131,501 research outputs found

    Approaches to Semantic Web Services: An Overview and Comparison

    Get PDF
    Abstract. The next Web generation promises to deliver Semantic Web Services (SWS); services that are self-described and amenable to automated discovery, composition and invocation. A prerequisite to this, however, is the emergence and evolution of the Semantic Web, which provides the infrastructure for the semantic interoperability of Web Services. Web Services will be augmented with rich formal descriptions of their capabilities, such that they can be utilized by applications or other services without human assistance or highly constrained agreements on interfaces or protocols. Thus, Semantic Web Services have the potential to change the way knowledge and business services are consumed and provided on the Web. In this paper, we survey the state of the art of current enabling technologies for Semantic Web Services. In addition, we characterize the infrastructure of Semantic Web Services along three orthogonal dimensions: activities, architecture and service ontology. Further, we examine and contrast three current approaches to SWS according to the proposed dimensions

    Integrating heterogeneous web service styles with flexible semantic web services groundings

    Get PDF
    Semantic web services are touted as a means to integrate web services inside and outside the enterprise, but while current semantic web service frameworks— including OWL-S [1], SA-WSDL, and WSMO 1 [2]—assume a homogeneous ecosystem of SOAP services and XML serialisations, growing numbers of real services are implemented using XML-RPC and RESTful interfaces, and non-XML serialisations like JSON. 2 Semantic services platforms based on OWL-S and WSMO use XML mapping languages to translate between an XML serialisation of the ontology data and the on-the-wire messages exchanged with the web service, a process referred to as grounding. This XML mapping approach suffers from two problems: it cannot address the growing number of non-SOAP, non-XML services being deployed on the Web, and it requires the modeller creating the semantic web service descriptions to work with the serialisation of the service ontology and a syntactic mapping language, in addition to the knowledge representation language used for representing the semantic service ontologies and descriptions. Our approach draws the service’s interface into the ontology: we defin

    SSwWS: structural model of information architecture

    Get PDF
    The Web Technologies allow a representation of a domain of knowledge. This facilitates the conversion of an explicit and tacit knowledge to the possibility of adding knowledge to the Web for automatic processing by the computer. For this reason, it has been designed to be an architecture known as SSwWS (Search Semantic with Web Services) or Search Semantic Web Services, to show how to extend the functionality of the Web search and semantic raised by Berners-Lee, on the meta-references, defined in a Web ontology, so that a user on the Internet can find the answers to their questions through Web services in a simple and fast

    A semantic web service-based architecture for the interoperability of e-government services

    Get PDF
    We propose a semantically-enhanced architecture to address the issues of interoperability and service integration in e-government web information systems. An architecture for a life event portal based on Semantic Web Services (SWS) is described. The architecture includes loosely-coupled modules organized in three distinct layers: User Interaction, Middleware and Web Services. The Middleware provides the semantic infrastructure for ontologies and SWS. In particular a conceptual model for integrating domain knowledge (Life Event Ontology), application knowledge (E-government Ontology) and service description (Service Ontology) is defined. The model has been applied to a use case scenario in e-government and the results of a system prototype have been reported to demonstrate some relevant features of the proposed approach

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    SEMANTIC WEB BASED APPLICATION FOR KNOWLEDGE MANAGEMENT IN BUSINESS FLOWS

    Get PDF
    This article presents the architecture of a framework designed to facilitate the interoperability between organizations based on knowledge management. The framework has four components: business flow design, rules developing, semantic networks and ontologies design, automated semantic web service composition. The latter, is based on fractals theory and agent supervision so that to determine the boundaries of the research environment and to enhance composition performance.semantic web, business, knowledge, interoperability, services, fractals

    Knowledge infrastructures for software service architectures

    Get PDF
    Software development has become a distributed, collaborative process based on the assembly of off-the-shelf and purpose-built components or services. The selection of software services from service repositories and their integration into software system architectures, but also the development of services for these repositories requires an accessible information infrastructure that allows the description and comparison of these services. General knowledge relating to software development is equally important in this context as knowledge concerning the application domain of the software. Both form two pillars on which the structural and behavioural properties of software services can be addressed. We investigate how this information space for software services can be organized. Focal point are ontologies that, in addition to the usual static view on knowledge, also intrinsically addresses the dynamics, i.e. the behaviour of software. We relate our discussion to the Web context, looking at the Web Services Framework and the Semantic Web as the knowledge representation framework

    IRS II: a framework and infrastructure for semantic web services

    Get PDF
    In this paper we describe IRS–II (Internet Reasoning Service) a framework and implemented infrastructure, whose main goal is to support the publication, location, composition and execution of heterogeneous web services, augmented with semantic descriptions of their functionalities. IRS–II has three main classes of features which distinguish it from other work on semantic web services. Firstly, it supports one-click publishing of standalone software: IRS–II automatically creates the appropriate wrappers, given pointers to the standalone code. Secondly, it explicitly distinguishes between tasks (what to do) and methods (how to achieve tasks) and as a result supports capability-driven service invocation; flexible mappings between services and problem specifications; and dynamic, knowledge-based service selection. Finally, IRS–II services are web service compatible – standard web services can be trivially published through the IRS–II and any IRS–II service automatically appears as a standard web service to other web service infrastructures. In the paper we illustrate the main functionalities of IRS–II through a scenario involving a distributed application in the healthcare domain

    Magpie: towards a semantic web browser

    Get PDF
    Web browsing involves two tasks: finding the right web page and then making sense of its content. So far, research has focused on supporting the task of finding web resources through ‘standard’ information retrieval mechanisms, or semantics-enhanced search. Much less attention has been paid to the second problem. In this paper we describe Magpie, a tool which supports the interpretation of web pages. Magpie offers complementary knowledge sources, which a reader can call upon to quickly gain access to any background knowledge relevant to a web resource. Magpie automatically associates an ontologybased semantic layer to web resources, allowing relevant services to be invoked within a standard web browser. Hence, Magpie may be seen as a step towards a semantic web browser. The functionality of Magpie is illustrated using examples of how it has been integrated with our lab’s web resources
    corecore