considerably in the case of long standoff distances. This requires taking the quality of

images into account, since NIR images at large standoff distances are extremely noisy due

to insufficient illumination (see Fig. 4.3).

4.6.3 Matching MWIR to visible images

In our next experiment, we match MWIR periocular images to a gallery of visible peri-

ocular images. The results shown in Fig. 4.15 are for 200 periocular classes. Color images

(one per class) form the gallery while MWIR images (two per class) serve as the probes. It

is clear that both our algorithm and other algorithms are not designed to deal with such a

large spectral gap which causes dramatically different appearance in MWIR and visible light

images due to different imaging mechanism (as explained in Section 4.5.3). However, it is

consistant with SWIR and NIR spectra that GWLH has advantage over all other operators.
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Table 4.12: GARs, EERs and d-prime values: matching NIR probes at 1.5 m to visible
gallery.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 95.18 45.83 7.03 2.89

Gabor 54.95 13.02 26.04 1.25

HOG 79.95 23.05 14.06 2.17

HOG+LBP 94.40 46.88 7.44 2.89

GLH 89.97 56.12 10.02 2.54

Gabor+WLD

LBP+GLBP
95.70 69.53 6.25 2.95

GWLH 98.05 79.04 4.42 3.18

Table 4.13: GARs, EERs and d-prime values: matching NIR probes at 50 m to visible
gallery.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 44.12 4.13 28.86 1.14

Gabor 18.07 0.28 43.40 0.19

HOG 12.75 0.21 43.54 0.32

HOG+LBP 30.81 1.12 34.54 0.80

GLH 26.89 2.73 40.23 0.52

Gabor+WLD

LBP+GLBP
37.96 3.15 34.51 0.81

GWLH 54.97 9.17 25.71 1.27
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Table 4.14: GARs, EERs and d-prime values: matching NIR probes at 106 m to visible
gallery.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 22.46 0.42 39.01 0.49

Gabor 10.02 0.10 49.20 0.01

HOG 10.31 0.10 48.38 0.07

HOG+LBP 15.54 0.10 43.97 0.28

GLH 12.43 0.10 46.27 0.18

Gabor+WLD

LBP+GLBP
15.18 0.35 45.70 0.23

GWLH 21.82 0.49 42.84 0.39

A summary of the GARs, EERs and d-prime values is shown in Table 4.15.

Table 4.15: GARs, EERs and d-prime values: matching MWIR probes to visible gallery.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 23.60 0.76 39.85 0.48

Gabor 14.47 0.25 47.68 0.16

HOG 21.57 0.51 39.84 0.44

HOG+LBP 24.87 0.51 39.60 0.51

GLH 23.86 0.76 40.07 53.51

Gabor+WLD

LBP+GLBP
34.52 2.54 34.98 0.79

GWLH 42.39 3.55 30.46 0.92

4.6.4 Matching LWIR to visible images

In our last experiment, we match LWIR periocular images to a gallery of visible periocular

images. The results of cross-spectral matching are shown in Fig. 4.16. Visible images

form the gallery while LWIR images serve as the probes. As expected, the largest spectral

gap considered results in quite degraded performance of matching heterogeneous periocular
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regions. LWIR and visible periocular regions do not contain much of edge information in

common. A summary of the GARs, EERs and d-prime values is shown in Table 4.16.

Table 4.16: GARs, EERs and d-prime values: matching LWIR probes to visible gallery.

METHOD
GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)
d-prime

LBP 8.52 0.37 50.37 0.05

Gabor 15.74 0.19 45.74 0.12

HOG 27.78 0.37 42.22 0.33

HOG+LBP 15.37 0.10 46.20 0.20

GLH 23.70 1.85 41.30 0.32

Gabor+WLD

+LBP+GLBP
28.70 9.25 40.00 0.36

GWLH 29.44 9.26 39.06 0.38

4.6.5 Impact of Quality on Performance

As anticipated, the quality of active and passive IR (ie., SWIR, NIR, MWIR and LWIR)

probes affects the matching performance. In this chapter, the quality of the probes is a

function of the standoff distance. We use an adaptive sharpness measure [104] to calculate

the image quality of the probes in SWIR, NIR, MWIR and LWIR spectra at all the three

standoff distances, as shown in Table 4.17. From the results, the sharpness measure value

decreases as standoff distance increases in both cases of SWIR and NIR spectra. This is in

consistence with the visual perception of the quality of images in the datasets. The overall

sharpness measure values of SWIR images are higher compared to the sharpness measure

values of NIR images. It is further observed that although the matching performance of

SWIR images at the short standoff distance is lower than that of NIR images in general, the

performance of SWIR data degrades with increasing standoff distance slower than that of

NIR data does.

After analyzing the matching results, we have made the following observations and con-

clusions:
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Table 4.17: Sharpness measure of the SWIR, NIR, MWIR and LWIR images at different
standoff distances

STATISTICS OF

SHARPNESS

MEASURE

SWIR

1.5 m

SWIR

50 m

SWIR

106 m

NIR

1.5 m

NIR

50 m

NIR

106 m
MWIR LWIR

Mean 0.5835 0.5112 0.4391 0.4390 0.3910 0.3741 0.3496 0.2273

Standard

Deviation
0.0707 0.0732 0.0730 0.0595 0.0461 0.0642 0.0633 0.0656

• The new operator GWLH substantially outperforms three single operators – LBP,

HOG and Gabor filters – as well as other three state-of-the-art compound operators

for heterogeneous periocular matching between SWIR, NIR, MWIR and LWIR spectra

and visible light at both short and long standoff distances (except for NIR at 106 m).

• The performance of all the algorithms on SWIR vs visible and NIR vs visible decreases

as the standoff distance increases due to the reduced image quality at longer distances.

• The gap between the matching performance of compound operators and that of simple

operators grows proportionally with the increasing quality of heterogeneous data.

• The different imaging principles of MWIR (or LWIR) and visible face images resulted

in seriously degraded performance for all involved algorithms. The spectral gap is very

large.

4.7 Summary

This chapter raises a new problem of study: periocular recognition in a cross-spectral

situation. It reviews recent research work on periocular recognition as well as discussing the

advantage of using periocular recognition as a new modality over face recognition. It then

addresses the new problem by utilizing two newly proposed operators, CMLD and GWLH,

as the tool for feature extraction and compares them with other baseline algorithms. It

further generates heterogeneous periocular datasets based on existing heterogeneous face

datasets, and presents the results of matching SWIR, NIR and MWIR periocular probes to
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a gallery of visible periocular images. Both short (1.5 m) and long (50 m and 106 m) standoff

distances were considered. The new operators CMLD and GWLH substantially outperform

the baseline algorithms LBP, HOG, Gabor filters and three other compound operators when

applied to heterogeneous periocular regions collected at a short standoff distance in the case

of the three spectral bands.

As the standoff distance increases (SWIR vs. visible and NIR vs. visible), the matching

performance of the heterogeneous periocular images drops for all the algorithms. This drop

is attributed to a relatively low quality of heterogeneous images at long standoff distances.

When matching MWIR periocular regions to visible regions (only a short standoff distance

is considered), our algorithm displayed a relatively low performance. In this case it is due

to the different nature of MWIR and visible imagery: MWIR imagery measures the heat of

a body while visible imagery measures reflected light.

The results of performance evaluation presented in this work can be used as reference for

future study on this new topic of cross-spectral periocular recognition.
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Figure 4.9: Cross-spectral matching of periocular regions using CMLD: (a) SWIR 1.5 m, (b)
SWIR 50 m and (c) SWIR 106 m.



Zhicheng Cao Chapter 4. Cross-Spectral Periocular Recognition 100

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

FAR

G
A

R

 

 

CMLD
LBP
GLH

(a)

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

FAR

G
A

R

 

 

CMLD
LBP
GLH

(b)

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

FAR

G
A

R

 

 

CMLD
LBP
GLH

(c)

Figure 4.10: Cross-spectral matching of periocular regions using CMLD: (a) NIR 1.5 m, (b)
NIR 50 m and (c) NIR 106 m.
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Figure 4.11: Cross-spectral matching of periocular regions using CMLD: MWIR.
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Figure 4.12: Cross-spectral matching of periocular regions using CMLD: LWIR.
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Figure 4.13: Cross-spectral matching of periocular regions using GWLH: (a) SWIR 1.5 m,
(b) SWIR 50 m and (c) SWIR 106 m.
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Figure 4.14: Cross-spectral matching of periocular regions using GWLH: (a) NIR 1.5 m, (b)
NIR 50 m and (c) NIR 106 m.
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Figure 4.15: Cross-spectral matching of periocular regions using GWLH: MWIR.
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Figure 4.16: Cross-spectral matching of periocular regions using GWLH: LWIR.
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Chapter 5

Cross-Spectral Partial Face

Recognition

The problem of face recognition has been intensively studied for decades. Numerous tech-

niques have been proposed. However, most of these research works has primarily focused on

using full frontal or profile facial images, leaving partial face recognition as a relatively unex-

plored field. Thus, matching partial heterogeneous face images to a gallery of visible images

is a new and challenging problem. This problem is motivated by a number of surveillance ap-

plications such as recognition of subjects at night or in the presence of severe environmental

conditions. Standoff distances may range from a meter to hundreds of meters.

Our latest experiments have shown that face recognition algorithms recently developed

in our research group can be adapted to perform cross-spectral matching of partial face

images. The images are encoded with Local Binary Patterns and Weber Local Descriptor

preceded by Gabor filters or with Composite Multi-lobe Descriptor and then matched by

means of a symmetric Kullbuck-Leibler metric. Our analysis has shown that when division

of the face into horizontal face regions, such as (1) forehead and eyebrows, (2) eyes and

partial nose, and (3) lower part of the nose and mouth, the three regions display similar

matching performance. When division of the face into characteristic patches, such as the

eye, the nose and the mouth, the nose is shown to be most informative in terms of recognition

performance.
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5.1 Introduction

Although face recognition as a research area has been intensely studied in the past two

decades, many challenges still exist, among which is the problem of partial face recognition.

Imagery of partial faces is frequently generated in unconstrained face recognition scenarios,

where occlusion of the face is likely to happen. The topic has not been well studied so far and

remains an open problem [85, 122–125]. Furthermore, as new practical applications evolve,

new challenges offered by the applications arise and hence a need for development of new

encoding and matching algorithms to mitigate them. Cross-spectral face recognition is one

of these recent applications. Surveillance at night or in harsh environments has appealed

to new imaging modalities (such as NIR, SWIR, MWIR and LWIR) and evolved into new

applications.

In this chapter we combine the problem of cross-spectral recognition with the problem

of partial face recognition, that is, cross-spectral partial face recognition. The periocular

region can be seen as a special case of partial face and periocular recognition has been

recently explored (see for example, [107, 110–112, 125]). We have already spent efforts on

studying the problem of periocular recognition in the cross-spectral setting in Chapter 4. In

this chapter, we will address the problem of cross-spectral partial face recognition in a more

general way by considering multiple facial regions. To be specific, we choose three facial

regions in two different ways: (a) the top, the middle and the bottom regions in the case

of division of the face into horizontal strips, and (b) the eye, the nose and the mouth in

the case of division of the face into characteristic patches. We are especially interested in

two questions. The first question is whether a facial part is sufficient for a face recognition

task when facial occlusion is present. The second question is which facial part is the most

informative in terms of recognition performance for conducting such a face recognition task.

The literature contains a few references on partial face matching of NIR face images and

visible images [85]. However, results of heterogeneous matching of a partial face or periocular

region in SWIR and MWIR spectra have not been previously reported, and this motivates

the research described in our work. If addressed, heterogeneous partial face matching and

heterogeneous matching of periocular regions will provide a baseline for development of new
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improved algorithms for heterogeneous face recognition at night or in challenging environ-

ments. In addition to heterogeneous partial face matching we explore the effect of varying

standoff distances on the recognition performance of the selected cross-spectral matching

algorithm.

In this work, we use a method based on Gabor Generalized LBP combined with Gabor

Weber descriptors. The algorithm was originally developed in our lab for cross-spectral

face recognition [38,116]. We use this algorithm to conduct two different types experiments

corresponding to the two ways of division of the face, in order to find out the aforementioned

questions raised by us.

The remainder of this chapter is organized as follows. Section 5.1 provides an introduction

to the new problem of cross-spectral partial face recognition and a review of related topics

and works. Section 5.2 studies the problem of cross-spectral partial face recognition using the

first division scheme (horizontal strips). It gives the definition of partial face and describes

the datasets used in the experiments. The experimental results for partial face recognition

in two ways of covering face are presented. Section 5.3 explores the problem of cross-spectral

partial face recognition using the other division scheme (characteristic patches). A summary

of this chapter is provided in Section 5.4.

5.2 Cross-Spectral Partial Face Recognition with Hor-

izontal Strips

5.2.1 Partial Face

In this section we study the problem of partial face recognition using the first face division

scheme – horizontal strips. The face is divided into facial parts in the shape of rectangular

strips vertically from the top to the bottom. We consider three facial parts: (1) the top

which involves eyes and nasal bridge, (2) the middle which involves cheeks and nasal tip,

and (3) the bottom which involves mouth and a part of the chin. An example of a face

partitioned into the three parts is shown in Figure 5.1. The three regions shown in Fig. 5.1

have the following dimensions: 160× 56 for the eyes and nose bridge, 160× 46 for the nose
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and the area of cheeks, and 160 × 52 for the mouth and a part of the chin in the case of

larger original images, while 112 × 40, 112 × 34 and 112 × 38, respectively, in the case of

smaller original images.

Figure 5.1: The first scheme of division of the face into three horizontal strips.

5.2.2 Informative Region

Since there are three different parts after the division of a face, we are interested in

finding out which part contributes more to the overall recognition performance, as well as

how much recognition performance is gained when including a new facial part. Therefore,

we perform two experiments for each cross-spectral matching (i.e., NIR vs visible, SWIR vs

visible and MWIR vs visible). The first experiment assumes covering two out of the three

areas and keeps the third area in cross-spectral matching. The second experiment assumes

a sequential face covering, in which we decrease the area of the face involved in the cross-

spectral matching from all 3 regions exposed to a single region exposed. By conducting these

two experiments we intend to identify the most informative part of the face for the purpose

of cross-spectral matching. Clearly, this analysis is bound to the encoding algorithm that

we use to produce results. Thus, all conclusions are relative to this algorithm.

5.2.3 Recognition System

The recognition framework follows the one we have used in the previous chapters: prepro-

cessing, feature extraction and matching (see Section 2.2 in Chapter 2). For preprocessing

and matching we use image alignment, cropping and a simple intensity normalization for

prepeocessing while sum of two I-divergence distances as the metric to compare the feature
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(a)

(b)

Figure 5.2: Two ways of covering the face: (a) Covering Two out of Three, (b) Sequential
Covering.

vectors for matching. For feature extraction, we use a recent algorithm developed in our lab:

Gabor+WLD+LBP+GLBP. Details of this algorithm can be found in Chapter 2. Here we

only give a brief description.

The composite operator Gabor+WLD+LBP+GLBP adopts a Gabor filter-based ap-

proach at the initial encoding stage, followed by an encoding scheme that involves three

operators – WLD, LBP and GLBP to extract robust features across different spectral bands.

These three operators are designed to encode both magnitude and phase of filtered images.

Each normalized image in any spectrum is processed with a bank of Gabor filters at 2 differ-

ent scales and 8 orientations generating 16 responses in total. A normalized and preprocessed

face image is convolved with the Gabor filter at orientation θ and scale s resulting in the

filtered image Y (z, θ, s). Both magnitude and phase responses are used to effectively encode

heterogeneous data block by block. The magnitude response is encoded using two distinct

operators: SWLD [71] and uniform LBP [65]. For encoding the phase response we adopt a

uniform generalized LBP operator (GLBP). All operators consider the relationship among

12 neighbors at both radii r = 1 and r = 2.
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5.2.4 Datasets

In our experiments for the first face division scheme, we use three datasets as the original

datasets (before division of the face). The first two datasets, Pre-TINDERS (Tactical Imager

for Night/Day Extended-Range Surveillance) and TINDERS are collected by the Advanced

Technologies Group, West Virginia High Tech Consortium (WVHTC) Foundation. The

third dataset is collected by Pinellas County Sheriff’s Office (PCSO). A detailed description

of the datasets and sample images (see Figure 4.3) are provided in Section 2.3 of Chapter 2.

Sample images from the datasets using the first division scheme are shown in Figure 5.3.

(a) (b) (c)

(d) (e) (f)

Figure 5.3: Partial face datasets: (a) visible light, (b) SWIR 1.5 m , (c) SWIR 50 m, (d)
SWIR 106 m, (e) NIR 50 m and (f) NIR 106 m.

5.2.5 Covering Two out of Three Facial Regions

In this section, we discuss the first experiment: Face Recognition when Covering Two out

of Three Facial Regions. Figure 5.4 (a) shows the performance of the matching algorithm

described in Section 5.2.3 when query SWIR images are compared to a gallery of high quality
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visible images. Three ROCs demonstrate performance for SWIR data collected at standoff

distances of 1.5 m, 50 m and 106 m. It is interesting to note that each face sub-region

contributes approximately the same amount of information to matching performance. The

performance of these sub-regions is very similar for each given standoff distance. Note the

fair performance of the cross-spectral matcher. Even for a large stand off distance such as

106 m the value of GAR is about 0.6 for the FAR set to 0.1.

Figure 5.4 (b) shows the performance of the cross-spectral matcher with MWIR probe

images from the PCSO database. Again, three different regions show similar matching

performance. However, the performance of the algorithm on MWIR data is significantly

lower compared to the performance on SWIR data. The GAR is about 0.4 when the value

of FAR is set to 0.1. Similar to the case with periocular regions, this performance drop can

be attributed to the attempt of cross matching data of very different origin - thermal vs.

reflective.

Figure 5.4 (c) show the performance of the cross-spectral matcher with NIR probe images

from TINDERS dataset at long stand off distances of 50 m and 106 m, respectively. Again,

the gallery is formed from high quality visible images collected at a short standoff distance.

Similar to the case of SWIR and MWIR probes, the performance of each individual region

(one of the three) is quite similar. Note that the ROC curves for these two cases are positioned

between the pair of ROC curves - MWIR and SWIR at 106 m - and the other pair of ROC

curves - SWIR at 1.5 m and SWIR at 50 m. This is consistent with the observations for the

experiments with heterogeneous periocular regions.

5.2.6 Sequential Covering

The second experiment is performed with the purpose to determine how much of the face

could be covered to satisfy a minimal performance requirement in practical applications.

The results of cross-spectral matching for this case are shown in Figure 5.5.

The ROC curves displayed in Figure 5.5 (a) indicate that covering the area of mouth and

chin followed by removal of the area of nose and cheeks uniformly degrades performance.

Note that increasing standoff distance reduces quality of SWIR images (see Figure 5.3 (c)
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Figure 5.4: Covering two out of three facial parts: (a) SWIR, (b) NIR and (c) MWIR.
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Figure 5.5: Incremental face covering: (a) SWIR, (b) NIR and (c) MWIR.
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and (d)) and thus degrades performance. The performance of MWIR probes (see Figure 5.5

(b)) is lower compared to the performance of SWIR probes.

NIR probes at 50 m standoff distance demonstrate relatively high performance compared

to NIR probes at 106 m. standoff distance (shown in Figure 5.5 (c)). One potential expla-

nation for this performance drop is the weakness of NIR source of illumination, which is

insufficient for quality imaging at this distance (see Figure 5.3 (e) and (f)). Another inter-

esting fact about the performance of NIR probes is that covering the area of mouth and chin

does not degrade performance.

5.3 Cross-Spectral Partial Face Recognition with Char-

acteristic Patches

This section studies the problem of cross-spectral matching of partial faces using the

second scheme of face division – characteristic patches. The regions are selected such that

different facial regions are of different characteristics, (i.e., different organs) rather than being

“mixed up” as in the first scheme.

5.3.1 The Second Face Division Scheme

After cropping and normalization of the face image (see Section 2.2.1 in Chapter 2 for

more details), three regions of the face are selected and segmented: (a) the eye, (b) the nose,

and (c) the mouth. An example of a face partitioned into the three regions is shown in Fig.

5.6. The three regions are chosen to have an area as close as possible for the sake of a fair

comparison. The exact dimensions of each region are as follows : 40×38 for the eye, 24×62

for the nose, and 50× 30 for the mouth. Partial face datasets are generated from the same

datasets employed in previous cross-spectral face experiments which encompass the whole

IR spectrum – SWIR, NIR, MWIR and LWIR.

For each cross-spectral comparison we perform an experiment where the three face regions

are compared using the CMLD-I operator. By conducting these experiments we intend to

identify the most informative part of the face for the purpose of cross-spectral matching.
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Figure 5.6: The second scheme of division of the face into three characteristic patches.

Clearly, this analysis is bound to the encoding algorithm that we use to produce results.

Thus, all conclusions are relative to this algorithm.

5.3.2 Informativity Experiments

Matching SWIR Probes against Visible Gallery

Figure 5.7 (a) - (c) show the performance of the three different face regions encoded

with CMLD-I when query SWIR images at standoff distance of 1.5 m, 50 m and 106 m

are compared to a gallery of high quality visible images, respectively. As observed from the

results the region of the eye outperforms the other two regions of nose and mouth, which

suggests that it is more preferable to use the eye region than the other two to conduct a

partial face recognition task. This observation is especially pronounced at shorter standoff

distances. As the distance increases, the performance gap between the eye and other two

regions narrows.

It is worth noting that even with a significant reduction of area compared to the full face,

the eye alone is able achieve a GAR of 0.9362 at FAR = 0.1. This validates the usage of

the eye region in partial face recognition. Metrics of matching performance such as EERs,

d-primes, GARs with FAR set to 0.1 and 0.001, and rank-1 identification rates are provided

in the first three rows of Table 5.1.
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Figure 5.7: Matching IR against visible light facial regions: (a)-(c) SWIR 1.5 m, 50 m and
106 m; (d)-(f) NIR 1.5 m, 50 m and 106 m; (g) MWIR; (e) LWIR.
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Table 5.1: EERs, d-prime and GAR values: matching IR to visible light facial regions.

Spectrum

& Distance

Facial

Region

GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3

EER

(%)

d-

prime

Rank-1

Id. Rate

SWIR 1.5 m

Eye 93.62 46.09 7.83 2.61 65.63

Nose 56.64 8.85 26.41 1.29 32.29

Mouth 35.68 12.37 40.63 0.65 36.46

SWIR 50 m

Eye 44.89 5.32 31.08 1.01 29.51

Nose 37.61 4.13 34.44 0.84 30.21

Mouth 32.98 0.77 38.55 0.65 22.22

SWIR 106 m

Eye 34.44 1.74 35.4 0.7 17.36

Nose 31.11 1.81 35.48 0.71 17.01

Mouth 27.29 1.11 40.37 0.58 12.15

NIR 1.5 m

Eye 98.31 73.7 4.52 3.22 72.39

Nose 73.18 28.65 18.33 1.81 46.88

Mouth 35.42 16.93 41.54 0.66 37.50

NIR 50 m

Eye 33.54 2.24 33.52 0.87 23.26

Nose 21.15 0.56 40.14 0.51 6.25

Mouth 19.68 1.19 45.19 0.32 8.33

NIR 106 m

Eye 15.25 0.07 44.12 0.31 4.86

Nose 12.64 0.28 46.19 0.15 2.78

Mouth 13.35 0.28 47.28 0.1 4.17

MWIR

Eye 32.49 1.02 34.26 0.78 3.30

Nose 13.00 0.50 46.25 0.17 1.38

Mouth 7.61 0.01 51.53 0.08 1.13

LWIR

Eye 30.37 0.56 39.58 0.36 7.51

Nose 21.11 0.19 40.59 0.39 2.31

Mouth 19.63 0.56 43.50 0.38 3.47
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Matching NIR Probes against Visible Gallery

Figure 5.7 (d) - (f) display the performance of matching NIR probe images at standoff

distances of 1.5 m, 50 m and 106 m, respectively, to visible light images. Again, the gallery

is formed of high quality visible images collected at a short standoff distance. Similar to the

case of cross-spectral matching between SWIR and visible light, the performance of the eye

region is at the top. Again, as standoff distance increases, the advantage of using the eye

over other regions diminishes. This is consistent with observations in the experiment with

the SWIR band. A summary of the EERs, d-primes, GARs with FAR set to 0.1 and 0.001,

and the rank-1 identification rates is included in Table 5.1.

Matching MWIR Probes against Visible Gallery

Figure 5.7 (g) demonstrates the performance of the cross-spectral matching between

MWIR probe images and visible light images. The three different face regions have lower

matching performance compared to the case of SWIR at a short distance due to degraded

imagery. For the eye region, the GAR is now 0.3249 with FAR set to 0.1 compared with

GAR of 0.9362 for the SWIR 1.5 m case. The performance drop can be attributed to the

attempt of cross-matching data of very different origin – thermal vs. reflective. Nevertheless,

the eye region is substantially better than the other two. Detailed matching results can be

found in Table 5.1.

Matching LWIR Probes against Visible Gallery

The last experiment for the partial face recognition study is matching LWIR partial face

probes against visible ones. Figure 5.7 (h) displays the matching results for this case. Due

to the same reason as for the MWIR case, the three different face regions show substantially

degraded performance compared to the case of SWIR at 1.5 m. For the eye region, the GAR

is now 0.3037 at FAR = 0.1 dropping from the GAR of 0.9362 in the SWIR 1.5 m case.

Once again the conclusion that the eye region is more preferable than the other two regions

still holds. Detailed matching results can be found in the last three rows of Table 5.1.
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5.4 Summary

This chapter deals with a new problem within the area of face recognition: cross-spectral

partial face recognition. We presented the performance analysis of matching heterogeneous

partial faces using two different schemes of face division. The encoding and matching algo-

rithms were previously developed in our lab for the purpose of heterogeneous face recognition

and adapted to work with partial face.

For the first scheme, we presented the results of partial face matching with probes being

SWIR, NIR, and MWIR data and galleries composed of visible face images. Heterogeneous

faces were partitioned into three non-overlapping horizontal strips from the top of the face to

the bottom. We conducted two experiments: (1) covering of two out of three regions and (2)

sequential covering of the face. The numerical results demonstrated that each region of face

contributes almost an equal amount of information in terms of matching performance. This

conclusion is valid for all three cross-spectral comparisons and for varying standoff distances,

but under the condition that the heterogeneous images are encoded using Gabor Weber and

Gabor Generalized LBP algorithm.

For the second scheme, the face was partitioned into three characteristic patches. We

presented the results of partial face matching with probes being NIR, SWIR, MWIR, and

LWIR data and galleries composed of visible face images. A newly developed operator

CMLD is further utilized to conduct a study on cross-spectral partial face recognition where

different facial regions are compared to find out the best one in terms of informativity. The

experimental results show that for all IR bands and all standoff distances the eye region is the

most advantageous among the three facial regions in terms of informativity for conducting

a cross-spectral partial face recognition task.
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Chapter 6

Image Quality Parity

This chapter addresses the problem of image quality disparity in cross-spectral face recog-

nition. The problem is common when the heterogeneous images are acquired at different

standoff distances. A technique called image quality parity is proposed for cross-spectral

face recognition when there is a quality disparity between the probes and the gallery. It is

achieved in two approaches — either to blur the images of higher quality (visible light images

in our case) or to enhance the images of lower quality (infrared images). For blurring, we

utilize a Gaussian smoothing kernel on the images with higher quality. For enhancement, a

BM3D-based denoising step and a Laplacian-based sharpening step are combined. A qual-

ity measure tool called Adaptive Sharpness Measure is used for guiding the blurring and

enhancement processes.

Heterogeneous face images are encoded using Gabor+WLD+LBP+GLBP as described in

Chapter 2. Matching scores are generated by means of a Kullback-Leibler distance between

two feature vectors. The two datasets employed in the experiments are Pre-TINDERS

and TINDERS composed of heterogeneous face images acquired in NIR, SWIR and visible

light spectra. To demonstrate the advantages of the proposed technique, we compare the

performance of the cases in which SWIR and NIR spectra are matched against visible light

at long distances of 50 and 106 meters, both before and after blurring and enhancement.

The outline of this chapter is as follows. Section 6.1 provides an introduction to the

role of image quality and different factors contributing to quality degradation. A review of

quality measure methods and utilizing quality for biometric systems is given subsequently.
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Section 6.2 describes the details of the quality measure we adopt in this work – Adaptive

Sharpness Measure (ASM). In Section 6.3 we introduce the techique of image quality parity

for heterogeneous images by blurring. We explain the techique of image quality parity by

enhancement in Section 6.4. Section 6.5 evaluates and presents the recognition performance

with or without the usage of the blurring and enhancement approaches. The final section

6.6 summarizes the work and discoveries of the chapter.

6.1 Introduction

Image quality plays an important role in a face recognition system [126, 127]. The per-

formance of the system is always affected by the quality of the input data despite having a

good recognition algorithm. Common factors leading to a degraded image are poor lighting,

defocus blur, camera noise, atmospheric conditions (such as fog, snow and rain), off-angle,

occlusion, and so on.

There are two categories of quality measures: generic and biometric modality spe-

cific [128]. The former can be used for any biometric modality while the latter is designed to

address issues related to a specific modality such as iris, fingerprints and faces [129–132]. Ex-

amples of generic quality measures that are used to quantify the degradation of a perceived

image – typically compared to a reference good quality image – include image contrast,

brightness, illumination and sharpness. Since factors like contrast, brightness and illumi-

nation are already dealt with to some degree at the normalization stage in our recognition

system (see Chapter 2 for details), we hereby in this chapter focus on sharpness which can

be a very common degradation factor for a surveillance scenario at a long standoff distance

under severe atmospheric conditions. An illustration of SWIR images degrading with in-

creasing standoff distance due to atmospheric noise is shown in Figure 6.1, where standoff

distance varies from 1.5 m to 50 m and 106 m.

A lot of work has been done on image quality assessment or guidance for the biometric

recognition task. Grother and Tabassi in their paper [133], relate the NIST Fingerprint

Image Quality (NFIQ) to the matching performance of a fingerprint matcher. A Normalized

Matching Score (NMS) measure is introduced and they show that quality of the finger-
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(a) (b) (c)

Figure 6.1: Quality degradation with increasing standoff distance due to atmospheric noise:
(a) SWIR 1.5 m, (b) SWIR 50 m and (c) SWIR 106 m.

print samples is related to NMS (especially genuine scores) in the fingerprint recognition

problem. The papers of Nandakumar et al. [134, 135] estimate the joint densities of qual-

ity and matching scores (genuine and impostor distributions). Then a likelihood ratio test

between the estimated genuine and impostor distribution is adopted to evaluate the verifi-

cation performance. In the work of Nandakumar et al. [134] the method is demonstrated on

fingerprint and iris biometrics; for each modality a quality-based density is evaluated; hence

a multi-modal distribution is obtained as a product of the individual density modalities.

An improvement is obtained with respect to the case when the modalities are combined

without the quality measures. In the work of Nandakumar et al. [135], the joint densities

of single biometrics are described by a Gaussian Mixture Model (GMM). The model pa-

rameters are estimated with an Expectation Maximization (EM) algorithm. The works of

Kryszczuk and Drygajlo [136, 137], involve biometric sample quality at the matching stage

by concatenating matching scores due to the original matcher and quality measures. These

quality-based matchers are called Q-stack classifiers; the method is demonstrated on face

and fingerprint biometrics by adopting Support Vector Machines (SVM), Bayes classifiers

and Linear Discriminant-based classifiers. In spite of the fundamental theory presented in

these works, the obtained improvement of performance on individual face and fingerprint

modalities is marginal. The work of Zuo and Schmid [138, 139] studied the assessment and

fusion of quality factors in iris images and videos. They further used nonlinear mappings on

iris quality measures and verification scores to predict and boost the performance [140].

As a summary, all these works either use the image quality measure (or score) to either
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accept/discard a biometric sample or to use it as a weak feature for the recognition task. In

this work, we utilize quality measure from a different perspective – to use it as an indicator

for image blurring or sharpening. After this image processing stage, a degraded probe image

and the reference image of high quality (and vice versa) will be brought to a similar level of

quality, which yields higher recognition performance than the case without this stage.

6.2 Quality Measure

As mentioned earlier, in this chapter we focus on sharpness as the factor contributing to

image quality. The question then goes to what sharpness measure to choose. As a cost func-

tion in real-time applications, robustness to noise and computational complexity are two pri-

mary concerns for choosing a sharpness measure. Gradient-based sharpness measures [141],

especially the famous Tenengrad measure [142, 143], are known for their effectiveness and

computational efficiency. Moreover, their pixel-based computations facilitate the differenti-

ation between edge and noise pixels. Indeed, the differentiation reduces to simply assigning

different weights to these pixels instead of tedious edge detection.

In this work, we utilize a gradient-based sharpness measure called Adaptive Sharpness

Measure (ASM) by Yao et al. [104]. The main idea behind is to apply weight allocation

schemes for adaptive unsharp masking (AUM) to sharpness measures based on the argument

that actual visual perception is more sensitive to the transitions in the vicinity of edges, whose

responses should be enhanced by allocating larger weights. The weights for the horizontal

and the vertical directions, Lx(x, y) and Ly(x, y) respectively, are given by{
Lx(x, y) = [I(x+ 1, y)− I(x− 1, y)]2,

Ly(x, y) = [I(x, y + 1)− I(x, y − 1)]2,
(6.1)

where I(x, y) denotes the image intensity. The Adaptive Sharpness Measure then becomes

S =
∑
M

∑
N

(LxI
2
x + LyI

2
y ), (6.2)

where Ix and Iy are the horizontal and vertical components obtained using the Sobel operator,

respectively. M and N represent the total number of image rows and columns, respectively.
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As an illustration, the ASM values of the sample images in Figure 6.1 are calculated and

listed in Table 6.1.

Measure SWIR 1.5 m SWIR 50 m SWIR 106 m

Adaptive

Sharpness Measures
0.8592 0.5323 0.3998

Table 6.1: Adaptive Sharpness Measure values for the sample images in Figure 6.1

6.3 Quality Parity by Blurring

After the choice of Adaptive Sharpness Measure as the quality measure tool, we then use

it as an indicator for image blurring or sharpening. For example, during blurring we use it

as an indicator of how much blurring should be applied to an image to lower its quality to

the level of its heterogeneous counterpart. To degrade the quality of an image by blurring,

we propose to use a simple smoothing function – a Gaussian kernel – to fulfill this goal. Its

mathematical description is given by:

Is(x, y) = I(x, y) ∗ 1

σ
√

2π
e−(x

2+y2)/2σ2

, (6.3)

where I(x, y) is an input image and Is(x, y) is the output result after blurring, σ is the

standard deviation and the symbol ∗ denotes the convolution operation.

An illustration of the blurring function is shown in Figure 6.3. The effect of blurring

using Gaussian-based blurring function is shown in Figure 6.3, where the original visible

light image and the blurred outputs are compared. The sharpness measure values are also

calculated and listed in Table 6.2.

Measure
Original visible

light image

Blurring

with σ = 0.1

Blurring

with σ = 0.2

Adaptive

Sharpness Measures
0.6476 0.5871 0.5861

Table 6.2: Adaptive Sharpness Measure values for the sample images in Figure 6.3
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Figure 6.2: The Gaussian smoothing kernel.

(a) (b) (c)

Figure 6.3: The effect of blurring: (a) original visible light image (grayscale converted), (b)
blurring with σ = 0.1 and (c) blurring with σ = 0.2.

6.4 Quality Parity by Enhancement

The second approach proposed in this chapter for quality parity of heterogeneous face

images is image enhancement by combination of denoising and sharpening. The combination

of the two enhancement stages has the advantage of retaining the useful facial details while

suppressing the noise. For denoising we utilize a technique called BM3D which is based

on sparse representation in a 3D transform-domain [144]. For sharpening we use a method

based on the Laplacian operator.
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6.4.1 Denoising

The first part of BM3D is grouping where 2-dimensional fragments of a given image

(i.e., image blocks) are collected according to similarity and then a 3D array is constructed

by stacking the similar image neighborhoods together. A block-matching method which

has been extensively used for motion estimation in video compression is used to realize the

grouping task. The importance of grouping is to enable the usage of a higher-dimensional

filtering of each group, that is, the second part of the BM3D technique: collaborative filtering.

The collaborative filtering of the group of image blocks produces estimates in a way such

that each group of blocks collaborates for the filtering of all others, and vice versa. Given a

group of n image blocks, a total of n estimates will be produced: one for each of the grouped

fragments. An effective collaborative filtering is realized as shrinkage in the transform domain

consisting of the following: (a) apply a 3-dimensional linear transform to the group, (b)

shrink (e.g. by soft- and hard-thresholding or Wiener filtering) the transform coefficients to

attenuate the noise, and (c) invert the linear transform to produce estimates of all grouped

image blocks. For better denoising performance, an improved grouping and collaborative

filtering step with Wiener filtering is further added after the first step of basic grouping and

collaborative filtering with hard-thresholding. A flowchart illustrating the two-step BM3D

algorithm is presented in Figure 6.4. Denoising of a face image using the BM3D algorithm

is displayed in Figure 6.5 (b) as an example.

Table 6.3: Adaptive Sharpness Measure values before and after denoising or sharpening.

Quality Measure
Original

Image

After

Denoising

After Further

Sharpening

Adaptive Sharpness Measure 0.5850 0.3859 0.6479

6.4.2 Sharpening

After denoising, a sharpening stage is performed to recover the useful facial details par-

tially attenuated during the denoising stage. In this chapter we use a Laplacian-based

sharpening technique. It starts with finding the second order derivatives with the Laplacian
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Figure 6.4: Flowchart of the BM3D denosing algorithm.

(a) (b) (c)

Figure 6.5: Denoising and sharpening: (a) original SWIR 50 m face image, (b) denoised
output, and (c) further sharpened output.

operator:

∇2I =
∂2I

∂x2
+
∂2I

∂y2
, (6.4)

with the components in the x- and y-directions as:
∂2I
∂x2

= I(x+ 1, y) + I(x− 1, y)− 2I(x, y),

∂2I
∂y2

= I(x, y + 1) + I(x, y − 1)− 2I(x, y),

(6.5)

where I(x, y) is an input image (the output of denoising). ∂2I
∂x2

and ∂2I
∂y2

are the directional

derivatives along the x- and y-axis, respectively. To finally obtain the sharpened image, the

output after processing with the Laplacian operator is added to the original input image:

Ish(x, y) = I(x, y) + c∇2I, (6.6)



Zhicheng Cao Chapter 6. Image Quality Parity 128

where Ish(x, y) is the sharpened output image and c is a weight which adjusts the degree

of sharpening needed. An example of the effect of sharpening is provided in Figure 6.5 (c).

The ASM values for the original SWIR image, the image after denoising and the image after

further sharpening are listed in Table 6.3.

6.5 Evaluation

In this section, we present the recognition performance for image quality parity via

blurring or enhancement and compare them with the cases where blurring or enhance-

ment are not applied. The recognition framework follows the same one that is described

in Chapter 2. The heterogeneous images are encoded using a composite operator named

Gabor+WLD+LBP+GLBP which combines Gabor filters, LBP, GLBP and WLD [38, 39].

In our experiments we use the TINDERS dataset (for detailed information, refer to Section

2.3 in Chapter 2). Results are presented for both 50 m and 106 m standoff distances.

6.5.1 Blurring of Visible Images

Matching SWIR Probes against Visible Gallery

The first experiment involves matching low quality SWIR face images acquired at 50 m

and 106 m to visible face images of high quality acquired at a short standoff distance of 1.5

m. Image blurring is applied to the visible face images. The value of the blurring parameter,

σ, is set to be 0.1 when matching visible images to SWIR images at 50 m and is set to be

σ = 0.2 when matching visible to SWIR images at 106 m. The heterogeneous images are

encoded using the composite operator Gabor+WLD+LBP+GLBP. The results of matching

with and without blurring are shown in Figure 6.6. Values of EER, d-prime and GAR at

FAR set to 0.1 and 0.001 are summarized in Table 6.4.

SWIR images at a long standoff distance experience some loss of quality due to air turbu-

lence, insufficient illumination, and optical effects during data acquisition, which reflects on

the matching performance [105, 121]. As the distance increases the impact of image quality

becomes more pronounced. The results clearly show an improvement of performance after
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Figure 6.6: ROC curves: matching SWIR probes to visible gallery with blurring.

Table 6.4: GAR, EER and d-prime values: matching SWIR probes to visible gallery with
blurring.

Spectrum

& Distance
Method

GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3
EER(%) d-prime

SWIR 50 m

Original 91.88 62.11 8.90 2.57

Blurring 92.93 67.09 7.92 2.74

SWIR 106 m

Original 82.50 44.79 14.17 2.00

Blurring 86.74 51.67 11.75 2.27

using the blurring approach for both standoff distances of 50 m and 106 m.

Matching NIR Probes against Visible Gallery

In the second experiment, NIR face images (the probes) are matched to short standoff

visible face images (the gallery). Again, the results of matching are parameterized by the

standoff distances of 50 m and 106 m, which are shown in Figure 6.7. The values of σ are set

to be 0.1 and 0.2 for matching visible images to NIR images at 50 m and 106 m, respectively.

The encoding algorithm is also chosen to be Gabor+WLD+LBP+GLBP. Similar to the case

of matching SWIR images to visible images, camera and atmospheric effects have significant

impact on the recognition performance, especially when the distance is set to 106 m. Once
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again, the blurring technique is proven to be beneficial for matching heterogeneous images

with different quality. EER, d-prime and GAR at FAR set to 0.1 and 0.001 are summarized

in Table 6.5 for both 50 m and 106 m distances, before and after blurring.
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Figure 6.7: ROC curves: matching NIR probes to visible gallery with blurring.

Table 6.5: GAR, EER and d-prime values: matching NIR probes to visible gallery with
blurring.

Spectrum

& Distance
Method

GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3
EER(%) d-prime

NIR 50 m

Original 92.23 68.21 8.71 2.66

Blurring 93.42 70.24 7.63 2.77

NIR 106 m

Original 64.48 13.28 23.24 1.49

Blurring 66.38 15.96 21.73 1.57

6.5.2 Enhancement of Infrared Images

Matching SWIR Probes against Visible Gallery

In the first experiment for the enhancement approach to image quality parity, SWIR

face images (probes) at the standoff of 50 m and 106 m are denoised, sharpened and then

matched to short range visible face images (gallery). The results of matching parameterized
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by the stand-off distance are shown in Figure 6.8. EER, d-prime and GAR at FAR set to 0.1

and 0.001 are summarized in Table 6.6. By comparing the matching performance before and

after the application of image enhancement, we clearly see the benefit of using this approach

– a substantial performance improvement is observed.
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Figure 6.8: ROC curves: matching SWIR probes to visible gallery with enhancement.

Table 6.6: GAR, EER and d-prime values: matching SWIR probes to visible gallery with
enhancement by denoising and sharpening.

Spectrum

& Distance
Method

GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3
EER(%) d-prime

SWIR 50 m

Original 91.88 62.11 8.90 2.57

Enhancement 94.33 67.44 7.29 2.83

SWIR 106 m

Original 82.50 44.79 14.17 2.00

Enhancement 90.00 52.15 10.00 2.55

Matching NIR Probes against Visible Gallery

In the next experiment using the enhancement approach, NIR face images at long standoff

distances are matched against short standoff visible face images. The matching results

parameterized by the standoff distances of 50 m and 106 m are displayed in Figure 6.9. EER,
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d-prime and GAR at FAR set to 0.1 and 0.001 are summarized in Table 6.7 for both 50 m

and 106 distances, before and after enhancement. Once again, the enhancement approach is

proven to be beneficial for matching heterogeneous images with different quality.
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Figure 6.9: ROC curves: matching NIR probes to visible gallery with enhancement.

Table 6.7: GAR, EER and d-prime values: matching NIR probes to visible gallery with
enhancement by denoising and sharpening.

Spectrum

& Distance
Method

GAR (%) at

FAR = 10−1

GAR (%) at

FAR = 10−3
EER(%) d-prime

NIR 50 m

Original 92.23 68.21 8.71 2.66

Enhancement 94.12 70.87 7.12 2.78

NIR 106 m

Original 64.48 13.28 23.24 1.49

Enhancement 66.81 16.38 20.39 1.64

The following paragraph summarizes the observations in the experiments:

• Infrared images acquired at a long standoff distance suffer from quality degradation

due to atmospheric and camera effects which leads to a serious drop in the recognition

performance.
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• For both the SWIR and NIR spectra at both 50 meters and 106 meters, usage of image

quality parity via blurring or enhancement leads to an improvement in the recognition

performance, especially in the case of SWIR spectrum.

• As the quality disparity between the heterogeneous images increases – such as when

the standoff distance increases from 50 m to 106 m, both methods are shown to be

more beneficial (a larger performance improvement), especially for the SWIR band.

• In all cases of infrared bands and standoff distances, the enhancement approach appears

to be slightly more advantageous than the blurring approach.

6.6 Summary

This chapter proposes a technique called image quality parity for cross-spectral face

recognition when there is a quality disparity between the probes and the gallery. We consider

the case where the gallery is composed of high quality face images collected at a short standoff

distance and the probes are long range NIR or SWIR face images of low quality. We propose

two approaches to the realization of image quality parity: (a) blurring the images of higher

quality (visible light images in our case); and (b) enhancing of the images of lower quality

(infrared images in our case). For blurring, a Gaussian smoothing kernel is utilized and

applied to the visible light images. For enhancement, a BM3D-based denoising step and

a Laplacian-based sharpening step are combined together. Adaptive Sharpness Measure is

used as the tool for quantifying the amount of blurring and enhancement. An overview of

related research work on image quality for biometric systems is also provided.

We present the evaluation of matching SWIR and NIR facial images to visible facial

images. Long standoff distances at both 50 m and 106 m are considered. Both cases of

recognition with and without blurring or enhancement are considered and compared. In all

cases the proposed technique of quality parity (both approaches) is proven to be beneficial

for the cross-spectral recognition task. The results are documented in figures and tables.
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Chapter 7

Conclusion and Future Work

The final chapter summarizes the work and contributions made in the dissertation as well

as envisioning possible future research problems that can be further explored. The work that

has been done includes: a thorough comparative study on cross-spectral face recognition

using some of the currently available or well-known operators; a detailed description of

three operators newly proposed by us for the problem of cross-spectral face recognition;

proposal and implementation of the technique of image quality parity for cross-spectral face

recognition; a new topic of cross-spectral partial face recognition (cross-spectral periocular

recognition as a special case). Potential topics for the future work include: to convert

some special facial areas in infrared (especially SWIR) images due to the distinct imaging

nature of infrared from visible light; to fuse infrared imagery acquired at different standoff

distances to improve the recognition performance; to propose a general quality measure for

heterogeneous images (i.e., independent of the electromagnetic wavelength); to design a new

operator working at the nominal level of measurement; to study the problem of cross-spectral

iris recognition.

7.1 Contribution and Conclusion

7.1.1 Cross-Spectral Face Recognition

Chapter 2 presented an overview of recent advances in the field of heterogeneous face

recognition, emphasizing the topic of local operators developed for matching IR face probes to
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a gallery composed of high quality visible face images. A brief description of each individual

and composite operator (10 in total) was provided. The list of individual operators included

LBP, GLBP, WLD, HOG and Gabor filters. Composite operators included Gabor+LBP,

Gabor+GLBP, Gabor+WLD, GOM, and Gabor+LBP+GLBP+WLD.

The results of matching SWIR and NIR facial images to visible facial images were pre-

sented as ROC curves as well as in tables with GARs at two specific levels of FAR, EERs

and d-prime values. Both short (1.5 m) and long (50 m and 106 m) standoff distances were

considered. Conclusions from the experimental results are made as follows:

• The combination of Gabor filters followed by other local operators substantially outper-

formed the original LBP and the other individual operators. Among all the methods,

Gabor+WLD+LBP+GLBP and GOM are the best in terms of recognition perfor-

mance.

• As the standoff distance increased, the matching performance of all the methods

dropped. This drop was attributed to a relatively low quality of imagery at long

standoff distances (SWIR vs. visible and NIR vs. visible).

7.1.2 New Operators for Feature Extraction

Chapter 3 proposed three new operators – CMLD, GWLH and GMLM to extract and

encode face features for the task of cross-spectral face recognition. After implementing the

three operators, we present and analyze the experimental results of matching SWIR, NIR,

MWIR or LWIR facial images to visible light images. Different standoff distances varying

from short (1.5 m) to intermediate (50 m) and long (106 m) for SWIR and NIR are considered.

We made the following conclusions from the experimental results:

• The three operators substantially outperformed several popular simple operators such

as LBP, HOG and WLD. They also outperformed the other composite operators such

as Gabor followed by LBP (Gabor+LBP), and GOM.

• As the standoff distance increased, the matching performance of the heterogeneous

face images dropped. This drop is attributed to a relatively low quality of SWIR and
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NIR face images at long standoff distances.

7.1.3 Cross-Spectral Periocular Recognition

Chapter 4 introduced a new topic of study: periocular recognition in a cross-spectral

context. It reviewed recent research work on periocular recognition as well as discussed the

advantage of using periocular recognition as a new modality over face recognition. It then

addressed the new problem by utilizing two newly proposed operators–CMLD and GWLH

as the tool for feature extraction and compared them with other baseline algorithms. It

further generated heterogeneous periocular datasets based on existing heterogeneous face

datasets, and presented the results of matching SWIR, NIR and MWIR periocular probes

to a gallery of visible periocular images. Both short (1.5 m) and long (50 m and 106 m)

standoff distances were considered.

The experimental results led us to the following conclusions:

• The new operators CMLD and GWLH substantially outperformed baseline algorithms

such as LBP, HOG, Gabor filters and three other compound operators when applied

to heterogeneous periocular regions collected at a short standoff distance in the case

of the three spectral bands.

• As the standoff distance increased (SWIR vs. visible and NIR vs. visible), the match-

ing performance of the heterogeneous periocular images dropped for all the algorithms.

This drop is attributed to a relatively low quality of heterogeneous images at long stand-

off distances. When matching MWIR periocular regions to visible regions (only a short

standoff distance is considered), our algorithm displayed a relatively low performance.

In this case it was due to the different nature of MWIR and visible imagery: MWIR

imagery measures the heat of a body while visible imagery measures reflected light.

7.1.4 Cross-Spectral Partial Face Recognition

Chapter 5 deals with the new problem of cross-spectral partial face recognition. We

presented the analysis of matching performance of partial matching of heterogeneous face.



Zhicheng Cao Chapter 7. Conclusion and Future Work 137

The encoding and matching algorithms have been previously developed in our lab for the

purpose of heterogeneous face recognition and adapted to work with partial face.

We presented the results of partial face matching with probes being SWIR, NIR, and

MWIR data and a gallery composed of visible face images. The heterogeneous face was par-

titioned into three non-overlapping regions, either in a way of dividing them into horizontal

strips or in a way of dividing them into characteristic patches. For the first way of division,

we conducted two experiments: (1) covering of two out of three regions and (2) sequential

covering of face. For the second way, we conducted an experiment to find out the most

informative region in terms of recognition performance.

Conclusions from the experimental results are made as follows:

• The experimental results demonstrated that for the first way of division the three

regions of the face contributed almost an equal amount of information in terms of

matching performance. This conclusion was valid for all three cross-spectral compar-

isons and for varying standoff distances, but under the condition that the heterogeneous

images were encoded using the Gabor WLD and Gabor Generalized LBP algorithms.

When dividing the face using the second way, the periocular region was shown to be

the most informative for all infrared bands and at all standoff distances.

• Increasing standoff distance substantially degraded performance of probes in SWIR

and NIR spectra. The different nature of MWIR and visible face images resulted in

seriously degraded performance of partial face matching when MWIR images were used

as probes.

7.1.5 Image Quality Parity

Chapter 6 proposed to use a technique called image quality parity for cross-spectral face

recognition when there is a quality disparity between the probes and the gallery. This prob-

lem is common when the heterogeneous images are acquired at different standoff distances.

Image quality parity was achieved in two approaches: (a) utilizing a Gaussian blurring func-

tion on the images of higher quality (the visible light images in our case); (b) enhancing the

images of lower quality (the infrared images in our case) by a combination of denoising and
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sharpening. Adaptive Sharpness Measure was used as a guidance tool during the blurring

process. An overview of related research work on image quality for biometric systems was

also provided.

Conclusions from the experimental results were as follows:

• For both the SWIR and NIR spectra at both 50 meters and 106 meters, the usage of

image quality parity by the two approaches led to a substantial improvement in the

recognition performance.

• As the quality disparity between the heterogeneous images increases – i.e, as the stand-

off distance increases from 50 m to 106 m, both methods were shown to be more ben-

eficial (a more substantial performance improvement), especially for the SWIR band.

• In all cases of infrared bands and standoff distances, the enhancement approach ap-

peared to be slightly more advantageous than the blurring approach.

7.2 Future Work

In Chapter 3 we addressed the problem of cross-spectral face recognition with a focus on

designing new high-performance operators. However, the same problem can be approached

by making the heterogeneous images look more “similar” to each other. For example, there

are some special facial areas within the infrared images which look quite distinct from the

areas within the visible light images due to different imaging nature. We can convert the

special areas of the infrared images to be more similar to the areas of the visible light images

by learning a relationship between these areas. By doing so, we can see if it helps improving

the final recognition performance.

In Chapter 6, we addressed the problem of image quality disparity by blurring or en-

hancement. However, we can improve infrared images of lower quality by fusing the images

collected at different stand-off distances at the image level. We can further test whether this

imagery-level fusion idea is beneficial for improving the final recognition performance.

In Chapter 6, we use the tool ASM for quality measure (sharpness measure to be specific).

This measure, like many other measures, is not designed for a cross-spectral context, that
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is, it is not suitable for measuring the quality of infrared and visible light images at the

same time. A general quality measure for heterogeneous images (i.e., independent of the

electromagnetic wavelength) would be better if designed.

We designed a novel operator acting at the interval level of measurement and fused it

with other operators at the ratio and ordinal levels in Chapter 3. We can further design a

new operator working at the nominal level of measurement to have a complete set of levels

of measurement-based operators.

In addition to applying our novel operators to the biometric modalities of face and partial

face (including the periocular region) as discussed in Chapter 3, Chapter 4 and Chapter 5,

we can also apply them to the modality of iris in a cross-spectral matching context.
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[58] S. Marčelja, “Mathematical description of the responses of simple cortical cells,” Journal
of the Optical Society of America, vol. 70, no. 11, p. 1297–1300, 1980.

[59] J. G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and
orientation optimized by two-dimensional visual cortical filters,” Journal of the Optical
Society of America A, vol. 2, no. 7, p. 1160–1169, 1985.

[60] J. G. Daugman, “Complete discrete 2-D Gabor transforms by neural networks for image
analysis and compression,” IEEE Trans. Pattern Anal. Machine Intell., vol. 36, no. 7,
pp. 1169–1179, 1988.

[61] T. S. Lee, “Image representation using 2D Gabor wavelets,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 18, no. 10, p. 959–971, 1996.

[62] A. K. Jain, N. K. Ratha, and S. Lakshmanan, “Object detection using Gabor filters,”
Pattern Recognition, vol. 30, no. 2, p. 295–309, 1997.

[63] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding facial expressions with
Gabor wavelets,” in Proc. of IEEE Int. Conf. on Automatic Face and Gesture Recogni-
tion, pp. 200–205, 1998.

[64] L. Wang and D. C. He, “Texture classification using texture spectrum,” IEEE Trans.
on Pattern Analysis and Mach. Int., vol. 23, no. 8, pp. 905 – 910, 1990.

[65] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns,” IEEE Trans. Inf. Forensics
and Security, vol. 24, no. 7, pp. 971–987, 2002.

[66] T. Ahonen, A. Hadid, and M. Pietikainen, “Face recognition with local binary patterns,”
in Proc. of European Conference on Comuputer Vision (ECCV), pp. 469–481, 2004.
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