2 research outputs found

    The structure of oppositions in rough set theory and formal concept analysis - Toward a new bridge between the two settings

    Get PDF
    Rough set theory (RST) and formal concept analysis (FCA) are two formal settings in information management, which have found applications in learning and in data mining. Both rely on a binary relation. FCA starts with a formal context, which is a relation linking a set of objects with their properties. Besides, a rough set is a pair of lower and upper approximations of a set of objects induced by an indistinguishability relation; in the simplest case, this relation expresses that two objects are indistinguishable because their known properties are exactly the same. It has been recently noticed, with different concerns, that any binary relation on a Cartesian product of two possibly equal sets induces a cube of oppositions, which extends the classical Aristotelian square of oppositions structure, and has remarkable properties. Indeed, a relation applied to a given subset gives birth to four subsets, and to their complements, that can be organized into a cube. These four subsets are nothing but the usual image of the subset by the relation, together with similar expressions where the subset and / or the relation are replaced by their complements. The eight subsets corresponding to the vertices of the cube can receive remarkable interpretations, both in the RST and the FCA settings. One facet of the cube corresponds to the core of RST, while basic FCA operators are found on another facet. The proposed approach both provides an extended view of RST and FCA, and suggests a unified view of both of them. © 2014 Springer International Publishing

    Topological and algebraic characterization of coverings sets obtained in rough sets discretization and attribute reduction algorithms

    Get PDF
    Abstract. A systematic study on approximation operators in covering based rough sets and some relations with relation based rough sets are presented. Two different frameworks of approximation operators in covering based rough sets were unified in a general framework of dual pairs. This work establishes some relationships between the most important generalization of rough set theory: Covering based and relation based rough sets. A structured genetic algorithm to discretize, to find reducts and to select approximation operators for classification problems is presented.Se presenta un estudio sistemático de los diferentes operadores de aproximación en conjuntos aproximados basados en cubrimientos y operadores de aproximación basados en relaciones binarias. Se unifican dos marcos de referencia sobre operadores de aproximación basados en cubrimientos en un único marco de referencia con pares duales. Se establecen algunas relaciones entre operadores de aproximación de dos de las más importantes generalizaciones de la teoría de conjuntos aproximados. Finalmente, se presenta un algoritmo genético estructurado, para discretizar, reducir atributos y seleccionar operadores de aproximación, en problemas de clasificación.Doctorad
    corecore