
Knowledge Infrastructures for Software
Service Architectures

Claus Pahl,
School of Computing, Dublin City University

Dublin 9, Ireland
Tel: ++353 +1 700 5620

E-mail: Claus.Pahl@dcu.ie

Abstract: Software development has become a distributed, collaborative
process based on the assembly of off-the-shelf and purpose-built components
or services. The selection of software services from service repositories and
their integration into software system architectures, but also the development
of services for these repositories requires an accessible information
infrastructure that allows the description and comparison of these services.
General knowledge relating to software development is equally important in
this context as knowledge concerning the application domain of the software.
Both form two pillars on which the structural and behavioural properties of
software services can be addressed. We investigate how this information
space for software services can be organized. Focal point are ontologies that,
in addition to the usual static view on knowledge, also intrinsically addresses
the dynamics, i.e. the behaviour of software. We relate our discussion to the
Web context, looking at the Web Services Framework and the Semantic Web
as the knowledge representation framework.

1. Introduction
Software development has changed dramatically over the past decades. Software
development has become a distributed, collaborative process based on the assembly of
off-the-shelf and purpose-built software services – a process that has recently been
influenced by the Web as a software development and deployment platform. This
change impacts the information and knowledge infrastructures for these software
services.

The selection of services from service repositories, the composition of
services, and the development of services for these repositories requires an accessible
information infrastructure that allows their description, discovery, and assembly.
Organising the knowledge space that captures these descriptions is essential.
Discovery and composition of software services to service-based software
architectures based on these abstract descriptions have become central activities of a
new approach called service-oriented architecture [1].

In a distributed environment where providers and users of software services
meet in electronic marketplaces, knowledge about these services and their properties
is essential. Providers need to describe the properties of their provided services.
Potential user need to understand these descriptions and need to be able to formulate
their requirements in terms of queries in a marketplace or repository system. A shared
knowledge representation language is a prerequisite.

We will introduce an ontological framework for the description of software
services that supports the discovery and composition of these services within the Web
Services Framework [8]. Ontologies as shared representations of knowledge are
ideally suited to support this endeavour [4]. We will introduce a layered ontological

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

modelling approach based on description logics (a logic underlying various ontology
languages), i.e. a logic-based terminological framework.

Repository

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

Service Service

Ontologies

requires provides

& match

(interact)

the Web

User Provider

discover

assembly

Repository

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

Service Service

Ontologies

requires provides

& match

(interact)

the Web

User Provider

discover

assembly

Figure 1. A Service Development Scenario for the Web.

2. Service-oriented Software Development
The World-Wide Web is currently undergoing a change from a document- to a
services-oriented environment, i.e. the focus changes from information to
computation. The aim of the Web Services Framework (WSF) is to provide an
infrastructure of languages, protocols, and tools to enable the development of
services-oriented software architectures on and for the Web [11]. Services are
software applications that are provided ‘as is’ at particular locations. Service
examples range from simple information providers, such as weather or stock market
information providers, to data storage support and complex services supporting e-
commerce or online banking systems. Service providers advertise their services;
potential users can browse repository-based marketplaces to find suitable services, see
Fig. 1. Once a suitable service has been found using a repository, a user can interact
with the service directly to make use of its services. The prerequisite is a common
language to express properties of these Web-based services and their application
context. Ontology languages can provide this common language.

Modelling is an activity of central importance in this context. Various models
are used in the development process:
� Computation-independent domain models capture the characteristics of the

application domain.
� Platform-independent models describe the software system in abstract terms, e.g.

as a service-based architecture.
� Platform-specific models relate more abstract models to the constraints imposed

by a platform such as the WSF.
Ontologies are the basis of our layered modelling approach. Model-Driven
Architecture (MDA) is an effort supported by the Object Management Group [7]
related to our aims. MDA acknowledges the importance of modelling for architectural
design of service-based software systems. We have used ontologies instead of the
Unified Modelling Language UML – the OMG suggestion – for modelling. We have

based our layered ontology framework on the three model layers proposed by the
OMG: computation-independent, platform-independent, and platform-specific.

The ontological modelling of services and their context is our central concern
(Fig. 1). We will look at how these models are used in the software development
process. Two activities are most important: discovery of provided services (lower half
of Fig. 1) in structured repositories and composition of discovered services in service
architectures through interaction (upper half of Fig. 1). For a software developer, this
architecture means that most software development and deployment activities
including search in external repositories and interaction with remote services will take
place outside the boundaries of her/his own organisation – thus making shared
knowledge essential.

3. An Ontology-based Knowledge Infrastructure for Services Development

3.1 A Knowledge Space for Software Services

The Web as a software platform is characterised by different actors, different
locations, different organisations and different systems participating in the
development and deployment of software. As a consequence, shared and structured
knowledge about services plays a central role. A common understanding and
agreement between the different actors in the development process is necessary. A
shared knowledge space for software services in service-oriented architectures is
needed. The question how to organise this knowledge space is our central question. In
order to organise the knowledge space through an ontological framework, we address
two facets of the knowledge space: firstly, the types of knowledge that we are
concerned with and secondly, the representation of knowledge [10].

Three types of knowledge can be represented in three layers. The application
domain is the basic layer. Abstract static and dynamic service properties form the
middle layer. Platform-related knowledge for service development and deployment
forms the last layer.

In general, knowledge representation [10] is concerned with the description of
entities in order to define and classify these. Entities can be distinguished into objects
(static entities) and processes (dynamic entities). Processes are often described in
three aspects or tiers:
� Form – algorithms and implementation – the ’how’ of process description.
� Effect – abstract behaviour and results – the ’what’ of process description.
� Intention – goal and purpose – the ’why’ of process description.
We have related the aspects form, effect, and intention to software characteristics such
as algorithms and abstract behaviour. Services are software entities that have process
character, i.e. we will use this three-tiered approach for their description.

3.2 Ontologies

Ontologies are means of knowledge representation, defining so-called shared
conceptualisations. Ontologies are frameworks for terminological definitions that can
be used to organise concepts in a domain. Typical examples of ontologies are
taxonomies, i.e. classification schemes used for example to classify animals or plants
into hierarchies. Combined with a symbolic logic, we obtain a framework for
specification, classification, and reasoning in an application domain. In a genealogy
ontology, logic rules such as ‘the sister of a parent is an aunt’ complements the
defined concepts such as parent, sister, etc. Terminological logics such as description
logics [2] are an example of the latter.

The Semantic Web is an initiative for the Web that builds up on ontology
technology and supporting knowledge engineering techniques [3]. XML is the
syntactical format. RDF – the Resource Description Framework – is a triple-based
formalism (subject, property, object) to describe entities. En example is (person,
has_father, male_person). OWL – the Web Ontology Language – provides additional
logic-based reasoning based on RDF.

We can use Semantic Web-based ontologies to formalise and axiomatise
processes in a suitable logic, i.e. to make statements about processes and to reason
about them. Description logic, which is used to define OWL, is based on concept and
role descriptions [2]. Concepts represent classes of objects; roles represent
relationships between concepts. Concept descriptions are based on logical
combinators (negation, conjunction) and hybrid combinators (universal and existential
quantification).

4. Description and Modelling of Services
Modelling of services and composed service processes is a stepwise process. Starting
with a model of the underlying application domain, then individual services are
modelled before, finally, their composition to business processes is addressed.

service AccountProcess
 operation import Login (no:int,user:string) : bool
 import Balance (no:int) : real
 import Lodgement (no:int,sum:real) : void
 import Transfer (no:int,dest:int,sum:real) : void
 import Logout (no:int) : void
 process Login; !(Balance+Lodgement+Transfer);Logout
service BankAccount
 operation export Balance (no:int) : real
 export Lodgement (no:int,sum:real) : void
 export Transfer (no:int,dest:int,sum:real) : void
 import CheckAcc (dest:int) : bool
 process !(Balance+Logdement+(Transfer;CheckAcc))
service AccountRegistry
 operation export CheckAcc (no:int) : bool
 process !CheckAcc
service LoginServer
 operation export Login (no:int,user:string) : bool
 export Logout (no:int) : void
 process !(Login+Logout)

Figure 2. An Online Banking Service.

Fig. 2 describes a central online banking process, defined in the

AccountProcess service, that uses (or imports) other services to fulfil its tasks, i.e.
AccountProcess is a client of BankAccount and LoginServer. The latter uses services
provided by AccountRegistry.

4.1 Domain Models

Domain models form the starting point for many software developments. Central
concepts of an application domain have to be identified and described in their
properties (as relationships to other concepts). For the banking sector – see Fig.2,

which describe an online banking service – we would identify concepts such as
account number or account user (which are static objects) and account login,
lodgement, and transfer (which are dynamic activities or processes). In the context of
software development, the capture of these objects and processes is particularly
important. Processes for instance are described in terms of the objects they process.
The resulting model is a semantic net consisting of (two types of) concepts and roles
relating these concepts.

4.2 A Service Process Ontology

An intuitive approach to represent software behaviour in an ontological form would
be to consider services as the central concepts [5]. We, however, propose a different
approach that is particularly suitable for the abstract, platform-independent
description of services and service processes. Our objective is to represent software
systems. These systems are based on inherent notions of state and state transition.
States of the systems will be the central concepts; transitions (services) will be
represented as roles. Fig. 3 illustrates the central ideas. Service executions lead from
old (pre)states to new (post)states, i.e. the service is represented as a role (a rectangle
in the diagram). For instance, we could specify that a customer may check his/her
account balance, or, that a transfer of money must result in a reduction of the source
account balance. Usually, relationships in ontologies are used to express static
properties, but they can also be seen as accessibility relationships between states of a
system.

The transitional roles are complemented by more static, descriptional roles.
For instance, preCond associates a precondition to a prestate; inSign associates the
type signatures of possible service parameters. Some properties, such as the service
name, will remain invariant.

Central to ontologies at this layer is the intrinsic specification of process
behaviour in the ontology language itself. Behaviour specifications based on the
descriptions of necessity and possibility are directly accessible to logic-based
methods; behaviour-related inference of service properties is possible.

Service

Cond

Sign inv Sign

Cond

postpre

outSign

postCond

inSign

preCond

servDescrservName
LiteralLiteral

 ...

Figure 3. A Service Process Ontology.

4.3 Description of Services

Knowledge describing software services is represented in three layers.
� The intention is expressed through assumptions and goals of services in the

context of the application domain. The domain model – see Section 4.1 – is the
basis for these descriptions.

� The effect is a contract-based specification of system invariants, pre- and
postconditions describing the obligations of users and providers. The process-
oriented, platform-independent model – see Section 4.2 – captures this.

� The form defines the platform-specific aspects services. Platform-specific
descriptions for the Web services platform consist of standardised, infrastructure-
supported languages like the Web Service Description Language WSDL or
extensions such as service ontologies like OWL-S [5] or WSMO [12].

A comprehensive framework would address the layers, but also transformations
between them. We focus on modelling here, in particular on abstract, platform-
independent effect descriptions, see Fig. 3. Effect descriptions are based on modal
operators. These allow us to describe process behaviour and composition based on the
choreography of service interactions. Composition in Web- and other service-oriented
environments is interaction. Services are considered as independent concurrent
processes that can interact (communicate) with each other. Central in the composition
are the abstract effect of individual services and the interaction patterns of services:
� We introduce role expressions based on the role constructors for sequential

composition R;S, iteration !R, and choice R+S into a basic ontology language to
describe processes. Using this language, we can express ordering constraints for
parameterised services. For instance, Login; !(BalanceEnq + Transfer) is a role
expression describing an interaction process of an online banking user starting
with a login, then repeatedly executing balance enquiry or money transfer.

� A logical effect specification focussing on safety is positive(balance) -> Transfer
. reduced(balance) saying that if the account balance is positive, then money can
be transferred, resulting in a reduced balance. Here, Transfer is the service;
positive(balance) and reduced(balance) are pre- and postcondition, respectively.
These conditions are concept expressions. Transfer causes a system to transfer
from a prestate pre to a poststate post.

We use a connection between description logic and dynamic logic – a modal logic for
the description of programs and processes based on operators to express necessity and
possibility [6] – to address safety (necessity of behaviour) and liveness (possibility of
behaviour) aspects of service behaviour. The central idea behind this connection is
that roles can be interpreted as accessibility relations between states, which are central
concepts of process-oriented software systems.

5. Discovery and Composition of Services
Service-based development is concerned with discovery and composition. In the Web
context, both activities are supported by Semantic Web and Web Services techniques.
They support semantical descriptions of services, marketplaces for the discovery of
services based on intention descriptions as the search criteria, and composition
support based on semantic effect descriptions. The actual deployment of services is
based on the form aspect of process description.

5.1 Discovery

The aim of the discovery support is to find suitable provided services in a first step
that match based on the application domain related goals and that, in a second step,
match based on the more technical effect descriptions. This matching requires
technical support, in particular for the formal effect descriptions.

� Service-based software systems are based on a central state concept; additional
concepts for auxiliary aspects such as the pre- and poststate-related descriptions
are available.

� Services are behaviourally characterised by transitional roles (for state changes)
and descriptional roles (auxiliary state descriptions).

Matching can be based on techniques widely used in software development, such as
refinement.

5.2 Matching and Composition

In order to support matching and architectural and process composition of services
through ontology technology, we need to extend the (already process-oriented)
ontology language we presented above [9]. We can make statements about service
processes, but we cannot refer to the data elements processed by services. The role (or
relationship) expression sublanguage needs to be extended by names (representing
data elements) and parameters (which are names passed on to services for
processing). We can make the Transfer service description more precise by using a
data variable (sum) in pre- and postconditions and as a parameter: balance >= sum ->
Transfer(sum) . balance = balance@pre – sum decreasing the pre-execution balance
by sum.

Matching needs to be supported by a comparison construct. We already
mentioned a refinement notion as a suitable solution. This definition, however, needs
to be based on the support available in description logics. Subsumption is here the
central inference technique. Subsumption is the subclass relationship on concept and
role interpretations. We define two types of matching:
� For individual services, we define a refinement notion based on the design-by-

contract principle, i.e. weaker preconditions (allowing a service to be invoked in
more states) and stronger postconditions (improving the results of a service
execution). For example true -> Transfer(sum) . balance = balance@pre – sum
matches, i.e. refines balance >= sum -> Transfer(sum) . balance = balance@pre
– sum since it allows the balance to become negative due to a weaker, i.e.less
restrictive precondition true.

� For service processes, we define a simulation notion based on sequential process
behaviour. A process matches another process if it can simulate the other’s
behaviour. For example the expression Login; !(BalanceEnq+Transfer); Logout
matches, i.e. simulates Login; !BalanceEnq; Logout, since the Transfer service
can be omitted. The provider needs to be able to simulate the process pattern
requested by a potential user.

Both forms of matching are sufficient criteria for subsumption. Matching of effect
descriptions is the prerequisite for the assembly of services in architectures and the
composition of services to processes. Matching guarantees the proper interaction
between composed service services.

6. Conclusions
Knowledge representation and management is increasingly important in all aspects of
information technologies. Knowledge plays a particularly central role in the context of
service-oriented software development. The emergence of the Web as a development
and deployment platform for software emphasises this aspect. We have structured a
knowledge space for software services in service-oriented architectures. Processes and
their behavioural properties were the primary aspects.

We have developed a process-oriented, layered ontological model based on
the facets form, effect, and intention. The discovery and the composition of process-
oriented services based on ontological descriptions were the central activities. While
some of the underlying techniques, for instance for matching, are already used in
areas such as component-based software development, it is necessary to used widely
accepted languages and techniques specific to the Web platform for Web services-
based software development. Explicit, machine-processable knowledge is the key to
future automation of software development activities. In particular, ontologies have
the potential to become an accepted format that supports such an automation
endeavour for the Web platform.

References

[1] ALONSO, G., CASATI, F., KUNO, H. and MACHIRAJU, V. (2004): Web
Services - Concepts, Architectures and Applications. Springer-Verlag.

[2] BAADER, F., MCGUINESS, D., NARDI, D. and SCHNEIDER, P. (Eds.) (2003):
The Description Logic Handbook. Cambridge University Press.

[3] BERNERS-LEE, T., HENDLER, J. and LASSILA, O. (2001): The Semantic
Web. Scientific American, 284(5).

[4] DACONTA, M.C., OBRST, L.J. and SMITH, K.T. (2003): The Semantic Web –
A Guide to the Future of XML, Web Services, and Knowledge Management.
Wiley & Sons.

[5] OWL-S COALITION (2002): DAML-S: Web Services Description for the
Semantic Web. In I. Horrocks and J. Hendler (Eds.): Proc. First International
Semantic Web Conference ISWC 2002. Springer-Verlag, Berlin, 279–291.

[6] KOZEN, D. and TIURYN, J. (1990): Logics of programs. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, Vol. B, pages 789–840.
Elsevier Science Publishers.

[7] OBJECT MANAGEMENT GROUP (2003): MDA Model-Driven Architecture
Guide V1.0.1. OMG.

[8] PAHL, C. (2003): An Ontology for Software Service Matching. In Proc.
Fundamental Approaches to Software Engineering FASE’2003. Springer-Verlag,
Berlin, 208–216.

[9] PAHL, C. and CASEY, M. (2003): Ontology Support for Web Service Processes.
In Proc. European Software Engineering Conference / Foundations of Software
Engineering ESEC/FSE’03. ACM Press.

[10] SOWA, J.F. (2000): Knowledge Representation – Logical, Philosophical, and
Computational Foundations. Brooks/Cole.

[11] W3C – WORLD WIDE WEB CONSORTIUM (2004): Web Services
Framework. http://www.w3.org/2002/ws .

[12] WSMO Working Group (2005). Web Service Modelling Ontology (WSMO).
http://www.wsmo.org/ .

http://www.w3.org/2002/ws
http://www.wsmo.org/

	Knowledge Infrastructures for Software Service Architectures
	Abstract: Software development has become a distributed, col
	1. Introduction
	Figure 1. A Service Development Scenario for the Web.

	2. Service-oriented Software Development
	3. An Ontology-based Knowledge Infrastructure for Services D
	3.1 A Knowledge Space for Software Services
	3.2 Ontologies
	4. Description and Modelling of Services
	Modelling of services and composed service processes is a st
	Figure 2. An Online Banking Service.

	4.1 Domain Models
	4.2 A Service Process Ontology
	Figure 3. A Service Process Ontology.

	4.3 Description of Services
	5. Discovery and Composition of Services
	5.1 Discovery
	5.2 Matching and Composition
	6. Conclusions
	References

