3 research outputs found

    Probabilistic short-term load forecasting at low voltage in distribution networks

    Get PDF
    Predmet istraživanja ove doktorske disertacije je kratkoročna probabili- stička prognoza opterećenja na niskom naponu u elektrodistributivnim mre- žama. Cilj istraživanja je da se razvije novo rešenje koje će uvažiti varija- bilnost opterećenja na niskom naponu i ponuditi konkurentnu tačnost prog- noze uz visoku efikasnost sa stanovišta zauzeća računarskih resursa. Predlo- ženo rešenje se zasniva na primeni statističkih metoda i metoda mašinskog (dubokog) učenja u reprezentaciji podataka (ekstrakciji i odabiru atributa), klasterovanju i regresiji. Efikasnost predloženog rešenja je verifikovana u studiji slučaja nad skupom realnih podataka sa pametnih brojila. Rezultat primene predloženog rešenja je visoka tačnost prognoze i kratko vreme izvr- šavanja u poređenju sa konkurentnim rešenjima iz aktuelnog stanja u oblasti.This Ph.D. thesis deals with the problem of probabilistic short-term load forecasting at the low voltage level in power distribution networks. The research goal is to develop a new solution that considers load variability and offers high forecasting accuracy without excessive hardware requirements. The proposed solution is based on the application of statistical methods and machine (deep) learning methods for data representation (feature extraction and selection), clustering, and regression. The efficiency of the proposed solution was verified in a case study on real smart meter data. The case study results confirm that the application of the proposed solution leads to high forecast accuracy and short execution time compared to related solutions

    Data Science: Measuring Uncertainties

    Get PDF
    With the increase in data processing and storage capacity, a large amount of data is available. Data without analysis does not have much value. Thus, the demand for data analysis is increasing daily, and the consequence is the appearance of a large number of jobs and published articles. Data science has emerged as a multidisciplinary field to support data-driven activities, integrating and developing ideas, methods, and processes to extract information from data. This includes methods built from different knowledge areas: Statistics, Computer Science, Mathematics, Physics, Information Science, and Engineering. This mixture of areas has given rise to what we call Data Science. New solutions to the new problems are reproducing rapidly to generate large volumes of data. Current and future challenges require greater care in creating new solutions that satisfy the rationality for each type of problem. Labels such as Big Data, Data Science, Machine Learning, Statistical Learning, and Artificial Intelligence are demanding more sophistication in the foundations and how they are being applied. This point highlights the importance of building the foundations of Data Science. This book is dedicated to solutions and discussions of measuring uncertainties in data analysis problems
    corecore