4,737 research outputs found

    Agile Autonomous Driving using End-to-End Deep Imitation Learning

    Full text link
    We present an end-to-end imitation learning system for agile, off-road autonomous driving using only low-cost sensors. By imitating a model predictive controller equipped with advanced sensors, we train a deep neural network control policy to map raw, high-dimensional observations to continuous steering and throttle commands. Compared with recent approaches to similar tasks, our method requires neither state estimation nor on-the-fly planning to navigate the vehicle. Our approach relies on, and experimentally validates, recent imitation learning theory. Empirically, we show that policies trained with online imitation learning overcome well-known challenges related to covariate shift and generalize better than policies trained with batch imitation learning. Built on these insights, our autonomous driving system demonstrates successful high-speed off-road driving, matching the state-of-the-art performance.Comment: 13 pages, Robotics: Science and Systems (RSS) 201

    The path inference filter: model-based low-latency map matching of probe vehicle data

    Full text link
    We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 10 seconds and 2 minutes. We introduce a new class of algorithms, called altogether path inference filter (PIF), that maps GPS data in real time, for a variety of trade-offs and scenarios, and with a high throughput. Numerous prior approaches in map-matching can be shown to be special cases of the path inference filter presented in this article. We present an efficient procedure for automatically training the filter on new data, with or without ground truth observations. The framework is evaluated on a large San Francisco taxi dataset and is shown to improve upon the current state of the art. This filter also provides insights about driving patterns of drivers. The path inference filter has been deployed at an industrial scale inside the Mobile Millennium traffic information system, and is used to map fleets of data in San Francisco, Sacramento, Stockholm and Porto.Comment: Preprint, 23 pages and 23 figure

    A Force-Directed Approach for Offline GPS Trajectory Map Matching

    Full text link
    We present a novel algorithm to match GPS trajectories onto maps offline (in batch mode) using techniques borrowed from the field of force-directed graph drawing. We consider a simulated physical system where each GPS trajectory is attracted or repelled by the underlying road network via electrical-like forces. We let the system evolve under the action of these physical forces such that individual trajectories are attracted towards candidate roads to obtain a map matching path. Our approach has several advantages compared to traditional, routing-based, algorithms for map matching, including the ability to account for noise and to avoid large detours due to outliers in the data whilst taking into account the underlying topological restrictions (such as one-way roads). Our empirical evaluation using real GPS traces shows that our method produces better map matching results compared to alternative offline map matching algorithms on average, especially for routes in dense, urban areas.Comment: 10 pages, 12 figures, accepted version of article submitted to ACM SIGSPATIAL 2018, Seattle, US

    Mobile Agent Trajectory Prediction using Bayesian Nonparametric Reachability Trees

    Get PDF
    This paper presents an efficient trajectory prediction algorithm that has been developed to improve the performance of future collision avoidance and detection systems. The main idea is to embed the inferred intention information of surrounding agents into their estimated reachability sets to obtain a probabilistic description of their future paths. More specifically, the proposed approach combines the recently developed RRT-Reach algorithm and mixtures of Gaussian Processes. RRT-Reach was introduced by the authors as an extension of the closed-loop rapidly-exploring random tree (CL-RRT) algorithm to compute reachable sets of moving objects in real-time. A mixture of Gaussian processes (GP) is a flexible nonparametric Bayesian model used to represent a distribution over trajectories and have been previously demonstrated by the authors in a UAV interception and tracking of ground vehicles planning scheme. The mixture is trained using typical maneuvers learned from statistical data, and RRT-Reach utilizes samples from the GP to grow probabilistically weighted feasible paths of the surrounding vehicles. The resulting approach, denoted as RR-GP, has RRTReach's benefits of computing trajectories that are dynamically feasible by construction, therefore efficiently approximating the reachability set of surrounding vehicles following typical patterns. RRT-GP also features the GP mixture's benefits of providing a probabilistic weighting on the feasible trajectories produced by RRTReach, allowing our system to systematically weight trajectories by their likelihood. A demonstrative example on a car-like vehicle illustrates the advantages of the RR-GP approach by comparing it to two other GP-based algorithms. © 2011 by Professor Jonathan P. How, Massachusetts Institute of Technology. Published by the American Institute of Aeronautics and Astronautics, Inc
    corecore