7 research outputs found

    Value Engineering for Flat Bottom Steep Projects: Cost-Control Objects Selection

    Get PDF
    Value engneering is an effective method to cutdown costs and increase economic benefits. It is said that 80% of the manufacturing cost is decided by the design phase, so the high manufacturing costs of the flat bottom steep will undoubtely increase the costs of malting and reduce the profitability of the enterprise, showing that there are lots of parts can be optimized in the design phase. Therefore, it is necessary to deploy value engineering theory to the product design phase in order to select the objects of innovation and to control the costs of flat bottom steep effectively. Key words: Value engineering; Flat bottom steep; Customer demands analysis; Cost-Control object

    Design and implementation of an intelligent ideation database

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (p. 88-90).by Kai Wei Hong.M.Eng

    Knowledge-based inventive conceptual design

    Get PDF
    Conceptual design is the first phase of the design process. Most basic functions of a new product and the solutions for solving design problems are generated in this critical phase, which will affect the attributes in the later detailed design process. Conceptual design, especially the process of concept generation, is an innovation process that is achieved by human intelligence. The intuition and experience of designers play a significant role during the design process which is hard to be replaced by computer-aided tools or artificial intelligence technology. TR1Z is an inventive problem-solving tool to help people improve creativity. It is applied in this work to generate creative design concepts. The TRIZ inventive principles are extended by integrating other TRIZ tools and TRIZ-derived tools. These principles are also restructured by the inspiration of I-Ching. The Behaviour-Entity representation of inventive principles enables the generation of new and innovative solutions based on TRIZ. The TRIZ Contradiction Matrix (CM) and inventive principles are then used to develop the TRIZ-based concept generation approach by adding constraints to the standard Behaviour-Entity representation of TRIZ. This approach is developed to retrieve modified TRIZ inventive principles and to generate new solutions by re-organising the BEC (Behaviour-Entity-Constraint) representation of principles according to the conflicting design requirements. Finally, a negotiation-based approach is integrated with an existing no-compromise approach to develop a knowledge-based system for automatically detecting and resolving conflicts. The recommendation is given as an output arranged by weight to help the designer improve creativity and efficiency for concept generation and conflict resolution in conceptual design. The approach is implemented by using a rule-based language, JESS. A case study of aircraft fuselage layout design is presented to demonstrate the benefits of using this conflict resolution system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Knowledge-based inventive conceptual design

    Get PDF
    Conceptual design is the first phase of the design process. Most basic functions of a new product and the solutions for solving design problems are generated in this critical phase, which will affect the attributes in the later detailed design process. Conceptual design, especially the process of concept generation, is an innovation process that is achieved by human intelligence. The intuition and experience of designers play a significant role during the design process which is hard to be replaced by computer-aided tools or artificial intelligence technology. TR1Z is an inventive problem-solving tool to help people improve creativity. It is applied in this work to generate creative design concepts. The TRIZ inventive principles are extended by integrating other TRIZ tools and TRIZ-derived tools. These principles are also restructured by the inspiration of I-Ching. The Behaviour-Entity representation of inventive principles enables the generation of new and innovative solutions based on TRIZ. The TRIZ Contradiction Matrix (CM) and inventive principles are then used to develop the TRIZ-based concept generation approach by adding constraints to the standard Behaviour-Entity representation of TRIZ. This approach is developed to retrieve modified TRIZ inventive principles and to generate new solutions by re-organising the BEC (Behaviour-Entity-Constraint) representation of principles according to the conflicting design requirements. Finally, a negotiation-based approach is integrated with an existing no-compromise approach to develop a knowledge-based system for automatically detecting and resolving conflicts. The recommendation is given as an output arranged by weight to help the designer improve creativity and efficiency for concept generation and conflict resolution in conceptual design. The approach is implemented by using a rule-based language, JESS. A case study of aircraft fuselage layout design is presented to demonstrate the benefits of using this conflict resolution system

    A collection of resources for the study of educational reverse engineering activities in engineering design education

    Get PDF
    Educational Reverse Engineering Activities referred to as the acronym -EREA- help engineering design students to: Acquire and develop a set of abilities that raise their awareness of the design process; expand their sources of inspiration, position their actions within the lifecycle of a product, and transform theoretical knowledge into practice. However, it was detected that although such activities sparked interest among engineering design educators, they were either absent from typical engineering design curricula or were not fully exploited. After analysing the causes for it and determining that the creation of a collection of resources for the study of educational reverse engineering activities was the best way to reach a geographically dispersed community and thus start trying to change the existing research situation, the development of such resources began with the goal to address as many of the concerns as possible found whenever trying to implement EREA into existing engineering design curricula. The contents selected for inclusion in the collection of resources then, were derived based on initial exploratory discussions with experts in academia and industry; from the feedback received from peer reviewed conference papers stemming from this doctoral research, and from the presentation of intermediate results to early reviewers of this project; for such reasons, the information presented in the different resources targets first time (or novice) instructors of reverse engineering activities and takes into account not only the technical but also the pedagogical and administrative considerations implicated in the study of academic activities, and their potential introduction into an existing engineering design curriculum Given that some relevant information about the topic already existed but it was dispersed across different areas of knowledge; rather than developing all topics from scratch again, a conscious effort was made to examine published literature and to consult with domain experts to integrate and contextualise all existing information into a coherent body that could be complemented with the original results originating from this project. The major sections comprising the collection of resources then, are listed below: - Resource 1: Fundamentals of Educational Reverse Engineering Activities - Resource 2: Reverse Engineering and Learning - Resource 3: Misconceptions about Reverse Engineering - Resource 4: Benefits of Reverse Engineering - Resource 5: A Proposed Methodology for Reverse Engineering Analysis in Engineering Design Education - Resource 6: A Suggested Pedagogy for the Teaching of Educational Reverse Engineering Activities - Resource 7: Integrated Example of an Educational Reverse Engineering Activity on a Disposable Camera - Resource 8: Conclusions and Final Remarks - Resource 9: Miscellaneous Resources for the Study of Reverse Engineering The abovementioned resources were of a self-contained nature, could be read either individually or sequentially, and were written using the "DRM" framework for research in the area of engineering design. Once finished, a number of academic institutions were contacted to measure their interest in the resources, and in the end 12 different ones in the United Kingdom, Ireland, France, Denmark and Germany showed their interest in the research project and agreed to receive the document for reading, thus helping fulfil one of the main goals of this research which was to disseminate the results from it. Other results from this project include five peer reviewed conference papers and a report presented at the Technical University of Ilmenau in Germany after spending a visiting internship abroad to learn about similar approaches to the research into reverse engineering by other schools and traditions of designLas actividades educativas de ingeniería inversa “AEII” tambien conocidas como “EREA” por su acrónimo en inglés ayudan a los estudiantes de ingeniería de diseño a: Adquirir y desarrollar un conjunto de habilidades que elevan su conocimiento del proceso de diseño; tambien a expandir sus fuentes de inspiración, a situar sus acciones dentro del ciclo de vida de un producto, y a transformar conocimiento teórico en practico. Sin embargo, se detectó que a pesar de que tales actividades despertaban el interés de los profesores del área de ingeniería de diseño ellas estaban o ausentes de sus típicos programas de estudio o no explotadas en su totalidad Después de analizar las causas de ello y determinar que la creación de una colección de recursos para el estudio de las actividades educativas de ingeniería inversa era la mejor forma de acceder a un grupo geográficamente disperso y así intentar cambiar la situación de investigación existente, el desarrollo de tales recursos empezó con la meta de atender tantas inquietudes como fueran posible, de aquellas encontradas siempre que se intentaba implementar “AEII” en programas existentes de ingeniería de diseño Los contenidos seleccionados para formar parte de la colección de recursos, fueron definidos en base a conversaciones iniciales de exploración con expertos en la academia y la industria; en base a la retroalimentación recibida de los artículos presentados en conferencia procedentes de esta investigación doctoral, y de la presentación de resultados intermedios a los revisores preliminares de este proyecto; por tales razones, la información presentada en los diferentes recursos está dirigidas a instructores principiantes de actividades de ingeniería inversa y toma en cuenta no solo las consideraciones técnicas sino también las pedagógicas y administrativas involucradas en el estudio de actividades académicas y su potencial incorporación a un programa existente en ingeniería de diseño Dado que cierta información relevante al tema de investigación ya existía pero estaba dispersa entre varias áreas del conocimiento; en vez de desarrollar todos los temas desde cero nuevamente, se realizó un esfuerzo consciente para examinar la literatura existente y consultar con expertos en el tema, para así integrar y contextualizar toda la información disponible en un estudio coherente que pudiera ser complementado con los resultados originales producidos por esta investigación. Las secciones principales que comprenden la colección de recursos se enumeran a continuación: • Recurso 1: Fundamentos de las Actividades Educativas de Ingeniería Inversa • Recurso 2: Ingeniería Inversa y Aprendizaje • Recurso 3: Interpretaciones Equívocas acerca de la Ingeniería Inversa • Recurso 4: Beneficios de la Ingeniería Inversa • Recurso 5: Una Propuesta de Metodología para Utilizar Análisis de Ingeniería Inversa en la Enseñanza de la Ingeniería de Diseño • Recurso 6: Una Propuesta de Pedagogía para la Enseñanza de Actividades Educativas de Ingeniería Inversa • Recurso 7: Ejemplo de una Actividad Educativa de Ingeniería Inversa en una Cámara Desechable • Recurso 8: Conclusiones y Apuntes Finales • Recurso 9: Recursos Diversos para el Estudio de la Ingeniería Inversa Los recursos fueron escritos utilizando la metodología “DRM” para la investigación en el área de ingeniería de diseño y se contactó a diversas instituciones académicas para saber de su interés en tales recursos, al final 12 instituciones en el Reino Unido; Irlanda, Francia, Dinamarca y Alemania mostraron su interés en el proyecto y accedieron a recibir el documento, ayudando así a cumplir una de las metas principales de esta investigación que fue difundir sus resultados entre estudiosos de la ingenierÍa inversa educativa. Tambien como resultado final de esta investigacion se pueden contar 5 artículos presentados en conferencia y el reporte de trabajo de la estancia de investigación en el extranjero
    corecore