5,532 research outputs found

    Kronecker Sum Decompositions of Space-Time Data

    Full text link
    In this paper we consider the use of the space vs. time Kronecker product decomposition in the estimation of covariance matrices for spatio-temporal data. This decomposition imposes lower dimensional structure on the estimated covariance matrix, thus reducing the number of samples required for estimation. To allow a smooth tradeoff between the reduction in the number of parameters (to reduce estimation variance) and the accuracy of the covariance approximation (affecting estimation bias), we introduce a diagonally loaded modification of the sum of kronecker products representation [1]. We derive a Cramer-Rao bound (CRB) on the minimum attainable mean squared predictor coefficient estimation error for unbiased estimators of Kronecker structured covariance matrices. We illustrate the accuracy of the diagonally loaded Kronecker sum decomposition by applying it to video data of human activity.Comment: 5 pages, 8 figures, accepted to CAMSAP 201

    Channel Covariance Matrix Estimation via Dimension Reduction for Hybrid MIMO MmWave Communication Systems

    Get PDF
    Hybrid massive MIMO structures with lower hardware complexity and power consumption have been considered as a potential candidate for millimeter wave (mmWave) communications. Channel covariance information can be used for designing transmitter precoders, receiver combiners, channel estimators, etc. However, hybrid structures allow only a lower-dimensional signal to be observed, which adds difficulties for channel covariance matrix estimation. In this paper, we formulate the channel covariance estimation as a structured low-rank matrix sensing problem via Kronecker product expansion and use a low-complexity algorithm to solve this problem. Numerical results with uniform linear arrays (ULA) and uniform squared planar arrays (USPA) are provided to demonstrate the effectiveness of our proposed method

    Online Change Detection in SAR Time-Series with Kronecker Product Structured Scaled Gaussian Models

    Full text link
    We develop the information geometry of scaled Gaussian distributions for which the covariance matrix exhibits a Kronecker product structure. This model and its geometry are then used to propose an online change detection (CD) algorithm for multivariate image times series (MITS). The proposed approach relies mainly on the online estimation of the structured covariance matrix under the null hypothesis, which is performed through a recursive (natural) Riemannian gradient descent. This approach exhibits a practical interest compared to the corresponding offline version, as its computational cost remains constant for each new image added in the time series. Simulations show that the proposed recursive estimators reach the Intrinsic Cram\'er-Rao bound. The interest of the proposed online CD approach is demonstrated on both simulated and real data

    Foundational principles for large scale inference: Illustrations through correlation mining

    Full text link
    When can reliable inference be drawn in the "Big Data" context? This paper presents a framework for answering this fundamental question in the context of correlation mining, with implications for general large scale inference. In large scale data applications like genomics, connectomics, and eco-informatics the dataset is often variable-rich but sample-starved: a regime where the number nn of acquired samples (statistical replicates) is far fewer than the number pp of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for "Big Data." Sample complexity however has received relatively less attention, especially in the setting when the sample size nn is fixed, and the dimension pp grows without bound. To address this gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where the variable dimension is fixed and the sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; 3) the purely high dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa-scale data dimension. We illustrate this high dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables that are of interest. We demonstrate various regimes of correlation mining based on the unifying perspective of high dimensional learning rates and sample complexity for different structured covariance models and different inference tasks

    Tensor Graphical Lasso (TeraLasso)

    Full text link
    This paper introduces a multi-way tensor generalization of the Bigraphical Lasso (BiGLasso), which uses a two-way sparse Kronecker-sum multivariate-normal model for the precision matrix to parsimoniously model conditional dependence relationships of matrix-variate data based on the Cartesian product of graphs. We call this generalization the {\bf Te}nsor g{\bf ra}phical Lasso (TeraLasso). We demonstrate using theory and examples that the TeraLasso model can be accurately and scalably estimated from very limited data samples of high dimensional variables with multiway coordinates such as space, time and replicates. Statistical consistency and statistical rates of convergence are established for both the BiGLasso and TeraLasso estimators of the precision matrix and estimators of its support (non-sparsity) set, respectively. We propose a scalable composite gradient descent algorithm and analyze the computational convergence rate, showing that the composite gradient descent algorithm is guaranteed to converge at a geometric rate to the global minimizer of the TeraLasso objective function. Finally, we illustrate the TeraLasso using both simulation and experimental data from a meteorological dataset, showing that we can accurately estimate precision matrices and recover meaningful conditional dependency graphs from high dimensional complex datasets.Comment: accepted to JRSS-

    A three domain covariance framework for EEG/MEG data

    Full text link
    In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.Comment: 25 pages, 8 figures, 1 tabl
    corecore