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I

Title in English
Topological and algebraic characterization of coverings sets obtained in rough sets discretization
and attribute reduction algorithms.

Título en español
Caracterización topológica y algebraica de cubrimientos obtenidos mediante conjuntos aproxima-
dos, en algoritmos de discretización y reducción de atributos.

Abstract: A systematic study on approximation operators in covering based rough sets and some
relations with relation based rough sets are presented. Two different frameworks of approximation
operators in covering based rough sets were unified in a general framework of dual pairs. This
work establishes some relationships between the most important generalization of rough set the-
ory: Covering based and relation based rough sets. A structured genetic algorithm to discretize, to
find reducts and to select approximation operators for classification problems is presented.

Resumen: Se presenta un estudio sistemático de los diferentes operadores de aproximación en
conjuntos aproximados basados en cubrimientos y operadores de aproximación basados en rela-
ciones binarias. Se unifican dos marcos de referencia sobre operadores de aproximación basados
en cubrimientos en un único marco de referencia con pares duales. Se establecen algunas rela-
ciones entre operadores de aproximación de dos de las más importantes generalizaciones de la
teoría de conjuntos aproximados. Finalmente, se presenta un algoritmo genético estructurado,
para discretizar, reducir atributos y seleccionar operadores de aproximación, en problemas de
clasificación.

Keywords: approximation operators, covering and relation based rough sets, discretization, at-
tributes reduction, evolutionary approach.

Palabras clave: operadores de aproximación, conjuntos aproximados basados en cubrimientos y
en relaciones, discretización, reducción de atributos, aproximación evolutiva.
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Introduction

Rough set theory is a non-statistical approach to the analysis of imprecision, uncertainty and
vagueness of databases in information systems. Since the proposal of the rough set theory, a
big number of papers related to its theoretical foundations and to its applications have appeared.
Rough set theory was introduced by Z. Pawlak in 1982 [46]. This theory extends the classical set
theory in which every set is expressed by means of two approximations.

Rough sets have been used in combination with intelligent systems, fuzzy sets, genetic algo-
rithms, neural networks, and other metaheuristics, in the development of algorithms for knowledge
discovery in databases. In conjunction with fuzzy sets there are two concepts called Fuzzy Rough
Sets and Rough Fuzzy Sets, which have been used to propose discretization and attribute reduction
algorithms [15, 22, 25, 34, 80, 89]. Genetic algorithms and rough sets have been used in problems
of rules generation and clustering methods [28]. Metaheuristics as Tabu search [27], Ant colony
and Bee swarm are used for attribute reduction problems [5, 27]. Rough sets have also been used
in pattern recognition, as a technique for pre-processing discretized data, reducing the number of
attributes, and as a rule generation technique [2, 51].

The original definition given by Pawlak is based on equivalence relation. In order to expand
the application fields, many generalizations of rough sets have been given. A first generalization
of rough sets is to replace the equivalence relation by a general binary relation. In this case, the
binary relation determines collections of sets that no longer form partitions. This generalization
has been used in applications with incomplete information systems and tables with continuous
attributes [21, 24, 82, 83]. A second generalization is to replace the partition obtained by the
equivalence relation with a covering [80, 87, 101, 103, 105]. Some connections between them
have been established [82, 90, 102, 100].

Unlike in the classical rough set theory, in covering based rough sets there is no a unique way
to define lower and upper approximation operators. In fact, different equivalent definitions of the
classical approximations cease to be equivalent when the partition is generalized by a covering.
Based on this observation, Yao and Yao in [87], consider twenty pairs of lower and upper approxi-
mation operators, where each pair is governed by a duality constraint. Other operators outside this
framework appear for example in [80], where Yang and Li present a summary of seven non-dual
pairs of approximation operators that were used by Żakowski [88], Pomykala [50], Tsang [70],
Zhu [102], Zhu and Wang [104] and Xu and Zhang [76].

From the theoretical point of view, the rough sets definition involves some topological con-
cepts, for example interior and closure operators. Different algebraic and geometric structures,
have been used for their representation [52, 79, 101].

Some works [16, 32, 81, 101, 97] show topological and algebraic relationships with rough
sets. Each set can be represented as a pair of approximations, which can be used to define struc-
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INTRODUCTION IX

tures of Boolean algebras, Heyting algebras, double Stone algebras, among others. In [52] some
relationships of rough sets with Grothendieck topologies, which can be viewed as a generalization
of topological spaces from coverings, were studied.

Every covering of a non-empty set U defines at least one lower and an upper approximation.
W. Zhu, presents different types of coverings and studies the conditions under which the approx-
imations satisfy the original properties defined by Pawlak’s approximations [95, 96, 97, 98]. At-
tributes reduction has been studied from reducing coverings, i.e. minimal coverings that generate
the same approximations of original covering. Covering based rough sets is an area with an impor-
tant development. This generalization produces an important number of different approximation
operators.

The goal of this dissertation is to study the properties of approximation operators in covering
based rough sets and other generalizations based on general binary relations and the topological
properties of different types of coverings that are obtained in discretization and attribute reduction
methods. As a framework, the work focus on generalized models of covering based rough sets,
relation based rough sets and possible relationships based on the idea of adjointness given in
[1, 105, 102]. Adjointness has played an important role in the theory and recent applications
[7, 77].

A detailed review of the theories and fundamentals of rough sets, and its generalizations, is
necessary for studying the properties of coverings from a topological and algebraic perspective.
It will be necessary to study in detail the most representative covering based approximation op-
erators and then to classify the different types of coverings obtained in these algorithms. From
the perspective of rough sets, it is necessary to consider the basic notions of definable set, the
positive region, the quality of classification and other associated measures. The properties of ap-
proximation operators in generalized rough sets and the relationship with attribute reduction and
discretization, will be studied.

Chapter 1 presents some preliminaries of rough sets, approximation operators, covering based
and relation based rough sets and basic properties of these operators. Chapter 2 shows a character-
ization of approximation operators using concepts of duality, conjugacy and adjointness. The main
results were published in International Journal of Approximate Reasoning 55, 2014 [53]. Chapter
3 presents a partial order relation for the approximation operators in an unified framework. This
was published in Information Sciences 284, 2014 [54]. Chapter 4 establishes some connections
between covering and relation based rough sets. A preliminary version of this work was published
in Lecture Notes on Artificial Intelligence 8537, 2014 [55]. An extended version was submitted
to Information Sciences. Finally, Appendix A presents a structured genetic algorithm to discretize
attributes, find reducts and to select appropriate approximation operators in classification models.



CHAPTER 1

Preliminaries

The main concept of rough set theory is the indiscernibility between objects given by an equiva-
lence relation in a non-empty set U, called Universe. Many generalizations of rough set theory
have been proposed. Three different definitions of approximation operators called element, granu-
le and subsystem were presented in a general framework for the study of covering based rough sets
by Yao and Yao in [87]. This framework enables us to reproduce many existing approximation
operators and introduce new ones. For the element based definition, Yao and Yao consider four
different neighborhood operators, in the granule based definition, they consider six new coverings
defined from a covering C. In subsystem based definition two new coverings are defined. From
these neighborhoods operators, new coverings and systems, it is possible to obtain twenty pair of
dual approximation operators. But, as Yao and Yao noted [87], there are other approximations out
of this framework. Järvinen presents in [30] some lattice concepts for rough sets, for example,
order preserving (reversing) functions, meet and join morphims, conjugates, duals and Galois
connections.

This chapter presents the basic concepts related to rough set theory, their new developments
and generalizations. Also, some discretization and attribute reduction algorithms, used on rough
sets are presented.

1.1 Rough Set Theory

A rough set is a mathematical model to deal with approximate classification of objects.

1.1.1 Rough sets

In rough set theory information is organized in a decision table, in which the rows correspond to
objects and the columns to a set of attributes that define those objects. One of the attributes is used
as classification and it is called attribute decision.

Definition 1.1. An information system is a quadruple S = 〈U,A,V, f 〉, where U = {x1, x2, . . . , xn} is
a finite set,A = {a1,a2, . . . ,am} is a finite set of attributes, Va is the domain of each attribute a ∈A
and V is equals to union of all domains:

V =
⋃
a∈A

Va (1.1)

1



CHAPTER 1. PRELIMINARIES 2

and f : U×A→ V is a function such that f (x,a) ∈ Va, for x ∈U. Function f is called information
function.

A decision system is an information system with a decision attribute d.

Any information system can be considered as a pair (U,A), where each U is the finite set of
objects called universe andA the set of attributes.

Let us consider the following example, adapted from [26]. Table 1.1 shows an information
system for six (6) students, with three conditional attributes (math, physics, language), which
represent the performance in each of three subjects and one decision attribute (class) that expresses
the student’s status at the end of the first year.

Table 1.1: An information system.

Objects Attributes
Students Math Physics Language Class

1 good good bad normal
2 medium bad bad desertor
3 medium bad bad normal
4 bad bad bad desertor
5 medium good good desertor
6 bad bad good normal

If P ⊆ A is a non-empty subset of attributes, it is possible to define a relation IP among the
elements of U = {1,2,3,4,5,6} as follows: if x,y ∈ U we will say x is related with y and written
xIPy if and only if f (x,a) = f (y,a) for all attribute a ∈ P. IP relates object such that all the condi-
tional attributes have the same information and therefore they can be considered like identical or
indiscernible, it means, it not possible to distinguish them. The relation can be expressed like a set
of ordered pairs:

IP = {(x,y) ∈ U ×U : f (x,a) = f (y,a) , ∀ a ∈ P} (1.2)

where, P ⊆A and P , ∅.

IP is an equivalence relation and it defines a partition of U in equivalence classes. The set [x]P

represents the equivalence class of x.

Any union of equivalence classes is called a definable set and it represents the subsets of U
that can be described accurately from the set of attributes P.

Figure 1.1 shows the equivalence classes for dataset in Table 1.1, obtained from the attribute
set P = {math,physics, language} and the set A = {1,3,6} of students in status “normal”.

Definition 1.2. An approximation space, is an ordered pair (U,E), where U is a set called universe
and E is an equivalence relation1 on U.

1.1.2 Approximation operators

For a set A ⊆U and an element x ∈ A, is possible that the equivalence class IP(x) is a subset of A or
it has elements outside A, therefore we need to distinguish these elements, with two sets: apr (A)

1An equivalence is a reflexive, symmetric and transitive relation.
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Figure 1.1: Partition of U from the equivalence relation and the set A = {1,3,6}.

and apr (A).

If S is a decision table, A a non empty subset of U and P ⊆A, P , ∅ is a subset of attributes,
the lower and upper approximation of A in U are defined by means of:

apr (A)= {x ∈ U : [x]P ⊆ A} (1.3)

apr (A)= {x ∈ U : [x]P∩A , ∅} . (1.4)

The elements of apr (A) are elements x ∈ U whose equivalence class [x]P, is totally contained
in A and apr (A) contains elements such that A and its equivalence class have common elements.

Definition 1.3. The boundary of a set A is defined as the difference between the upper and lower
approximation: BP(A) = apr (A)−apr (A).

Definition 1.4. A set A ⊆ U, A is called a rough set if BP(A) , ∅, .

U

A

2
3

6
5

4

1

Figure 1.2: Upper and lower approximation of A = {1,3,6}.

A rough set has elements which cannot be classified as a member of a set or its complement.
So, a rough set can be represent as a pair of definable sets, called lower and upper approximation.

Figure 1.2 shows the lower and upper approximations of A = {1,3,6, }: apr(A) = {1,6} and
apr(A) = {1,2,3,6}, respectively. In this case the boundary of A is BP(A) = {2,3}.

Let ∅ be the empty set, A and B two subsets of U and ∼ A the complement of A in U. The
following properties for lower and upper approximation operators have been established [82, 101].
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Table 1.2: Properties of approximation operators in classical rough sets.

Name Property
Duality apr(∼ A) =∼ apr(A)

apr(∼ A) =∼ apr(A)
Adjointness apr(A) ⊆ B⇔ A ⊆ apr(B)
Inclusion A ⊆ apr(A)

apr(A) ⊆ A
Monotonicity A ⊆ B⇒ apr(A) ⊆ apr(B)

A ⊆ B⇒ apr(A) ⊆ apr(B)
Meet/join-morphism apr(A∩B) = apr(A)∩apr(B)

apr(A∪B) = apr(A)∪apr(B)
Idempotence apr(apr(A)) = apr(A)

apr(apr(A)) = apr(A)
Normality apr(U) = U

apr(∅) = ∅

1.1.3 Discernibility

The relation IP defined from an information function f (x,y) as above, is called discernibility rela-
tion. This function can be used to define the discernibility matrix.

1.1.3.1 Discernibility matrix

The discernibility matrix of a decision table is a symmetric matrix n×n, with entries given by:

ci j = {a ∈ A : f (xi,a) , f (x j,a)}. (1.5)

Each ci j has the attributes a ∈ A, where xi and x j are different.

For the decision system of the Table 1.1, the discernibility matrix is shown in Table 1.3.

Table 1.3: Discernibility matrix.

Object 1 2 3 4 5 6
1 ∅

2 {M,P} ∅

3 {M,P} ∅ ∅

4 {M,P} {M} {M} ∅

5 {M,L} {P,L} {P,L} {M,P,L} ∅

6 {P,L} {M,L} {M,L} {M,L} {M,P} ∅

1.1.3.2 Discernibility function

The discernibility function is defined from a matrix discernibility, using a boolean function with
m variables (number of attributes):
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fD(a∗1,a
∗
2, . . . ,a

∗
m) = ∧{∨c∗i j,ci j , ∅}, (1.6)

where a∗i are boolean variables, representing attributes ai and c∗i j = {a∗|a ∈ ci j}.

The discernibility function for the matrix of the information system is: fD(M,P,L) = (M∨P)∧
(M∨L)∧M∧ (P∨L), and it is equivalent with:

fD(M,P,L) = (M∧P)∨ (M∧L) (1.7)

The expression (1.7) is the disjunctive normal form of fD and it means that the sets of attributes
{M,P} and {M,L} are reducts of {M,P,L}.

Let P ⊆ A and a ∈ P. It is said that attribute a is superfluous in P if IP = IP−{a}. Otherwise, a
is indispensable in P. The set P is independent if all its attributes are indispensable.

The subset P′ of P is a reduct of P, if P′ is independent and IP = IP′ .

Accuracy and quality. The accuracy of an approximation of A ⊆ U with the attributes set P is
defined as the ratio:

αP (A) =
|apr (A) |

|apr (A) |
, (1.8)

where |A| is the cardinal of A. If αP (A) < 1, A is rough respect to attributes P.

The quality of classification of A ⊆ U for the attributes P is defined by means of:

γP (A) =
|apr (A) |

|A|
. (1.9)

The quality γP (A) represents the ratio between the number of elements of A correctly classified
by the attribute set P.

The quality of classification can be extended to a partition of U. If {Y1,Y2, . . . ,Yk} is a partition
of U, i.e., if U =

⋃
i Yi, with Yi ∩Y j = ∅ for i , j and Yi , ∅, the quality of classification is given

by:

γP (U) =

∑
i |apr (Yi) |

|U |
. (1.10)

This ratio represents the quality of classification of U, using the attributes set P.

1.2 Topological Spaces

The relationship between rough set theory and theory of topological spaces was recognized by
many authors already in the early days of rough set theory [40, 49].

Definition 1.5. A topology for U is a collection τ of subsets of U satisfying the following condi-
tions:

1. The empty set and U belong to τ.
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2. The union of the members of each sub-collection of τ is a member of τ.

3. The intersection of the members of each finite sub collection of τ is a member of τ.

The Pair (U, τ) is called a topological space. The elements in τ are called open sets. The
complement of a open set is called a closed set.

A family B is called a base for (U, τ) if for every non-empty open subset O of U and each
x ∈ O, there exists a set B ∈ B such that x ∈ O. Equivalently, a family B is called a base for (U, τ)
if every non-empty open subset O of U can be represented as union of a subfamily of B.

The interior of a subset A of a topological space U is the union of the members of the family
of all open sets contained in A. The interior operator on U is an operator which assigns to each
subset A of U a subset A◦ such that the following statements (Kuratowski axioms) are true.

1. U◦ = U

2. (A◦)◦ = A◦

3. A◦ ⊆ A

4. (A∩B)◦ = A◦∩B◦

The closure of a subset A of a topological space U is the intersection of the members of the
family of all closed sets containing A. The closure operator on U is an operator which assigns to
each subset A of U a subset A such that:

1. ∅ = ∅

2. A = A

3. A ⊆ A

4. A∪B = A∪B

Let P be a partition of U. It can easily be seen that the collection of all sets that can be written
as unions of some members of P together with the empty set is a topology for U. This topology
is called the partition topology generated by P. The partition topologies are characterized by the
fact that every open set is also closed, and vice versa. Furthermore, apr and apr are interior and
closure operators, according to properties in Table 1.2. We will consider topological properties of
approximation operators in generalized rough sets.

1.3 Order relation

We present some concepts about ordered structures, according to Blyth [8].

Definition 1.6. If E is a non-empty set then by an order on E we mean a binary relation that is
reflexive, anti-symmetric and transitive.
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Usually the order is denoted by the symbol ≤. An ordered set (E,≤) is a set E on which there
is defined an order ≤.

In an ordered set (E,≤) we say that x is covered by y (or y covers x) if x < y and there is no
z ∈ E such that x < z < y. We denote this by using the notation x ≺ y.

Many ordered sets can be representing by means of a Hasse Diagram. In such a diagram we
represent elements by points and interpret x ≺ y, joining the points by an increasing line segment.

Definition 1.7. If E and F are ordered sets, then the set Map(E,F) of all mappings f : E→ F can
be ordered by defining:

f ≤ g⇔ (∀x ∈ E) f (x) ≤ g(x) (1.11)

1.3.1 Order preserving mappings

Definition 1.8. If (E,≤1) and (F,≤2) are ordered sets then we say that a mapping f : E → F is
isotone (or order preserving) if:

(∀x,y ∈ E) x ≤1 y⇒ f (x) ≤2 f (y) (1.12)

and is antitone (or order inverting) if:

(∀x,y ∈ E) x ≤1 y⇒ f (x) ≥2 f (y) (1.13)

1.4 Three definitions of Pawlak’s approximations

In Pawlak’s rough set model an approximation space is an ordered pair (U,E), where U is a non-
empty set and E is an equivalence relation on U. According to [87], there are three different,
but equivalent ways to define lower and upper approximation operators: element based definition,
granule based definition and subsystem based definition. For each A ⊆ U, the lower and upper
approximations are defined as:

Element based definition
apr(A) = {x ∈ U : [x]E ⊆ A} (1.14)

apr(A) = {x ∈ U : [x]E ∩A , ∅} (1.15)

Granule based definition

apr(A) =
⋃
{[x]E ∈ U/E : [x]E ⊆ A} (1.16)

apr(A) =
⋃
{[x]E ∈ U/E : [x]E ∩A , ∅} (1.17)
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Subsystem based definition

apr(A) =
⋃
{X ∈ σ(U/E) : X ⊆ A} (1.18)

apr(A) =
⋂
{X ∈ σ(U/E) : X ⊇ A} (1.19)

where σ(U/E) is the σ algebra that is obtained from the equivalence classes U/E, by adding the
empty set and making it closed under set unions.

1.5 Covering based rough sets

Many authors have investigated some generalized rough set models obtained by changing the
condition that E is an equivalence relation, or equivalently, that U/E forms a partition. In a first
approach the case where the partition is replaced by a covering of U is considered.

Figure 1.3 shows the evolution of two of most important generalization of rough sets: covering
based rough sets and relation based rough sets.

Y. Yao, 1998

Y. Yao + B. Yao, 2012

Yang + Li, 2010

Non dual

framework

Neighborhood

operators

Element Granule System closure

W. Zakowski, 1983

Xu + Zhang, 2002

E. Tsang et al., 2004

Z. Xu + Q. Wang, 2005

W. Zhu, 2006W. Zhu, 2009

J. Järvinen, 2007

Zhang + Lou, 2013

  (U, E)

  (U, R)

  (U ,U/E)

(U , )

  R
−1

 R

N
apr

C2 C3C1

C4 C∩

Sapr
∩

Sapr
∪

C

RST. Pawlak, 1982

Figure 1.3: Evolution of generalization of rough sets theory.

In 1983, W. Żakwoski gave the first generalization from coverings, while Y. Yao in 1998,
presented a generalization from a general binary relations, studied later by Järvinen. Yang and Li
(2010) presented a framework of seven pairs of approximation operators. In 2012 Y. Yao and B.
Yao presented a framework of twenty pairs of dual approximation operators. Some connections
between these generalization were presented by W. Zhu (2009) and Zhang and Lou (2013).

Definition 1.9. Let C = {Ki} be a family of nonempty subsets of U. C is called a covering of U if
∪Ki = U. The ordered pair (U,C) is called a covering approximation space.
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It is clear that a partition generated by an equivalence relation is a special case of a covering
of U, so the concept of covering is a generalization of a partition.

1.5.1 Framework of dual approximation operators

In [87] Yao and Yao proposed a general framework for the study of covering based rough sets. It
is based on the observation: if the partition U/E is generalized to a covering, the different defini-
tions of lower and upper approximations in Section 1.4 are no longer equivalent. A distinguishing
characteristic of their framework is the requirement that the obtained lower and upper approxima-
tion operators form a dual pair, that is, for A ⊆ U, apr(∼ A) =∼ apr(A), where ∼ A represents the
complement of A, i.e., ∼ A = U \A.

Below, a brief review of the generalizations of the element, granule and subsystem based
definitions is done.

In the element based definition, equivalence classes are replaced by neighborhood operators.

Definition 1.10. A neighborhood operator is a mapping N : U→P(U). If N(x) , ∅ for all x ∈ U,
N is called a serial neighborhood operator. If x ∈ N(x) for all x ∈ U, N is called a reflexive
neighborhood operator.

Each neighborhood operator defines a pair (apr
N
,aprN) of dual approximation operators, sim-

ilar to Equations 1.14 and 1.15.

apr
N

(A) = {x ∈ U : N(x) ⊆ A} (1.20)

aprN(A) = {x ∈ U : N(x)∩A , ∅} (1.21)

Different neighborhood operators, and hence different element based definitions of covering
based rough sets, can be obtained from a covering C. For an element x ∈ U, the sets K in C such
that x ∈ K are interesting to define its neighborhood.

Definition 1.11. If C is a covering of U and x ∈ U, a neighborhood system C(C, x) is defined by:

C(C, x) = {K ∈ C : x ∈ K} (1.22)

In a neighborhood system C(C, x), the minimal and maximal sets containing an element x ∈U
are particularly important.

Definition 1.12. Let (U,C) be a covering approximation space and x in U. The set

md(C, x) = {K ∈ C(C, x) : (∀S ∈ C(C, x)), (S ⊆ K⇒ K = S )} (1.23)

is called the minimal description of x [9]. On the other hand, the set

MD(C, x) = {K ∈ C(C, x) : (∀S ∈ C(C, x)), (S ⊇ K⇒ K = S )} (1.24)

is called the maximal description of x [105].
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The sets md(C, x) and MD(C, x) represent extreme points of C(C, x): for any K ∈ C(C, x), there
exist neighborhoods K1 ∈ md(C, x) and K2 ∈ MD(C, x) such that K1 ⊆ K ⊆ K2. From md(C, x) and
MD(C, x), Yao and Yao [87] defined the following neighborhood operators:

1. N1(x) =
⋂
{K : K ∈ md(C, x)}

2. N2(x) =
⋃
{K : K ∈ md(C, x)}

3. N3(x) =
⋂
{K : K ∈ MD(C, x)}

4. N4(x) =
⋃
{K : K ∈ MD(C, x)}

The set N1(x) for each x ∈ U, is called the minimal neighborhood of x, and it satisfies some
important properties as is shown in the following proposition [80]:

Proposition 1. Let C be a covering of U and K ∈ C, then

• K =
⋃

x∈K N1(x)

• If y ∈ N1(x) then N1(y) ⊆ N1(x).

Example 1. For simplicity, a special notation for sets and collections is used. For example, the set
{1,2,3} will be denoted by 123 and the collection {{1,2,3}, {2,3,5}} will be written as {123, 235}.
Let us consider the covering C = {1,5,6,14,16,123,456,2345,12346,235,23456,2356,12345} of
U = 123456. The neighborhood system C(C, x), the minimal description md(C, x) and the maximal
description MD(C, x) are listed in Table 1.4.

Table 1.4: Illustration of neighborhood system, minimal and maximal description.

x C(C, x) md(C, x) MD(C, x)
1 {1, 14, 16, 123, 12346, 12345} {1} {12346, 12345}
2 {123, 2345, 12346, 235, 23456, 2356, 12345} {123, 235} {12346, 12345, 23456}
3 {123, 2345, 12346, 235, 23456, 2356, 12345} {123, 235} {12346, 12345, 23456}
4 {14, 456, 2345, 12346, 23456, 12345} {14, 456, 2345} {12346, 12345, 23456}
5 {5, 456, 2345, 235, 2356, 12345} {5} {23456, 12345}
6 {6, 16, 456, 12346, 23456, 2356} {6} {12346, 23456}

The four neighborhood operators obtained from C(C, x) are listed in Table 1.5.

Table 1.5: Illustration of neighborhood operators.

x N1(x) N2(x) N3(x) N4(x)
1 1 1 1234 123456
2 23 1235 234 123456
3 23 1235 234 123456
4 4 123456 234 123456
5 5 5 2345 123456
6 6 6 2346 123456
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For the set A = 246, we have that apr
N1

(A) = 46, because N1(x) ⊆ A only for x = 4 and x = 6.
apr

N2
(A) = 6 and apr

N3
(A) = apr

N4
(A) = ∅. The upper approximations are: aprN1

(A) = aprN2
(A) =

2346, and aprN3
(A) = aprN4

(A) = 123456.

The following dual pairs of approximation operators based on a covering C are considered in
[87], by generalizing the granule based in Equations (1.16) and (1.17):

apr′
C

(A) =
⋃
{K ∈ C : K ⊆ A} = {x ∈ U : (∃K ∈ C)(x ∈ K∧K ⊆ A)} (1.25)

apr′C(A) = ∼ apr′
C

(∼ A) = {x ∈ U : (∀K ∈ C)(x ∈ K⇒ K∩A , ∅)} (1.26)

apr′′
C

(A) = ∼ apr′′C(∼ A) = {x ∈ U : (∀K ∈ C)(x ∈ K⇒ K ⊆ A)} (1.27)

apr′′C(A) =
⋃
{K ∈ C : K∩A , ∅} = {x ∈ U : (∃K ∈ C)(x ∈ K∧K∩A , ∅)} (1.28)

(apr′C,apr′
C

) and (apr′′C,apr′′
C

) are referred to as the tight and loose pair of approximations,
reflecting the fact that apr′′

C
(A) ⊆ apr′

C
(A) ⊆ A ⊆ apr′C(A) ⊆ apr′′C(A), for all A ⊆ U.

Furthermore, Yao and Yao introduced four new coverings derived from a covering C in [87]:

1. C1 = ∪{md(C, x) : x ∈ U}

2. C2 = ∪{MD(C, x) : x ∈ U}

3. C3 = {∩(md(C, x)) : x ∈ U} = {∩(C(C, x)) : x ∈ U}

4. C4 = {∪(MD(C, x)) : x ∈ U} = {∪(C(C, x)) : x ∈ U}

For example, the covering C1 is the collection of all sets in the minimal description of each
x ∈ U, while C3 is the collection of the intersections of minimal descriptions for each x ∈ U, i.e.,
{N1(x) : x ∈U}. Additionally, they considered the so-called intersection reduct C∩ and union reduct
C∪ of a covering C :

C∩ = C \
{
K ∈ C : (∃K ⊆ C \ {K})

(
K =

⋂
K
)}

(1.29)

C∪ = C \
{
K ∈ C : (∃K ⊆ C \ {K})

(
K =

⋃
K
)}

(1.30)

These reducts eliminate intersection (respectively, union) reducible elements from the cover-
ing, and it can be proven that they also form a covering of U.

Each of the above six coverings determines two pairs of dual approximations given by equa-
tions (1.25) and (1.26) and equations (1.27) and (1.28), respectively.

Example 2. The six coverings obtained from the covering C in Example 1 are:

1. C1 = {1,123,235,14,456,2345,5,6}

2. C2 = {12346,12345,23456}

3. C3 = {1,23,4,5,6}
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4. C4 = {123456}

5. C∪ = {123,456,2345,235,5,1,14,6}

6. C∩ = {123,456,2345,12346,5,23456,14,16,2356,12345}

The lower and upper approximations of A = 246 using the operators discussed above are
shown in Table 1.6.

Table 1.6: Illustration of granule-based definitions of approximation operations.

Covering apr′′
C

apr′
C

apr′C apr′′C
C ∅ 6 2346 123456
C1 ∅ 6 2346 12346
C2 ∅ ∅ 123456 123456
C3 46 46 2346 2346
C4 ∅ ∅ 123456 123456
C∩ ∅ 6 2346 123456
C∪ ∅ ∅ 12346 123456

Finally, to generalize the subsystem based definitions (1.18) and (1.19), Yao and Yao use the
notion of a closure system over U, i.e., a family of subsets of U that contains U and is closed
under set intersection. Given a closure system S over U, it is possible to construct its dual system
S′, containing the complements of each K in S, as follows:

S′ = {∼ K : K ∈ S} (1.31)

The system S′ contains ∅ and it is closed under set union. Given S = (S′,S), a pair of dual
lower and upper approximations can be defined as follows:

apr
S

(A) =
⋃
{K ∈ S′ : K ⊆ A} (1.32)

aprS (A) =
⋂
{K ∈ S : K ⊇ A} (1.33)

As a particular example of a closure system, [87] considered the so-called intersection closure
S ∩,C of a covering C, i.e., the minimal subset ofP(U) that contains C, ∅ and U, and is closed under
set intersection. On the other hand, the union closure of C, denoted by S ∪,C, is the minimal subset
of P(U) that contains C, ∅ and U, and is closed under set union. It can be shown that the dual
system S ′

∪,C
defines a closure system. Both S ∩ = ((S ∩,C)′, S ∩,C) and S ∪ = (S ∪,C, (S ∪,C)′) along

with Eqs. (1.32) and (1.33), can be used to obtain pairs of dual approximation operations.

Example 3. For the covering C = {12,124,25, 256,345,26,6}, the intersection and union closure
can be obtained as follows.

• S ∩,C = C∪{∅,2,4,5,123456}

• S ∪,C = C∪{∅,125,1256,1245,126,1245,12456,1246,2345,23456,3456,123456}

The corresponding lower approximations of A = 246 are: apr
S ∩

(A) = 246 and apr
S ∪

(A) = 26.
The upper approximations are: aprS ∩(A) = 123456 and aprS ∪(A) = 246.
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In summary, twenty pairs of dual approximation operators are defined in this framework: four
from the element based definition based on neighborhood operators, fourteen from the granule
based definition (based on the covering C and six derived coverings), and two from the subsystem
based definition (using intersection and union closure). All pairs are listed in Table 1.7.

Table 1.7: List of dual pairs of approximation operators considered in [87].

# Dual pair # Dual pair
1 aprN1

apr
N1

2 aprN2
apr

N2

3 aprN3
apr

N3
4 aprN4

apr
N4

5 apr′C apr′
C

6 apr′′C apr′′
C

7 apr′C1
apr′

C1
8 apr′′C1

apr′′
C1

9 apr′C2
apr′

C2
10 apr′′C2

apr′′
C2

11 apr′C3
apr′

C3
12 apr′′C3

apr′′
C3

13 apr′C4
apr′

C4
14 apr′′C4

apr′′
C4

15 apr′C∩ apr′
C∩

16 apr′′C∩ apr′′
C∩

17 apr′C∪ apr′
C∪

18 apr′′C∪ apr′′
C∪

19 aprS ∩ apr
S ∩

20 aprS ∪ apr
S ∪

1.5.2 Framework of non-dual approximation operators

Another important line of research on covering-based rough sets has focused on pairs of approxi-
mation operators that are not necessarily dual. The first of such proposals goes back to Żakowski
[88], who was in fact the first to generalize Pawlak’s rough set theory from a partition to a cov-
ering. In recent papers [78, 80], a total of two lower approximation operators and seven upper
approximation are summarized, which are listed below.2

For a covering C of U, the principal lower approximations for A ⊆ U are:

• LC1 (A) =
⋃
{K ∈ C : K ⊆ A} = apr′

C
(A)

• LC2 (A) =
⋃
{N1(x) : x ∈ U ∧N1(x) ⊆ A}

It can be seen that LC2 is the particular case of LC1 when we use C3 instead of C, so LC2 = apr′
C3

.
The seven upper approximations are listed as follows:

• HC
1 (A) = LC1 (A)∪ (

⋃
{md(C, x) : x ∈ A−LC1 (A)})

• HC
2 (A) =

⋃
{K ∈ C : K∩A , ∅} = apr′′C(A)

• HC
3 (A) =

⋃
{md(C, x) : x ∈ A}

• HC
4 (A) = LC1 (A)∪ (

⋃
{K : K∩ (A−LC1 (A)) , ∅})

2There is no uniform notation for these approximation operators in literature. For example in [89], S H refers to the
sixth upper approximation, while in [97] S H refers to the second upper approximation. For ease of reference, here we
use numerical subscripts in the definitions.
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• HC
5 (A) =

⋃
{N1(x) : x ∈ A}

• HC
6 (A) = {x : N1(x)∩A , ∅} = aprN1

(A)

• HC
7 (A) =

⋃
{N1(x) : N1(x)∩A , ∅}

The couple (HC
1 ,L

C
1 ) is proposed by Żakowski in [88]. Pomykala [50] considers the pair

(HC
2 ,L

C
1 ), while Tsang et al. study (HC

3 ,L
C
1 ) in [70]. Zhu and Wang define (HC

4 ,L
C
1 ) in [104], while

(HC
5 ,L

C
1 ) is considered by Zhu in [102]. Xu and Wang propose (HC

6 ,L
C
2 ), and finally (HC

7 ,L
C
2 ) is

discussed by Xu and Zhang in [76].

The definitions of LC2 , HC
5 , HC

6 and HC
7 can generate new approximation operators if N1 is

replaced by another neighborhood operator. The operators HC
1 , HC

3 , HC
4 and HC

5 do not appear
explicitly in Yao’s framework, although HC

1 and HC
4 can be expressed as union of a lower and an

upper approximation operator. For example, HC
1 can be written as:

HC
1 (A) = apr′

C
(A)∪apr′′C(A−apr′

C
(A)). (1.34)

Example 4. Table 1.8 presents the upper approximations for some subsets of U and the covering
C = {12,124,25, 256,345,26,6}. Since there are no two identical columns, we can conclude that
all seven upper approximations are different.

Table 1.8: Illustration of upper approximations HC
1 -HC

7 .

A HC
1 HC

2 HC
3 HC

4 HC
5 HC

6 HC
7

16 126 12456 126 1246 126 16 126
25 25 123456 123456 25 25 1235 12345

123 12345 123456 123456 12345 12345 123 12345
34 12345 12345 12345 12345 345 34 345

1.6 Relation based rough sets

Relation based rough sets is another generalization of rough set theory, where the equivalence
relation is replaced by a general binary relation. In applications of data sets with missing data
general binary relations are defined. Some works for incomplete information are [11, 12, 20,
23, 45]. In datasets with numerical attributes, is possible to define similarity relations from data
[6, 31].

If R is a binary relation on U and x ∈ U, the sets:

S (x) = {y ∈ U : xRy} and P(x) = {y ∈ U : yRx} (1.35)

are called successor and predecessor neighborhood, respectively.

The lower and upper approximation of A ⊆ U, from a binary relation R on U, is given by:

apr
R
(A) = {x ∈ U : R(x) ⊆ A} (1.36)

aprR(A) = {x ∈ U : R(x)∩A , ∅} (1.37)
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where R(x) can be replaced by S (x) or P(x). The pair (U,R) is called a relation approximation
space.

Therefore, each binary relation defines two pairs of approximation operators (apr
S
,aprS ) and

(apr
P
,aprP).

Järvinen shows in [30] that the ordered pairs (apr
S
,aprS ) and (apr

P
,aprP), defined using the

element based definitions, with S (x) or P(x), are dual pairs.

Example 5. The lower and upper approximations for S (x) and P(x) are different. Let R be the
relation R = {(1,1), (1,2), (2,3), (2,4), (4,4)} defined on U. The values for S (x) are: S (1) = {1,2},
S (2) = {3,4}, S (3) = { }, S (4) = {4}, while P(1) = {1}, P(2) = {1}, P(3) = {2}, P(4) = {2,4}. If
A = {2,3}, it is easy to see that apr

S
(A) = { } and apr

P
(A) = {2}, therefore apr

S
, apr

P
. Similarly,

for aprS and aprP.

The following proposition about relation based rough sets is presented by W. Zhu in [102].

Proposition 2. The operators defined in Equations (1.36) and (1.37) satisfy:

a. aprR(∅) = ∅

b. apr
R
(U) = U

c. aprR(A∪B) = aprR(A)∪aprR(B)

d. apr
R
(A∩B) = apr

R
(A)∩apr

R
(B)

e. apr
R
(∼ A) =∼ aprR(A)

If R is a reflexive and transitive binary relation on U, then upper approximation operator is a
closure operator characterized by Kuratowski axioms on U. Conversely, if C : P(U)→P(U) is a
closure operator then there exists a reflexive and transitive relation on U such that aprR(A) = C(A),
for all A subset of U. Therefore, a closure in a topological space is also interpreted as an upper
approximation operator [86].

Let L be an ordered set and S ⊆ P. An element x ∈ L is an upper bound of S if a 6 x for all
a ∈ S . If there is a least element in the set of all upper bounds of S , it is called the supremum of S
and is denoted by supS or

∧
S . An infimum of S is defined dually.

Definition 1.13. If L is an ordered set and and x∧y and x∨y exists for all x,y ∈ L, then L is called
a lattice. If

∧
S and

∧
S exist for all S ⊆ L, then L is called a complete lattice. Clearly, every

finite lattice is complete.

1.7 Approximation operators

This section recalls the basic relations among dual, conjugate and adjoint operators, following the
ideas introduced by Järvinen in [30] in the context of lattices.

Let L be a bounded lattice with a least element 0 and greatest element 1. For a ∈ L, we say
that b ∈ L is a complement of a if a∨b = 1 and a∧b = 0. A distributive and bounded lattice with
complement for all a ∈ L is called a Boolean lattice. In particular, the collection P(U) of subsets
of a set U, with least element ∅, greatest element U and intersection, union and complement
operations is a Boolean lattice.
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1.7.1 Meet and join morphisms

If L,K are lattices, a map f : L→ K is a complete join morphism if whenever S ⊆ L and ∨S exists
in L, then ∨ f (S ) exists in K and f (∨S ) = ∨ f (S ). Analogously, a map f : L→ K is a complete
meet morphism if whenever S ⊆ L and ∧S exists in L, then ∧ f (S ) exists in K and f (∧S ) = ∧ f (S ).

A finite lattice is always complete, i.e. ∨S and ∧S exist for all S ⊆ L. In this case a meet
morphism f (a morphism that satisfies f (a∧b) = f (a)∧ f (b) for a and b in L) is a complete meet
morphism, and dually, a join morphism f (a morphism that satisfies f (a∨ b) = f (a)∨ f (b) for a
and b in L) is a complete join morphism. Since this work, assumes that U is a finite universe, for
the approximation operators will be sufficient to establish that they are meet (join, respectively)
morphisms.

Some known results about the approximation operators from Section 1.5.2 are: Zhu shows
that HC

2 , HC
3 and HC

4 are join morphisms in [96, 97, 105], while Wu et al. in [79] show this for HC
5 .

Moreover, in [95] it was shown that the upper approximation HC
1 is a join morphism and the

lower approximation LC1 is a meet morphism if and only if C is an unary covering. Recall that a
covering C is unary if for all x ∈U, md(C, x) is a singleton, or equivalently if ∀K1,K2 ∈ C, K1∩K2
is a union of elements of C [105]. As a particular example, the covering C3 obtained from any
covering C is an unary covering.

1.7.2 Duality

Definition 1.14. [30] Let f ,g : B→ B be two self-maps on a complete Boolean lattice B. We say
that g is the dual of f , if for all x ∈ B,

g(∼ x) =∼ f (x),

where ∼ x represents the complement of x ∈ B.

For any f , we denote by f ∂ the dual of f . If g = f ∂ then f = g∂.

1.7.3 Conjugacy

Definition 1.15. Let f and g be two self-maps on a complete Boolean lattice B. We say that g is a
conjugate of f , if for all x,y ∈ B,

x∧ f (y) = 0 if and only if y∧g(x) = 0.

If g is a conjugate of f , then f is a conjugate of g. If a map f is the conjugate of itself, then f
is called self-conjugate. The conjugate of f will be denoted as f c.

Proposition 3. Let f be a self-map on a complete Boolean lattice B. Then f has a conjugate if
and only if f is a complete join morphism on B.

From the proof given in [30], the conjugate of f is defined, for y ∈ B, by:

g(y) =∼ (∨{x : f (x) ≤∼ y}) = ∧{∼ x : f (x)∧ y = 0} (1.38)
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In the context of rough sets, the concept of conjugate is related to upper approximation opera-
tors. It is possible to define a dual notion of co-conjugate for lower approximations, as follows:

Definition 1.16. Let f and g be two self-maps on a complete Boolean lattice B. We say that g is a
co-conjugate of f , if for all x,y ∈ B,

x∨ f (y) = 1 if and only if y∨g(x) = 1.

If g is a co-conjugate of f , then f is a co-conjugate of g. If a map f is the co-conjugate of
itself, then f is called self co-conjugate. The co-conjugate of f will be denoted as fc.

Proposition 4. If ( f1,g1) and ( f2,g2) are pairs of dual self-maps on a complete Boolean lattice B,
then f1 and f2 are conjugate if and only if g1 and g2 are co-conjugate.

Proof. We show just one part of the equivalence. The other part is similar.

If f c
1 = f2 then, for y ∈ B:

x∨g1(y) = 1⇔∼ x∧ ∼ g1(y) = 0

⇔∼ x∧ f1(∼ y) = 0

⇔∼ y∧ f2(∼ x) = 0

⇔ y∨ ∼ f2(∼ x) = 1

⇔ y∨g2(x) = 1

So, (g1)c = g2. �

1.7.4 Adjointness

The idea of adjoint can be found in various settings in mathematics and theoretical computer
science. We consider the particular case of adjoints defined on ordered sets, known as Galois
connections.

Definition 1.17. Let P and Q be two ordered sets; an ordered pair ( f ,g) of maps f : P→ Q and
g : Q→ P is called a Galois connection if for all p ∈ P and q ∈ Q,

f (p) ≤ q if and only if p ≤ g(q). (1.39)

The map g is called the adjoint of f and will be denoted as f a. The map f is called the co-
adjoint of g and will be denoted as ga. It is easy to show that the maps are order-preserving, i.e., if
p ≤ p′ then f (p) ≤ f (p′) and if q ≤ q′, then g(q) ≤ g(q′), and that the adjointness condition (1.39)
is equivalent to the condition that f and g are order-preserving and that for all p and q, p ≤ g( f (p))
and f (g(q)) ≤ q.

Conditions about the existence of adjoints and co-adjoints of a morphism between complete
lattices are given in the following proposition.

Proposition 5. Let K and L be complete lattices.

1. A map f : L→ K has an adjoint if and only if f is a complete join morphism.
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2. A map g : K→ L has a co-adjoint if and only if g is a complete meet morphism.

In this case, the adjoint of f is given by:

f a(y) = ∨{x ∈ L : f (x) ≤ y} (1.40)

and the co-adjoint of g is obtained as:

ga(y) = ∧{x ∈ K : y ≤ g(x)}. (1.41)

The following important proposition establishes the relationship between duality, conjugacy
and adjointness, and will be used frequently in the next section. [30]

Proposition 6. Let B be a complete Boolean lattice. For any complete join morphism f on B, its
adjoint is the dual of the conjugate of f . On the other hand, for any complete meet morphism g on
B, its co-adjoint is the conjugate of the dual of g.

In classical rough set theory, the lower and upper approximations (apr,apr) form a Galois
connection on P(U). Järvinen shows in [30] that Galois connections also there exist in generalized
rough set based on a binary relation. In particular, if R is a binary relation on U, x ∈U and S (x) and
P(x) are the successor and predecessor neighborhoods, respectively, the ordered pairs (aprP,apr

S
)

and (aprS ,apr
P
), defined using the element based definitions, form adjoint pairs.

On the other hand, Yao [85] establishes the following important proposition which relates dual
pairs of approximation operators with the relation-based generalized rough set model considered
by Järvinen.

Proposition 7. Suppose (apr,apr) :P(U)→P(U) is a dual pair of approximation operators, such
that apr is a join morphism and apr(∅) = ∅. There exists a symmetric relation R on U, such that
apr(A) = apr

R
(A) and apr(A) = aprR(A) for all A ⊆ U if and only if the pair (apr,apr) satisfies:

A ⊆ apr(apr(A)).

By duality, we know that apr is join morphism if and only if apr is a meet morphism and
apr(∅) = ∅ if and only if apr(U) = U. According to the proof, the symmetric relation R is defined
by, for x,y in U,

xRy⇔ x ∈ apr({y}). (1.42)

1.8 Discretization

Discretization of real value attributes is an important task in data mining, particularly for the
classification problem. Empirical results show that the quality of classification methods depends
on the discretization algorithm used in preprocessing step. In general, discretization is a process
of searching for partition of attribute domains into intervals and unifying the values over each
interval. Hence discretization problem can be defined as a problem of searching for a suitable set
of cuts (i.e. boundary points of intervals) on attribute domains. [42].
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1.8.1 Discretization in rough sets

The acquisition of knowledge from databases, such as rule induction or generation of decision
trees, requires numerical attributes become categorical attributes. This process of converting a
numerical attribute into intervals, is called discretization [4].

Discretization is based on searching for cuts that determine intervals. All values that lie within
each interval are then treated as indiscernible, then cuts are placed in the middle of each interval.

Discretization methods have been developed along different lines due to different needs: Su-
pervised vs. unsupervised, dynamic vs. static, global vs. local, splitting vs. merging. A typical
process of discretization is a four-stage process, according to [36] and it is as follows.

1. The continuous values of an attribute are sorted in either descending or ascending order. If
sorting is done once and for all at the beginning it is called global. If sorting is done at each
iteration of a process, it is called local.

2. Evaluating a cutoff to divide (splitting) an interval or to group two intervals in one (merging).
In this case evaluation functions are used to determine the correlation of a separation or
union regarding the class.

3. According to some criterion, two continuous intervals can be attached or detached depend-
ing on the chosen method .

4. Stopping criterion specifies when to stop the discretization process. They usually use a
maximum number of intervals or an evaluation function.

Consider the decision table A = (U,A∪{d}) where d : U→{1,2, . . . ,r(d)}, the attribute decision
d has the values {1,2, . . . ,r(d)}. Then suppose that attribute a ∈ A has a domain Va = [la,ra) ⊂ R.
An ordered pair (a,c) with c ∈ R is a cut of Va. A set of pairs {(a,c1), (a,c2), . . . , (a,ck)} define a
partition Pa of Va

la = c0 < c1 < c2 · · · < ck < ck+1 = ra. (1.43)

P =
⋃

a∈A Pa define a new table AP = (U,AP ∪ {d}) where AP(x) = i if and only if a(x) ∈ [ci,ci+1),
for x ∈U and i ∈ {0, . . . ,k}. Two partitions P y Q are equivalents if and only if AP = AQ. A partition
P is consistent with A, if quality classification is the same in both cases: γA(U) = γAP(U).

A set of cuts Pir is irreducible in A if P is consistent with A for all P ⊂ Pir. The set of cuts Pop

is optimum if |Pop| ≤ |P| for any P consistent with A. Find the optimum set of cuts is a NP-hard
problem [29].

Of course, there exist algorithms which do not require discretizing continuous domains, nei-
ther as a pre learning step nor during the learning process; the conditional part of the rule is not
expressed as a conjunction of elementary conditions. Many of these algorithms are based on the
use of a relation of similarity that allows constructing similarity classes of objects, as IRBASIR
algorithm and its modification presented in [6]. In this particular case, two binary relations are
defined. The first one F1(x,y) is based on conditional attributes and the second one F2(x,y) on the
decision attribute. The comparison functions can be defined as:

F1(x,y) =

n∑
i=1

wiδi(xi,yi) (1.44)
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where n is the number of attributes, wi is the weight of attribute i with
∑

wi = 1 and δi is the
comparison function for attribute i.

A classical comparison function is defined as:

δi(xi,yi) =


1− |xi−y1 |

max(ni)−min(ni)
if i is continuous

1 if i is discrete and xi = yi

0 if i is discrete and xi , yi

(1.45)

From a pair of threshold θ1, θ2, two relations Ri are can be defined as follows:

Ri(x,y) if and only if Fi(x,y) ≥ θi (1.46)

Ri are reflexive and symmetric relations. The respective neighborhood are defined by means
of:

Ni(x) = {y ∈ U : xRiy} (1.47)

The problem in this point is to find functions F1 and F2 such that N1(x) and N2(x) have the
greatest similarity and it means to calculate the weights wi [6].

1.9 Attributes reduction

W. Zhu in [103] discussed the reduction of a covering approximation space and the conditions in
which two coverings generate the same lower or upper approximations for any subset A ⊆ U.

The number of attributes in a data set constitutes a serious obstacle in the efficiency of most
data mining algorithms. This obstacle is some times known as the curse of dimensionality. There
exist many algorithms designed specifically to address the problem of attribute reduction [3].

The attribute selection problem can be presented as finding a small subset of m attributes
taken a total of n of attributes of a data table, with no significant loss of performance, the total
of attributes. In general, it is determined by a measure that assesses the strength of the subset of
selected attributes. The main purpose is to identify significant attributes, eliminate irrelevant and
to build a good model of learning.

Genetic algorithms are a good alternative to the selection of attributes in high dimensionality
problems and have been used as reduction technique [12, 75].

1.9.1 Attribute reduction in rough sets

One fundamental aspect of rough set theory involves a search for particular subsets of condition
attributes. Such subsets are called attribute reductions. Many types of attribute reductions have
been proposed, each of the reductions aimed at some basic requirements. In [63], Skowron intro-
duced the notion of discernibility matrix which became a major tool for searching for reductions
in information systems. Using the similar idea, Zhang et al. discussed approaches to attribute
reduction in inconsistent and incomplete information systems [92].
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1.9.2 Reducts

It is the process of reducing an information system such that the set of attributes of reduced in-
formation system is independent and no attributes can be eliminated further, without losing some
information [33]. One of the main contributions of rough sets is the ability to use their ideas to
the problem of attribute reduction. Get a reduct is the process of finding subsets of attributes with
the same quality in the classification of the original set. A subset B of the set of attributes A is a
relative reduct if and only if B is a minimal set with respect to the property to preserve the quality.

Calculate reducts can be made from discernibility function, as shown in the previous section.
The reducts can be obtained from the minimal elements (prime implicants) of the disjunctive
normal form of discernibility function, for example, the reducts are given by the attributes sets:
{M,P} and {M,L}.

Given the fact that exhaustive search over the attributes space has exponential time in the
number of attributes, it might not always be computational feasible to search for the minimum
size reduct of attributes. The lower and upper approximations for a data set with m attributes can
be obtained from the discernibility matrix in a time O(mn2), although in [44] there is an algorithm
with time O(mn logn), using a space of order O(n).

Moreover, the decision problem of the existence of a reduct of length k is NP-complete, while
the problem of finding a reduct of minimum length is NP-hard [44]. For large databases, meta-
heuristics and genetic algorithms are used for finding reducts.

1.10 Decision Rules

One of the most important goals of the rough set theory is the ability to generate a model based on
rules, in a classification problem. The set of rules generated can be considered as a representation
of the knowledge acquired on all objects contained in a data table. This representation is used to
classify new individuals based on their attributes.

A decision rule can be expressed as a logical implication of the form P toQ which relates the
condition attributes to the decision attribute. In general there are two types of rules. The rules that
are derived from lower approximations are called exact rules, while the rules obtained from the
boundary are called approximated rules.

1.10.1 Rules quantification

For a rule P→ Q the concepts of support, confidence and cover can be defined, as follows:

Support:
supp(P→ Q) is the number of elements which satisfy P and Q.

Confidence:
The ratio among the support and the number of elements which satisfy P.

Con f (P→ Q) =
supp(P→ Q)

supp(P)
(1.48)

According to conditional probability,we can see:
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Con f (P→ Q) = Pr(Q|P) =
Pr(P∧Q)

Pr(P)
(1.49)

Cover:
The cover of the rule P→ Q is the confidence of the rule Q→ P: Cov(P→ Q) = con f (Q→ P)

Also we have:
Cov(P→ Q) =

supp(Q→ P)
supp(Q)

(1.50)

1.10.2 Exact and approximate rules

The exact rules can be obtained from the positive region: Pos(U). In the example of Table 1.1 we
have Pos(U) = {1,4,5,6}, therefore, the exact rules are:
R1: (M = good) => (d = good) {1,6}
R2: (M = bad) => (d = bad) {4}
R3: (M = medium) & (P = good) => (d =good) {5}.

Approximate rules can be obtained from the boundary of each subset. Since B(U) = {2,3}, we
have:
R4: (M = medium) & (P = bad) => (d = good o d = bad).
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Approximation operators

This chapter relates the two groups of approximation operators discussed in Sections 1.5.1 and
1.5.2, and presents a new framework of dual pairs of approximation operators. Additionally, a
characterization of operators that satisfy both the duality and adjointness condition is derived.

2.1 Relationship among approximation operators

The section starts with a proposition that allows to compute the adjoint of an upper approximation
operator in a computationally efficient way. According to Proposition 5, an upper approximation
operator H :P(U)→P(U) has an adjoint if and only if H is a join morphism. This adjoint is given
by:

Ha(A) =
⋃
{B ⊆ U : H(B) ⊆ A}. (2.1)

Hence, the adjoint must be calculated on subsets of U. However, the following proposition pro-
vides a less complex alternative.

Proposition 8. If H : P(U)→P(U) is a join morphism, then the adjoint of H can be calculated
by, for A ⊆ U:

Ha(A) = {x ∈ A : H({x}) ⊆ A}. (2.2)

Proof. We will show that the following equality holds:

{x ∈ A : H({x}) ⊆ A} = ∪{B ⊆ A : H(B) ⊆ A}.

If x ∈ A and H({x}) ⊆ A then {x} ⊆ ∪{B ⊆ A : H({x}) ⊆ A} and x ∈ ∪{B ⊆ A : H({x}) ⊆ A}. On the
other hand, if x ∈ ∪{B ⊆ A : H(B) ⊆ A}, there exists B = {y1, . . . ,yn}, such that H(B) ⊆ A and x ∈ B.
Because H is a join morphism, H(B) = ∪n

i=1H({yi}), from which follows that H({x}) ⊆ A. �

This form of the adjoint approximation operator is actually the same as that of the Wybraniec-
Skardowska lower approximation operator [73]. Recall that the Wybraniec-Skardowska approxi-
mation operator pair (aprh,apr

h
) is defined as:

apr
h
(A) = {x ∈ U : ∅ , h(x) ⊆ A} (2.3)

23
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aprh(A) =
⋃
x∈A

h(x) (2.4)

where h is an upper approximation distribution, i.e., an U→P(U) mapping that satisfies
⋃

x∈U
h(x) =

U [73]. In this case, for all upper approximations H such that H({x}) , ∅, Equations (2.2) and
(2.3) are the same. Function h can be considered as a restriction of H to the singletons. The pair
of approximation operators given by Equations. (2.3) and (2.4) are not dual operators, but they are
an adjoint pair, by definition.

2.1.1 Dual framework of approximation operators

This section examines the twenty pairs of approximation operators considered by Yao and Yao in
[87]. First, we establish an important proposition that follows from the duality of these operators.

Proposition 9. If (apr,apr) is a dual pair of approximation operators, then apr is a meet mor-
phism, if and only if apr is a join morphism.

Proof. If apr is a meet morphism, then apr(A∩B) = apr(A)∩apr(B) for A,B ⊆ U and so, using
the duality of apr and apr, we have:

apr(A∪B) =∼ apr(∼ (A∪B))

=∼ apr [(∼ A)∩ (∼ B)]

=∼
[
apr(∼ A)∩apr(∼ B)

]
=∼ apr(∼ A)∪ ∼ apr(∼ B)

= apr(A)∪apr(B).

The other part of the equivalence is similar. �

2.1.1.1 Element based definitions

Propositions 10 and 11 establish that upper (resp., lower) approximation element based definitions
have adjoints (resp., co-adjoints).

Proposition 10. For any neighborhood operator N, apr
N

is a meet morphism.

Proof. Since apr
N

(A) = {x ∈U : N(x) ⊆ A}, we have x ∈ apr
N

(A∩B) iff N(x) ⊆ A∩B iff N(x) ⊆ A
and N(x) ⊆ B iff x ∈ apr

N
(A) and x ∈ apr

N
(B) iff x ∈ apr

N
(A)∩apr

N
(B). �

Corollary 2.1. For any neighborhood operator N, aprN is a join morphism.

Corollary 2.2. For any neighborhood operator N, apr
N

has a co-adjoint and it is equal to the
conjugate of aprN .

Proof. By Proposition 6 and the duality of aprN and apr
N

,
(
apr

N

)
a

=
(
apr∂

N

)c
=

(
aprN

)c
=

(GN
6 )c = GN

5 . �
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Corollary 2.3. For any neighborhood operator N, aprN has an adjoint and it is equal to the dual
of GN

5 .

Proof. Indeed, by Proposition 6, we find
(
aprN

)a
=

(
(aprN)c)∂ =

(
GN

5

)∂
. �

The remaining question now is whether (aprN ,apr
N

) can ever form an adjoint pair. For this to

hold, based on the above we need to have that
(
apr

N

)
a

= GN
5 = GN

6 = aprN .

Proposition 11. (aprN ,apr
N

) is an adjoint pair if and only if N satisfies GN
5 = GN

6 .

The following proposition characterizes the neighborhood operators N that satisfy GN
5 = GN

6 ,
and establishes the link with the generalized rough set model based on a binary relation.

Theorem 1. Let N be a neighborhood operator. The following are equivalent:

(i) For all x,y in U, N satisfies
y ∈ N(x)⇒ x ∈ N(y) (2.5)

(ii) GN
5 = GN

6

(iii) There exists a symmetric binary relation R on U such that N(x) = {y ∈ U : xRy}.

Proof. We first prove (i)⇒ (ii). Let A ⊆ U. If w ∈GN
5 (A), then w ∈ ∪{N(x) : x ∈ A}. This means

that w ∈ N(x) for some x ∈ A, and by (2.5) x ∈ N(w), so N(w)∩A , ∅. Hence w ∈GN
6 (A).

If w ∈GN
6 (A), then N(w)∩A , ∅. In other words, there exists x ∈ U with x ∈ A and x ∈ N(w).

By (2.5), w ∈ N(x) and thus w ∈ ∪{N(x) : x ∈ A} = GN
5 (A).

On the other hand, to prove (ii) ⇒ (i), by the definition of GN
5 , we have GN

5 ({x}) = N(x). If
GN

5 (A) = GN
6 (A), for all A ⊆ U and y ∈ N(x) then N(x)∩{y} , ∅, so x ∈GN

6 ({y}) = GN
5 ({y}) = N(y).

Finally, the equivalence (i)⇔ (iii) is immediate, with R defined by xRy⇔ x ∈ N(y) for x,y in
U. �

The proposition thus shows that the only adjoint pairs among element-based definitions are
those for which the neighborhood is defined by Eq. (1.35), with symmetric R. The following
example shows that for none of the neighborhood operators considered in Section 1.5.1, the ad-
jointness holds.

Example 6. We illustrate the fact that (aprNi
,apr

Ni
) is not an adjoint pair for i = 1, . . . ,4, by

showing that the property f (g(x)) ≤ x, satisfied by any Galois connection ( f ,g), does not hold for
them.

For the covering C = {12,124,25,256,345,26,6} of U = 123456, the neighborhoods Ni for the
elements of U are shown in Table 2.1.



CHAPTER 2. APPROXIMATION OPERATORS 26

Table 2.1: Neighborhood operators for the covering in Example 6.

x N1(x) N2(x) N3(x) N4(x)
1 12 12 124 124
2 2 1256 2 12456
3 345 345 345 345
4 4 12345 4 12345
5 5 23456 5 23456
6 6 6 256 256

We have that:

• aprN1
(apr

N1
(45)) = aprN1

(45) = 345 * 45.

• aprN2
(apr

N2
(12)) = aprN2

(1) = 124 * 12.

• aprN3
(apr

N3
(12)) = aprN3

(2) = 126 * 2.

• aprN4
(apr

N4
(124)) = aprN4

(124) = 12345 * 124.

2.1.1.2 Granule based definitions

Propositions 12 to 19 prove some properties that provide a relationship between different granule
based definitions, and between particular element and granule based definitions.

Proposition 12. apr′
C

= apr′
C1

.

Proof. Let A ⊆U be a subset of U. For all K ∈ C with K ⊆ A there exists a K′ ∈md(C, x) for some
x ∈ U, such that K′ ⊆ K ⊆ A, so ∪{K ∈ md(C, x) : x ∈ U} ⊆ ∪{K ⊆ C : K ⊆ A}, then apr

C1
≤ apr

C
.

On the other hand, if w ∈ K ⊆ A, there exists K′ ∈md(C,w) such that w ∈ K′ ⊆ K ⊆ A, so w ∈ ∪{K ∈
C1 : K ⊆ A}. �

Proposition 13. apr′
C

= apr′
C∪

.

Proof. We will show that for each x ∈U, md(C, x) = md(C∪, x) and so, by Proposition 12, we have
apr′

C
= apr′

C∪
.

From the definition of C∪, we know that C∪ is the ∪-reduct and C∪ ⊆ C and md(C, x) ⊆
md(C∪, x). If K ∈md(C∪, x) and let us suppose that K <md(C, x) there exists K′ md(C, x) such that
x ∈ K′ ⊆ K. �

Proposition 14. apr′′C = apr′′C2

Proof. Clearly, we have C2 ⊆ C, and therefore apr′′C2
(A) ⊆ apr′′C(A), for A ⊆ U.

On the other hand, for each K ∈ C there exists K′ ∈ C2 such that K ⊆ K′, so K∩A , ∅ implies
K′∩A , ∅, thus apr′′C(A) ⊆ apr′′C2

(A). �

Proposition 15. apr′′C = apr′′C∩
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Proof. From the relation C∩ ⊆ C, we have apr′′C∩(A) ⊆ apr′′C(A), for all A ⊆ U.

If K ∈ C−C∩ there exists K′ ⊆ C− {K} such that K =
⋂

K′, K ⊆ L for all L ∈ K′, thus if
K∩A , ∅ then L∩A , ∅, thus apr′′C(A) ⊆ apr′′C∩(A). �

Proposition 16. apr′
C3

= apr
N1

.

Proof.

apr
N1

(A) = {x ∈ U : N1(x) ⊆ A}

= ∪{N1(x) : N1(x) ⊆ A} = apr′
C3

(A)

For the second equality, if w ∈ apr′
C3

(A), there exists x such that w ∈ N1(x) ⊆ A. By Proposition
(1), N1(w) ⊆ N1(x) ⊆ A, so w ∈ apr

N1
(A). �

From propositions 16 and 10, the following corollary can be established.

Corollary 2.4. The approximation operator apr′
C3

is a meet morphism, but (apr′C3
,apr′

C3
) is not

an adjoint pair.

In general, the dual pairs (apr′C,apr′
C

) are not adjoint, because apr′
C

= LC1 is not a meet mor-
phism when the covering C is not unary. Next, the case of the approximation operators apr′′C and
apr′′

C
is studied.

Proposition 17. apr′′C is a self-conjugate join morphism.

Proof. By definition apr′′C = HC
2 , so it is a join morphism and by Proposition 42 it is self-conjugate.

�

Using Proposition 17, it is possible to establish that apr′′
C

is a meet morphism, which allows
us to prove the following result.

Proposition 18. The pair (apr′′C,apr′′
C

) is an adjoint pair.

Proof. From propositions 6 and 17, we have: (apr′′C)a = [(apr′′C)c]∂ = [apr′′C]∂ = apr′′
C

and (apr′′
C

)a =

[(apr′′
C

)∂]c = [apr′′C]c = apr′′C. �

Moreover, the following proposition shows that this adjoint pair can also be seen as a particular
case of an element-based definition.

Proposition 19. (apr′′C,apr′′
C

) = (aprN ,apr
N

), where N is defined by

N(x) = {y ∈ U : (∃K ∈ C)(x ∈ K∧ y ∈ K)} (2.6)

Proof. By Proposition 7, there exists a symmetric relation R on U such that (apr′′C,apr′′
C

) =

(aprR,apr
R
), where xRy⇔ x ∈ apr′′C({y})⇔ x ∈ ∪{K ∈ C : K∩{y} , ∅} ⇔ x ∈ ∪{K ∈ C : y ∈ K}.

Putting N(x) = R(x), we find that y ∈ N(x) if and only if there exists K ∈ C such that x ∈ K and
y ∈ K, or in other words N(x) = {y ∈ U : (∃K ∈ C)(x ∈ K∧ y ∈ K)}. �
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Summarizing, only the loose pair of granule based approximation operators in Yao and Yao’s
framework is an adjoint pair, and moreover this pair coincides with a particular element-based
definition.

To conclude this section, I point out an error in [87]: it is stated there on page 104 that apr′′
C

=

apr
N4

and apr′′C = aprN4
, however this incorrect; in particular, knowing that (apr′′C,apr′′

C
) is an

adjoint pair and (aprN4
,apr

N4
) is not, this equality cannot hold.

2.1.1.3 Subsystem based definitions

First, looking at the definitions it is possible to show that apr
S ∩

= LS ∩,C
1 and apr

S ∪
= L(S ∪,C)′

1 .
Furthermore, the following relationship between apr

S ∪
and the granule-based model can be estab-

lished.

Proposition 20. apr
S ∪

= apr′
C

Proof. Clearly, C ⊆ S ∪,C, and therefore apr′
C

(A) ⊆ apr
S ∪

(A), for A ⊆ U.

On the other hand, for each X ∈ S ∪,C, there exists K ⊆ C such that X =
⋃
K, thus if X ⊆ A then

L ⊆ A, for all L ∈K. Hence ∪{X ∈ S ∪,C : X ⊆ A} ⊆ ∪{K ∈ C : K ⊆ A}, i.e., apr
S ∪

(A) ⊆ apr′
C

(A). �

This equality can be also be understood by the fact that adding unions of elements to a covering
does not refine the covering.

The following example shows that the approximation operators apr
S ∩

and apr
S ∪

are not meet
morphisms, and neither aprS ∩ nor aprS ∪ are join morphisms, so they cannot form adjoint pairs.

Example 7. Consider the subsystems S ∩ and S ∪ from Example 9.

If A = 123, B = 2456, then A∩B = 2, apr
S ∩

(A) = 123, apr
S ∩

(B) = 2456 and apr
S ∩

(A∩B) = ∅,
then apr

S ∩
(A∩B) , apr

S ∩
(A)∩apr

S ∩
(B) = 2.

On the other hand, If A = 1236, B = 1235, then A∩B = 23, apr
S ∪

(A) = 1236, apr
S ∪

(B) = 1235
and apr

S ∪
(A∩B) = ∅, then apr

S ∪
(A∩B) , apr

S ∪
(A)∩apr

S ∪
(B)=123.

Analogously, it can be verified that aprS ∩ and aprS ∪ are not join morphisms.

2.1.2 Non-dual framework of approximation operators

This section establishes an important conjugacy relation between the upper approximation opera-
tors HC

5 and HC
6 . This relationship holds regardless of the neighborhood operator N which is used

in the definition, so it begins by proving the following more general proposition.

Proposition 21. Let N be a neighborhood operator and GN
5 (A) = ∪{N(x) : x ∈ A}, GN

6 (A) = {x ∈
U : N(x)∩A , ∅} operators defined for N, then GN

5 is the conjugate of GN
6 .

Proof. We show that A∩GN
5 (B) , ∅ if and only if B∩GN

6 (A) , ∅, for A,B ⊆ U.

If A∩GN
5 (B) , ∅, then there exists w ∈ U such that w ∈ A and w ∈ GN

5 (B). Since w ∈ GN
5 (B),

there exists x0 ∈ B such that w ∈ N(x0). Then N(x0)∩A , ∅, with x0 ∈GN
6 (B). Since x0 ∈ B, then

B∩GN
6 (A) , ∅.
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If B∩GN
6 (A) , ∅, then there exists w ∈ U such that w ∈ B and w ∈ GN

6 (A), i.e., w ∈ B and
N(w)∩ A , ∅. Then there exists z such that z ∈ N(w) and z ∈ A. Since z ∈ N(w) and w ∈ B, then
z ∈GN

5 (B). So, z ∈ A∩GN
5 (B), with A∩GN

5 (B) , ∅. �

Corollary 2.5. HC
5 and HC

6 are conjugates.

Proof. In this case, the operators HC
5 and HC

6 correspond to GN
5 and GN

6 , when neighborhood
operator N1 is used. �

From the following lemma it is possible to prove that LC2 is the adjoint of HC
5 .

Lemma 1. For all w ∈ U, HC
5 (N1(w)) = N1(w).

Proof. By Proposition 1, from x ∈ N1(w) follows N1(x) ⊆ N1(w), hence HC
5 (N1(w)) ⊆ N1(w). On

the other hand, it is clear that N1(w) ⊆ HC
5 (N1(w)), since w ∈ N1(w). �

Proposition 22. LC2 = (HC
5 )a.

Proof. We will show that LC2 (A) ⊆ (HC
5 )a(A) and (HC

5 )a(A) ⊆ LC2 (A), for A ⊆U. If w ∈ LC2 (A), there
exists x ∈U such that w ∈ N1(x) with N1(x) ⊆ A. The upper approximation HC

5 of N1(x) is equal to
N1(x), by Lemma 1; i.e., HC

5 (N1(x)) = N1(x). Hence, w ∈ ∪{Y ⊆ U : HC
5 (Y) ⊆ A}, so w ∈ (HC

5 )a(A).
On the other hand, if w ∈ (HC

5 )a(A), then there exists Y ⊆ U, such that w ∈ Y and HC
5 (Y) ⊆ A; i.e.,

∪{N1(x) : x ∈ Y} ⊆ A; in particular, w ∈ N1(w) ⊆ HC
5 (Y) ⊆ A, so w ∈ LC2 (A). �

Corollary 2.6. The dual of HC
6 is equal to LC2 .

Proof. According to Propositions (21), (22) and Corollary (2.5), we have: LC2 = (HC
5 )a = ((HC

5 )c)∂ =

(HC
6 )∂. �

The upper approximation operators HC
2 and HC

7 are closely related; they are discussed in the
next two propositions.

Proposition 23. HC
2 is self-conjugate.

Proof. According to Proposition 6 and the fact that HC
2 is a join morphism, (HC

2 )a = ((HC
2 )c)∂,

so HC
2 is self-conjugate if and only if (HC

2 )a = (HC
2 )∂, that is (HC

2 )a(∼ A) =∼ HC
2 (A). We show

that (HC
2 )a(∼ A) =∼ HC

2 (A) for any A ⊆ U. x < HC
2 (A) if and only if N1(x)∩ A = ∅ if and only if

N1(x) ⊆∼ A if and only if x ∈ (HC
2 )a(∼ A). �

Proposition 24. HC
7 = HC3

2

Proof. From the definition of HC
7 and C3, we can see that, for all A ⊆ U:

HC
7 (A) = {N1(x) : N1(x)∩A , ∅}

= {K ∈ C3 : K∩A , ∅}

= HC3
2 (A).

�
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Corollary 2.7. HC
7 is self-conjugate and its adjoint is equal to (HC3

2 )∂ = apr′′
C3

.

Proof. Using HC
7 = HC3

2 and proposition 23, we have that HC
7 is self-conjugate. By proposition 39,

we have: (HC
7 )a = ((HC

7 )c)∂ = (HC
7 )∂ = (apr′′C3

)∂ = apr′′
C3

. �

Finally, we investigate whether any of the remaining upper approximation operators HC
1 , HC

3
and HC

4 forms an adjoint pair with LC1 .

Example 8. In Table 2.2, we compare lower approximations for some subsets obtained with LC1 ,
and with the adjoints of HC

1 , HC
3 and HC

4 . Since none of the final three columns is identical to the
first one, we conclude that none of HC

1 , HC
3 or HC

4 forms an adjoint pair with LC1 .

Table 2.2: Comparison of the adjoints of HC
1 , HC

3 and HC
4 with LC1 .

Set LC1 (HC
1 )a (HC

3 )a (HC
4 )a

246 6 6 64 6
145 145 15 ∅ 15
123 123 1 1 1

From the above results, the following conclusion can be drawn: none of the pairs (HC
1 ,L

C
1 ),

(HC
2 ,L

C
1 ), (HC

3 ,L
C
1 ), (HC

4 ,L
C
1 ), (HC

5 ,L
C
1 ), (HC

6 ,L
C
2 ) and (HC

7 ,L
C
2 ) which have previously been con-

sidered in the literature (see Section 1.5.2) forms an adjoint pair; on the other hand, (HC
5 ,L

C
2 ) does,

but this is not a dual pair.

2.1.3 Summary of relationships and properties

Table 2.3 summarizes the results established in the previous subsections. In particular, we rear-
range the group of 20 dual pairs considered by Yao and Yao [87] into 14 groups of equivalent
operators, showing in each case their equivalence with members of the non-dual framework con-
sidered in [80]. Furthermore, it indicates whether the operators form an adjoint pair and whether
their members are join/meet morphisms.

For instance, group A consists of the dual pairs 1 and 11 from Table 1.7 which are equal due
to Proposition 16. They are equivalent to the pair (HC

6 ,L
C
2 ), because apr

C3
= LC2 by definition, and

the dual of LC2 is HC
6 by Corollary 2.6. They are join and meet morphisms, but not an adjoint pair

as shown in Example 6.

It is interesting to note that all pairs of approximation operators in Yao and Yao’s framework
can be described from approximation operators LC1 , LC2 , HC

2 and HC
6 , their duals and/or their con-

jugates.
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Group # Dual pair Equivalent pair Adjoint pair Meet/Join
A 1, 11 aprN1

apr
N1

HC
6 LC2 No Yes

aprC3
apr

C3

B 2 aprN2
apr

N2
GN2

6 (GN2
6 )∂ No Yes

C 3 aprN3
apr

N3
GN3

6 (GN3
6 )∂ No Yes

D 4 aprN4
apr

N4
GN4

6 (GN4
6 )∂ No Yes

E 5, 7, 17, 20 apr′C apr′
C

(LC1 )∂ LC1 No No
apr′C1

apr′
C1

apr′C∪ apr′
C∪

aprS ∪ apr
S ∪

F 9 apr′C2
apr′

C2
(LC2

1 )∂ LC2
1 No No

G 13 apr′C4
apr′

C4
(LC4

1 )∂ LC4
1 No No

H 15 apr′C∩ apr′
C∩

(LC∩1 )∂ LC∩1 No No

I 6, 10, 18 apr′′C apr′′
C

HC
2 (HC

2 )∂ Yes Yes
apr′′C2

apr′′
C2

apr′′C∪ apr′′
C∪

J 8 apr′′C1
apr′′

C1
HC1

2 (HC1
2 )∂ Yes Yes

K 12 apr′′C3
apr′′

C3
HC3

2 (HC3
2 )∂ Yes Yes

L 14 apr′′C4
apr′′

C4
HC4

2 (HC4
2 )∂ Yes Yes

M 16 apr′′C∩ apr′′
C∩

HC∩
2 (HC∩

2 )∂ Yes Yes

N 19 aprS ∩ apr
S ∩

(LS ∩
1 )∂ LS ∩

1 No No

Table 2.3: Summary of relationships and properties of the approximation operators.

2.2 Characterization of dual adjoint pairs

This section characterizes pairs of dual and adjoint approximation operators in the covering-based
rough set framework.

First, the left hand side of Figure 2.1 illustrates schematically the relations among duality,
conjugacy and adjointness. The arrow ∂ represents a dual transformation and the arrows c and co
represent transformations of conjugate and co-conjugates, respectively. The pairs ( fi,gi) are dual,
f1 and f2 are conjugate and g1 and g2 are co-conjugate. The adjoint and co-adjoint can be obtained
after two consecutive transformations, so the adjoint of f1 is g2, and the co-adjoint of g1 is f2. The
middle diagram represents the specific situation for the pair (apr′′C,apr′′

C
), while the right hand

side represents the case of approximation operators defined from a binary relation as considered
by Järvinen [30].

The following important proposition establishes the relationship between duality, conjugacy
and adjointness in the general case of a complete Boolean lattice.

Proposition 25. Let ( f ,g) be a dual pair on a complete Boolean lattice B. The pair ( f ,g) is a
Galois connection if and only if f is self-conjugate.



CHAPTER 2. APPROXIMATION OPERATORS 32

f1 g1 apr′′C apr′′
C

aprR
apr

R

f2 g2 apr′′C apr′′
C

aprR−1 apr
R−1

-� ∂

?

6

c

?

6

co

-� ∂

?

6

c

?

6

co

-� ∂

?

6

c

?

6

co

-�
∂

-�
∂

-�
∂

Figure 2.1: Arrow diagram for approximation operators.

Proof. If ( f ,g) is a Galois connection, then g = f a = ( f c)∂. By duality g = f ∂, so f a = ( f c)∂ = f ∂,
hence f = f c.

On the other hand, if f = f c, then f a = ( f c)∂ = ( f )∂ = g and ga = (g∂)c = f c = f . �

In general, if DP represents dual pairs, GC Galois connections and SC pairs for which the
upper approximation is self-conjugate, then we have the following implications:

GC + S C→ DP (2.7)

DP + S C→GC (2.8)

To summarize, Figure 2.2 contains a set diagram which depicts pairs of approximation opera-
tors. P is the set of pairs of approximation operators (H,L). D contains all the dual pairs of Yao
and Yao’s framework and A the adjoint pairs. The pairs in the intersection are precisely those pairs
of approximation operators for which the upper approximation is self conjugate. Outside of D∪A
there are other pairs which are neither dual nor adjoint, such as (HC

7 ,L
C
2 ). The pairs of approxi-

mations in Yao and Yao’s framework are represented with the letters from A to N and correspond
to the groups in Table 2.3. Finally, the pair (aprh,apr

h
), defined from an upper approximation

distribution h (Wybraniec-Skardowska) is also an adjoint, but not dual pair.

P

A

A

B

E
G

H
N

I

J
K

L

M

C
F

D

D

h
apr

hapr( ),

( ),H3 (H3 )a

( ),H2 (H2 )

( ),H5 L2  

( ),H7 L2  

...

...

( ),H7 (H7 )

( ),H6 (H5 )

( ),H5 (H5 )

Figure 2.2: Set diagram of pairs of approximation operators.
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2.3 Summary

In this chapter some relationships between pairs of lower and upper approximation operators
within the covering-based rough set model have been studied. In particular for the framework
of twenty dual pairs of approximation operators proposed by Yao and Yao in [87], only fourteen
of them are different, and of these only five pairs are adjoint. On the other hand, it has been demon-
strated that none of the pairs of approximation operators (HC

1 ,L
C
1 ), (HC

2 ,L
C
1 ), (HC

3 ,L
C
1 ), (HC

4 ,L
C
1 ),

(HC
5 ,L

C
1 ), (HC

6 ,L
C
2 ) and (HC

7 ,L
C
2 ) considered in e.g. [78, 80] is adjoint; on the other hand, (HC

5 ,L
C
2 )

is an adjoint, non-dual pair. Furthermore, it has been established that all operators in Yao and
Yao’s framework can be equivalently expressed in terms of LC1 , LC2 , HC

2 and HC
6 .

Also a characterization of dual and adjoint pairs in terms of the self-conjugacy of the upper ap-
proximation operator has been derived, and related this equivalence to previous results established
for generalized rough sets, based on a symmetric binary relation.



CHAPTER 3

Order relations

3.1 Introduction

In this chapter a partial order relation for the most commonly used covering based approximation
operators, providing an exhaustive evaluation of their pairwise comparability is established. The
number of operators can be reduced by proving some equivalences between them, and on the other
hand, we consider some new ones which emerge as duals of the approximation operators consid-
ered by Yang and Li. This gives us sixteen pairs of dual and distinct approximation operators. We
also list their most important theoretical properties. Then we evaluate the fineness order, first for
each group of operators separately, and then for all the operators jointly. The central result of our
analysis is a Hasse diagram positioning the 16 lower (resp., upper) approximation operators ac-
cording to the fineness order. We also show the orders for subsets of operators satisfying particular
properties, like adjointness and being a meet/join-morphism.

Based on the operators discussed in Section 1.5 a list of dual pairs of approximation operators
to be considered in this study on order relations is compiled. On one hand, this list includes the
dual pairs proposed by Yao and Yao in [87] and discussed in Section (1.5.1). As we will see below,
some of them are equivalent, hence the total number of pairs can be reduced. On the other hand,
we add to the list those pairs obtained by coupling HC

1 , HC
3 , HC

4 and HC
5 from Section (1.5.2) with

their respective dual lower approximations.

3.2 Dual pairs of approximation operators and their properties

Some equivalences about granule based definition, were already established in Section 2.1.1.2,
and can be summarized as follows:

a. apr′
C

= apr′
C1

= apr′
C∪

= apr′
S ∪

apr′C = apr′C1
= apr′C∪ = apr′S ∪ .

b. apr′′
C

= apr′′
C2

= apr′′
C∩

apr′′C = apr′′C2
= apr′′C∩ .

c. apr′
C3

= apr
N1

apr′C3
= aprN1

.
34
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This already reduces the twenty dual pairs considered by Yao and Yao to fourteen. The fol-
lowing propositions show two further equivalences.

Proposition 26. C1 = C∪.

Proof. We will show that C1 ⊆ C∪ and C∪ ⊆ C1.

Let us suppose that K ∈ C1 and that K is union reducible, that is, K ∈ md(C, x) for some x ∈ U
and K = K1∪K2∪ · · · ∪Kl with Ki ∈ C and Ki , K, for i = 1, . . . , l. We have x ∈ K, therefore there
exists a j ∈ {1,2, . . . , l} such that x ∈ K j ⊂ K. Hence, K < md(C, x). This is a contradiction, so K
must be union irreducible, so K ∈ C∪.

On the other hand, if K <C1, then for all x ∈U, K <md(C, x). In particular, let x ∈ K. Since K <
md(C, x), there exists Kx

0 ∈md(C, x) such that x ∈ Kx
0 ⊂ K. So, we have K =∪x∈K{x} ⊆ ∪x∈K Kx

0 ⊆ K,
so K = ∪Kx

0 , hence K is reducible and K < C∪. �

Corollary 3.1. apr′′
C1

= apr′′
C∪

.

Proposition 27. apr′′
C2

= apr
N4

.

Proof. Let x ∈ U and A ∈ P(U). It holds that x ∈ apr
N4

(A)⇔ (∀K ∈ MD(C, x))(K ⊆ A) and x ∈
apr′′

C2
(A)⇔ (∀K ∈ ∪{MD(C,y) : y ∈ U})(x ∈ K⇒ K ⊆ A).

Clearly, if x ∈ apr′′
C2

(A), then x ∈ apr
N4

(A), so apr′′
C2

(A) ⊆ apr
N4

(A).

On the other hand, suppose x ∈ apr
N4

(A) and x < apr′′
C2

(A). Let y ∈ U and K ∈ MD(C,y) such
that x ∈ K and K * A. Then K <MD(C, x), so there exists S ∈MD(C, x) such that K ⊂ S and S ⊆ A.
But then K ⊆ A as well, which is a contradiction. In other words, apr

N4
(A) ⊆ apr′′

C2
(A). �

It can be checked that no further identities hold among the approximation operators considered
by Yao and Yao [87] and those considered by Yang and Li [80]. Hence, there are sixteen groups
of different dual pairs of approximations operators, which are listed in Table 3.1.

As mentioned in the introduction, the main objective of this chapter will be to establish a point-
wise partial order for the lower and upper approximation operators in Table 3.1, comparing them
according to the fineness of their approximations. At the same time, it is possible to differentiate
between the approximation operators according to the theoretical properties they satisfy. Table 3.2
lists five important properties, all of which hold in an approximation space in Pawlak’s sense, and
points out which of the groups in Table 3.1 satisfy them. The proofs of most of these properties
can be reconstructed from literature, see e.g. [53, 95, 96, 97, 98, 102, 99], taking into account that
fourteen out of the sixteen dual pairs of operators can be expressed by means of LC1 , LC2 , HC

i and
their respective dual operators. The remaining proofs can be established by simple verification,
and counterexamples are easy to find for the negative results. It is interesting to note that none of
the currently considered groups satisfies all properties; in particular, the properties of adjointness
and idempotence are never simultaneously satisfied.
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Table 3.1: List of different dual pairs of lower and upper approximations

Number Lower approximation Upper approximation
1 apr

N1
= apr′

C3
= (HC

6 )∂ = LC2 aprN1
= apr′C3

= HC
6

2 apr
N2

aprN2

3 apr
N3

aprN3

4 apr
N4

= apr′′
C

= apr′′
C2

= apr′′
C∩

= (HC
2 )∂ aprN4

= apr′′C = apr′′C2
= apr′′C∩ = HC

2

5 apr′
C

= apr′
C1

= apr′
C∪

= apr
S ∪

= LC1 apr′C = apr′C1
= apr′C∪ = aprS ∪

6 apr′
C2

apr′C2

7 apr′
C4

apr′C4

8 apr′
C∩

apr′C∩
9 apr′′

C1
= apr′′

C∪
apr′′C1

= apr′′C∪
10 apr′′

C3
= (HC

7 )∂ apr′′C3
= HC

7

11 apr′′
C4

apr′′C4

12 apr
S ∩

aprS ∩

13 (HC
1 )∂ HC

1
14 (HC

3 )∂ HC
3

15 (HC
4 )∂ HC

4
16 (HC

5 )∂ HC
5

Table 3.2: Evaluation of properties of covering based rough sets.

Name Property Satisfied by
Adjointness apr(A) ⊆ B⇔ A ⊆ apr(B) 4,9,10,11
Monotonicity A ⊆ B⇒ apr(A) ⊆ apr(B) All groups, except 13 and 15

A ⊆ B⇒ apr(A) ⊆ apr(B)
Meet/join-morphism apr(A∩B) = apr(A)∩apr(B) 1,2,3,4,9,10,11,14,16

apr(A∪B) = apr(A)∪apr(B)
Idempotence apr(apr(A)) = apr(A) 1,5,6,7,8,13,15,16

apr(apr(A)) = apr(A)
∅ and U apr(U) = U All groups

apr(∅) = ∅

3.3 Partial order relation for approximation operators

This section, systematically investigates a point-wise partial order relation among pairs of lower
and upper approximation operators. This partial order is defined as follows:

Definition 3.1. Let apr
1

and apr
2

be two lower approximation operators, and apr1 and apr2 two
upper approximation operators. Since these operators are defined over parts of U and it is ordered
by inclusion relation, it is possible to define an order relation among approximation operators. We
write:
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• apr
1
≤ apr

2
, if and only if apr

1
(A) ⊆ apr

2
(A), for all A ⊆ U. And similarly for upper

approximations.

• (apr
1
,apr1) ≤ (apr

2
,apr2), if and only if apr

1
≥ apr

2
and apr1 ≤ apr2.

It is easy to see that ≤ is indeed reflexive, anti-symmetric and transitive. Moreover, it is easy to
verify that the partial order ≤, which may be read as “is finer than" forms a bounded lattice on the
set APR of pairs of approximation operators, with smallest element (apr,apr) where apr(A) =

apr(A) = A, and largest element (apr,apr) where apr(A) = ∅ and apr(A) = U, for any A ⊆ U.
The lattice meet operation is defined as: (apr

1
,apr1)∩ (apr

2
,apr2) = (apr,apr) where apr(A) =

apr
1
(A)∪ apr

2
(A) and apr(A) = apr1(A)∩ apr2(A), with A ⊆ U. The lattice join operation is

defined dually.

Remark 1. In a natural way, it is possible to consider a second partial order onAPR, by defining
(apr

1
,apr1)≤′ (apr

2
,apr2) if and only if apr

1
≤l apr

2
and apr1 ≤u apr. The partial order ≤′ forms

a bounded lattice on APR, with smallest element (apr,apr) where apr(A) = ∅ and apr(A) = A,
and largest element (apr,apr) where apr(A) = A and apr(A) = U, for all A ⊆ U. The lattice
meet operation is defined as: (apr

1
,apr1)∩′ (apr

2
,apr2) = (apr,apr) where apr(A) = apr

1
(A)∪

apr
2
(A) and apr(A) = apr1(A)∪apr2(A), with A ⊆ U. Again, the join operation is defined dually.

In the context of bilattice theory [17], ≤ is called the knowledge order on APR and ≤′ is called
its truth order.

For practical purposes, the partial order ≤ is particularly relevant, since it allows us to compare
pairs of approximation operators in terms of their suitability for data analysis. In particular, the
definitions of accuracy and quality of classification provided for Pawlak’s rough sets [47] can be
generalized to covering based rough sets.

Definition 3.2. If (apr,apr) is a pair of a lower and an upper approximation operator, the accu-
racy of A ⊆ U is defined as:

α
apr
apr(A) =

|apr(A)|

|apr(A)|
(3.1)

On the other hand, the quality of classification of A ⊆ U, by means of apr, is defined as:

γapr(A) =
|apr(A)|

|A|
(3.2)

The quality of classification of a subset A ⊆ U can be extended to a partition Y = {Y1, . . . ,Yn}

of U:

γapr(Y) =
∑ |apr(Yi)|

|U |
(3.3)

γapr(Y) can be seen as the ratio of elements of U that can be classified with certainty into one of the
classes of Y . Clearly, it is desirable to have γapr(Y) as high as possible. The following proposition
shows the relationship with the partial order ≤.

Proposition 28. If (apr
1
,apr1) and (apr

2
,apr2) are two pairs of approximation operators such

that (apr
1
,apr1) ≤ (apr

2
,apr2), then αapr2

apr
2
(A) ≤ αapr1

apr
1
(A) and γapr

2
(A) ≤ γapr

1
(A) for all A ⊆ U.
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Proof. Let A ⊆ U. If (apr
1
,apr1) ≤ (apr

2
,apr2) then apr

2
(A) ⊆ apr

1
(A) and apr1(A) ⊆ apr2(A).

Therefore |apr
2
(A)| ≤ |apr

1
(A)| and |apr1(A)| ≤ |apr2(A)|. So αapr2

apr
2
(A) =

|apr
2
(A)|

|apr2(A)|
≤
|apr

1
(A)|

|apr1(A)|
=

α
apr1
apr

1
(A). The inequality γapr

2
(A) ≤ γapr

1
(A) can be established similarly.

In the remainder of this section, the following result can be established.

Proposition 29. Let (apr
1
,apr1) and (apr

2
,apr2) be two dual pairs of approximation operators.

It holds that

(apr
1
,apr1) ≤ (apr

2
,apr2) ⇐⇒ apr

1
≥l apr

2
⇐⇒ apr2 ≤u apr1. (3.4)

Proof. Direct from the definition of duality and the partial orders. �

In other words, in order to establish the partial order for dual pairs of approximation operators,
it suffices to know the partial order ≤l for lower approximation operators, as the partial order ≤u

for upper approximation operators can be obtained with the reverse partial order of its duals. From
now on, to simplify the notation, we will refer to both ≤l and ≤u by ≤.

The following subsections evaluate the order relationships that hold between elements of dif-
ferent groups of approximation operators: element based, granule based and system based defini-
tions of Yao and Yao [87], and upper approximation operators of Yang and Li [80]. Afterwards,
it is possible combine these results to construct an integrated Hasse diagram for all the operators
considered in Table 3.1.

3.3.1 Partial order for element based definitions

The following propositions establish the relationship among element based approximation opera-
tors, defined in equations (1.20) and (1.21) using neighborhood operators.

Proposition 30. If N and N′ are neighborhood operators such that N(x) ⊆ N′(x) for all x ∈ U,
then apr

N′
≤ apr

N
.

Proof. We will show that apr
N′

(A) ⊆ apr
N

(A), for any A ⊆ U. If x ∈ apr
N′

(A), N′(x) ⊆ A, hence
N(x) ⊆ N′(x) ⊆ A for all x ∈ U, so x ∈ apr

N
(A). �

Proposition 31. For x ∈U, it holds that N1(x) ⊆ N2(x), N3(x) ⊆ N4(x), N1(x) ⊆ N3(x) and N2(x) ⊆
N4(x).

Proof. The first two inclusions follow directly from the definition of neighborhood systems. For
the third one, we can see that for each K ∈ N1(x) there exists K′ ∈ N3(x) such that K ⊆ K′. So,
∩{K ∈ md(C, x)} ⊆ ∩{K′ ∈ MD(C, x)}, from which follows N1(x) ⊆ N3(x). The final inclusion can
be proved similarly. �

Proposition 32.

a. apr
N4
≤ apr

N2
≤ apr

N1
.

b. apr
N4
≤ apr

N3
≤ apr

N1
.
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Proof. Direct from Propositions 30 and 62. �

Moreover, apr
N2

and apr
N3

are not comparable, as we can see in Example 9 below.

Example 9. Let us consider the covering C = {1,23,123,34} of U = 1234. The neighborhood
system C(C, x), the minimal description md(C, x), the maximal description MD(C, x) and the four
neighborhood operators obtained from C(C, x) are listed in Table 3.3.

Table 3.3: Minimal and maximal descriptions, and neighborhood operators for Example 9.

x C(C, x) md(C, x) MD(C, x) N1(x) N2(x) N3(x) N4(x)
1 {1,123} {1} {123} 1 1 123 123
2 {23,123} {23} {123} 23 23 123 123
3 {23,123, 34} {23,34} {123,34} 3 234 3 1234
4 {34} {34} {34} 4 34 4 34

From the neighborhoods in Table 3.3, the lower approximations of A = 23 are: apr
N1

(A) = 23,
apr

N2
(A) = 2, apr

N3
(A) = 3 and apr

N4
(A) = ∅. In this example, we can see that apr

N2
� apr

N3
and

apr
N3
� apr

N2
, so these operators are not comparable.

Using Propositions 30 and 62 and Example 9, we can establish the partial order for the lower
approximation operators in this section; the partial order for the upper approximations follows
from Proposition 29. The corresponding Hasse diagrams are shown in Figure 3.1. The order
relation aprNi

≤ aprN j
is represented by means of an arrow from aprNi

to aprN j
.

N1

N3 N2

N4

apr

apr apr

apr
N1

N3 N2

N4

apr apr

apr

apr

Figure 3.1: Partial order for element based approximation operators.

3.3.2 Partial order for granule based definitions

The granule based approximation operators definitions were presented in equations (1.26) to
(1.28). This section will evaluate the order relation for approximation operators related with the
coverings C1, C2, C3, C4 and C∩ (recall that apr′

C
= apr′

C1
and apr′′

C
= apr′′

C∩
, and that by Proposi-

tion 26, C∪ =C1). First of all, Propositions 33 and 34 establish a general order relation for granule
based lower approximation operators apr′.

Proposition 33. If C and C′ are coverings of U such that C ⊆ C′, then apr′
C
≤ apr′

C′
.
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Proof. Since apr′
C

(A) = ∪{K ∈ C : K ⊆ A} and C ⊆ C′, we have ∪{K ∈ C : K ⊆ A} ⊆ ∪{K ∈ C′ : K ⊆
A}. Then apr′

C
(A) ⊆ apr′

C′
(A), for all A ⊆ U and apr′

C
≤ apr′

C′
. �

Proposition 34. If C and C′ are coverings of U such that, for all K ∈C, K =
⋃
α∈I

Lα for (Lα)α∈I ⊆C
′,

then apr′
C
≤ apr′

C′
.

Proof. If x ∈ apr′
C

(A), then there exists a K0 ∈ C such that x ∈ K0 ⊆ A. But x ∈ K0 =
⋃
α∈I

Lα ⊆ A,

with (Lα)α∈I ⊆ C
′. Hence x ∈ Lα ⊆ A, for some α in I, therefore x ∈ apr′

C′
(A). �

Proposition 35. Let C be a covering of U. It holds that:

apr′
C4
≤ apr′

C2
≤ apr′

C∩
≤ apr′

C1
≤ apr′

C3
.

Proof. It is easy to verify that the pairs of coverings C4 - C2, C2 - C1 and C1 - C3 satisfy the con-
ditions of Proposition 34. For example, for coverings C4 - C2, we have: C4 = {∪MD(C, x) : x ∈U}
and C2 = ∪{MD(C, x) : x ∈ U}, clearly they satisfy the conditions of Proposition 34. Hence,
apr′

C4
≤ apr′

C2
≤ apr′

C1
≤ apr′

C3
.

To see that apr′
C2
≤ apr

C∩
, the relation C2 ⊆ C∩ is established. The result then follows from

Proposition 33. If K ∈ C2, K ∈ MD(C, x0) for some x0 ∈ U. If K =
⋂

i∈I Ki for (Ki)i∈I ⊆ C− {K},
then K ⊆ Ki for all i in I, so K < MD(C, x0) which is a contradiction. Hence, K ∈ C∩.

Finally, the order relation apr′
C∩
≤ apr′

C1
is proven. First of all, it is easy to see that C∩ ⊆ C,

so by Proposition 33, we have apr′
C∩
≤ apr′

C
. From Propositions in Section 2.1.1.2, we know that

apr′
C1

= apr′
C

, so apr′
C∩
≤ apr′

C1
. �

The following proposition establishes a general order relation for granule based upper approx-
imation operators apr′′C.

Proposition 36. If C and C′ are coverings of U such that, for all K ∈ C, there exists L ∈ C′ such
that K ⊆ L, then apr′′C ≤ apr′′C′ .

Proof. If x ∈ apr′′C(A), then there exists a K0 ∈ C such that x ∈ K0 ∩ A , ∅. By the assumption,
there exists L0 ∈ C

′ such that K0 ⊆ L0, so x ∈ L0 and L0∩A , ∅. Hence, x ∈ apr′′C′(A). �

Proposition 37. Let C be a covering of U. It holds that:

apr′′C3
≤ apr′′C1

≤ apr′′C2
= apr′′C∩ ≤ apr′′C4

.

Proof. Clearly, ∩md(C, x) ⊆ K for each K ∈ md(C, x) and for all K ∈ md(C, x) there exists L ∈
MD(C, x) such that K ⊆ L and finally for all L ∈ MD(C, x) we have L ⊆ MD(C, x). Therefore, the
result follows as a consequence of Propositions in Section 2.1.1.2 and 36. �

To relating the lower approximation operators apr′ and apr′′, the following proposition fol-
lows easily from the definitions of granule based approximation operators.

Proposition 38. Let C be a covering of U. It holds that apr′′
C
≤ apr′

C
.
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Proof. Direct from equations (1.26) and (1.28). �

Apart from this, we also have the following result.

Proposition 39. apr′′
C2
≤ apr′

C4
.

Proof. Let x ∈ apr′′
C2

(A). Clearly, for all K ∈ MD(C, x), it holds that x ∈ K. Therefore, K ⊆ A for
all K ∈ MD(C, x). From this follows that ∪MD(C, x) ⊆ A and since ∪MD(C, x) ∈ C4, therefore
x ∈ apr′

C4
(A). �

The remaining covering based lower approximation operators are not comparable, as the fol-
lowing examples show.

Example 10. For the covering C = {1,3,13,24,34,14,234} of U = 1234, we have:

1. C1 = {1,3,24,14,34}

2. C2 = {13,14,234}

3. C3 = {1,24,3,4}

4. C4 = {134,234,1234}

5. C∩ = {13,24,34,14,234}

Table 3.4: Granule based lower approximations of Example 10.

A apr′
C1

apr′
C2

apr′
C3

apr′
C4

apr′
C∩

apr′′
C1

apr′′
C2

apr′′
C3

apr′′
C4

1 1 ∅ 1 ∅ ∅ ∅ ∅ 1 ∅

2 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

3 3 ∅ 3 ∅ ∅ ∅ ∅ 3 ∅

4 ∅ ∅ 4 ∅ ∅ ∅ ∅ ∅ ∅

12 1 ∅ 1 ∅ ∅ ∅ ∅ 1 ∅

13 13 13 13 ∅ 13 ∅ ∅ 13 ∅

14 14 14 14 ∅ 14 1 ∅ 1 ∅

23 3 ∅ 3 ∅ ∅ ∅ ∅ 3 ∅

24 24 ∅ 24 ∅ 24 2 ∅ 24 ∅

34 34 ∅ 34 ∅ 34 3 ∅ 3 ∅

123 13 13 13 ∅ 13 ∅ ∅ 13 ∅

124 124 14 124 ∅ 124 12 ∅ 124 ∅

134 134 134 134 134 134 13 1 13 ∅

234 234 234 234 234 234 23 2 234 ∅

1234 1234 1234 1234 1234 1234 1234 1234 1234 1234

The lower approximations of all non-empty subsets of U are shown in Table 3.4. From these
results, we can conclude that the pairs apr′′

C1
- apr′

C4
, apr′′

C1
- apr′

C2
, apr′′

C3
- apr′

C2
, apr′′

C3
- apr′

C4
and apr′′

C3
- apr′

C∩
are not comparable. This example does not allow us to conclude anything

about the incomparability of apr′′
C3

- apr′
C1

, neither about apr′′
C1

- apr′
C∩

.
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Example 11. For the coveringC= {1,12,123,24,23,234} of U = 1234, we have thatC1 = {1,12,23,24}
andC∩ = {1,12,123,24,234}. We can see that: apr′

C∩
(12) = 12⊃ 1 = apr′′

C1
(12), while apr′

C∩
(23) =

∅ ⊂ 3 = apr′′
C1

(23). Therefore, apr′
C∩

and apr′′
C1

are not comparable.

Example 12. For the coveringC= {13,14,23,24,34,234} of U = 1234, we have thatC1 = {13,14,23,24,34},
C3 = {1,2,3,4}. We can see that: apr′

C1
(12) = ∅ ⊂ 12 = apr′′

C3
(12). On the other hand, in Example

10, we have apr′
C1

(14) = 14 ⊃ 1 = apr′′
C3

(14). Therefore, apr′′
C3

and apr′
C1

are not comparable.

Order relations for upper approximation operators apr′C and apr′′C can be established as a
consequence of duality.

To conclude this subsection, the partial order relations for granule based approximation oper-
ators are shown in Figure 3.2.

C3

C3

C1

C1 C4

C4

C2

apr’

apr’

apr’

apr’

C2
apr’’

apr’’

apr’’

apr’’

apr’

C3

C3

C1

C1 C4

C4

C2

apr’

apr’

apr’

apr’

C2
apr’’

apr’’

apr’’

apr’’

apr’

C∩

C∩

Figure 3.2: Partial order for granule based approximation operators.

3.3.3 Partial order for system based definitions

The following example shows that the two system-based lower approximation operators defined
in equations (1.32) and (1.33) are not comparable. By duality, therefore, the corresponding upper
approximations are not comparable, either.

Example 13. Consider the covering C = {2,12,23,14,124}. The corresponding S ∩ and S ∪ can be
obtained from the following closure systems and their duals.

• ∩-closure = {∅,U,2,12,23,14,124,1}

• ∪-closure = {∅,U,2,12,23,14,124,123}

The lower approximations of all non-empty subsets of U are shown in Table 3.5. From these
values, we can see that apr

S ∩
and apr

S ∪
are not comparable.
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Table 3.5: System based lower approximations for Example 13.

A apr
S ∪

apr
S ∩

1 ∅ ∅

2 ∅ 2
3 3 ∅

4 ∅ ∅

12 ∅ 12
13 3 ∅

14 14 14
23 23 23
24 ∅ 2
34 34 ∅

123 23 123
124 14 124
134 134 14
234 234 23
1234 1234 1234

3.3.4 Partial order for the operators from the non-dual framework

A partial order relations among the first six upper approximation operators HC
1 –HC

6 have already
been established in [78] and it is presented in the next proposition [78].

Proposition 40. a. HC
1 ≤ HC

4 ≤ HC
2 .

b. HC
1 ≤ HC

3 ≤ HC
2 .

c. HC
5 ≤ HC

1 .

d. HC
6 ≤ HC

2 .

This section completes the partial order for this framework, considering also HC
7 , by means of

the following propositions and example.

Proposition 41. HC
6 ≤ HC

7 .

Proof. Direct from their definitions. �

Proposition 42. HC
7 ≤ HC

2 .

Proof. If x ∈ HC
7 (A) then x ∈ N1(w) for some w ∈ U and N1(w)∩ A , ∅. But N1(w) ⊆ K ∈ C for

some K, therefore x ∈ HC
2 (A). �

Proposition 43. HC
5 ≤ HC

7 .

Proof. If x ∈ HC
5 (A) then x ∈ N1(w) for some w ∈ A. Since w ∈ N1(w), N1(w)∩ A , ∅ and x ∈

HC
7 (A). �
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Example 14. Let us consider the covering C = {1,12,34,123} of U = 1234. The upper approxi-
mations HC

i (A) of all non-empty subsets A of U are shown in Table 3.6. From these results, we
can see that the pairs HC

7 - HC
1 , HC

7 - HC
3 and HC

7 - HC
4 are not comparable.

Table 3.6: Upper approximations HC
i (A) for Example 14.

A HC
1 HC

2 HC
3 HC

4 HC
5 HC

6 HC
7

1 1 123 1 1 1 12 12
2 12 123 12 123 12 2 12
3 1234 1234 1234 1234 3 34 34
4 34 34 34 34 34 4 34
12 12 123 12 12 12 12 12
13 1234 1234 1234 1234 13 1234 1234
14 134 1234 134 134 134 124 1234
23 1234 1234 1234 1234 123 234 1234
24 1234 1234 1234 1234 1234 24 1234
34 34 1234 1234 34 34 34 34
123 123 1234 1234 123 123 1234 1234
124 1234 1234 1234 1234 1234 124 1234
134 134 1234 1234 134 134 1234 1234
234 1234 1234 1234 1234 1234 234 1234
1234 1234 1234 1234 1234 1234 1234 1234

To summarize, the order relations for the upper approximation operators HC
i are shown in

Figure 3.3. Again, by Proposition 29, the reverse ordering for the lower approximation operators
(HC

i )∂ can be considered.

H2

H7
H1

H5

H4

H6
C

C
C

H3
C

C

C

C

(H5 )
C ∂

(H6 )
C ∂

(H7)
C ∂

(H2 )
C ∂

(H1 )
C ∂

(H4 )
C ∂

(H3 )
C ∂

Figure 3.3: Partial order relation for lower and upper approximations of the non-dual framework.

3.3.5 Partial order for all approximation operators

To establish the partial order relation among all lower approximation operators considered in Table
3.1, the following proposition which relates operators in different groups, is proved.

Proposition 44. a. apr′
C2
≤ apr

N3
.
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b. apr
N4
≤ apr′

C4
.

c. apr
N4
≤ apr′

C2
.

d. apr
N2
≤ apr′

C1
.

e. apr′′
C1
≤ HC

3 .

f. apr′′
C1
≤ apr

N2
.

g. apr
S ∩
≤ (HC

5 )∂.

Proof. a. if x ∈ apr′
C2

(A), x ∈ K for some K ∈ C2, and K ⊆ A. N3(x) = ∩MD(C, x) ⊆ K ⊆ A,
hence x ∈ apr

N3
(A).

b. If x ∈ apr
N4

(A), N4(x) ⊆ A. But N4(x) ∈ C4, and x ∈ N4(x), hence x ∈ apr′
C4

(A).

c. If x ∈ apr
N4

(A), N4(x) ⊆ A. Therefore, for all K ∈ C2 with x ∈ K, we have K ⊆ ∪MD(C, x) =

N4(x) ⊆ A, hence x ∈ apr′
C2

(A).

d. If x ∈ apr
N2

(A), N2(x) = ∪md(C, x) ⊆ A. Therefore, for all K ∈ C1 with x ∈ K, we have
K ⊆ ∪md(C, x) = N2(x) ⊆ A, hence x ∈ apr′

C1
(A).

e. Remark that, for A ∈ P(U), apr′′
C1

(A) = {x ∈U : ∀K ∈ {md(C,y) : y ∈U}(x ∈ K⇒ K ⊆ A)}. If

x ∈ apr′′
C1

(A), then x ∈ A. Since x ∈ K for all K in md(C, x), it holds that x ∈ HC
3 (A).

f. We will show that aprN2
≤ apr′′C1

. If x ∈ aprN2
(A), then N2(x)∩ A , ∅, but N2(x) = ∪{K :

K ∈ md(C, x)}, so ∪{K : K ∈ md(C, x)}∩A = ∪{K ∩A : K ∈ md(C, x)} , ∅. Thus there exists
K0 ∈ md(C, x) such that K0∩A , ∅. Therefore x ∈ ∪{K ∈ C1 : K∩A , ∅} = apr′′C1

(A) and so,
aprN2

≤ apr′′C1
. The result [f.] is a consequence of duality.

g. We will see that HC
5 ≤ aprS ∩ . For this, let us suppose w ∈ HC

5 (A), then w ∈ N1(x) for some
x ∈ A. From Proposition 1.a, we have N1(w) ⊆ N1(x). We will show that w ∈ X, for all X ∈
(∩-closure (C)) with X ⊇ A. Let X be a set in (∩-closure (C)) with X ⊇ A, then x ∈ A ⊆ X and
X = K1∩· · ·∩Kl with K j ∈ C. So x ∈ K j for all j = 1,2,3, . . . , l. Again, from Proposition 1.b,
each K j can be expressed as K j = ∪x j∈K j N1(x j), therefore x ∈ N1(x j0), for some x j0 ∈ K j and
N1(x) ⊆ K j for all j = 1,2,3, . . . , l. Thus we have w ∈ N1(w) ⊆ N1(x) ⊆ X. This shows that
w ∈ aprS ∩ and that HC

5 (A) ≤ aprS ∩(A).

�

Next, the following examples show that the operator apr
S ∩

is not comparable with any of the
other ones. This is partially a consequence of the fact that when C is a partition, apr

S ∩
does not

coincide with Pawlak’s lower approximation operator.

Example 15. Since the covering C= {1,2,3,4} of U = 1234 is a partition, we have that apr(A) = A,
for all A ⊆U with apr any of the lower approximation operators in Table 3.1 different from apr

S ∩
.

On the other hand, ∩-closure (C) = {∅,1234,1,2,3,4} and (∩-closure (C))′ = {∅,1234,234,134,124,123},
so apr

S ∩
(A) = ∅, if |A| < 3 and apr

S ∩
(A) = A, if |A| ≥ 3. Then apr � apr

S ∩
.
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Example 16. Consider the covering C = {1,12,123,24,23,234} of U = 1234 in Example 3.

The lower approximations of all non-empty subsets of U for the approximation operators
apr

S ∩
, apr

N1
and (HC

1 )∂ are shown in Table 3.7. From these values, we can see that apr
S ∩

is

Table 3.7: System based lower approximations for Example 16.

A apr
S ∩

apr
N1

(HC
1 )∂

1 1 1 1
2 ∅ 2 ∅

3 ∅ ∅ 3
4 4 ∅ 4
12 1 12 1
13 13 1 13
14 14 1 14
23 ∅ 23 3
24 4 24 4
34 34 ∅ 34

123 13 123 13
124 14 124 14
134 134 1 ∅

234 234 234 234
1234 1234 1234 1234

comparable with neither apr
N1

nor (HC
1 )∂.

From Examples 15 and 16, and the Figure 3.4 below, we can see that the operator apr
S ∩

is not

comparable with any of the other ones, different from (HC
5 )∂.

An integrated Hasse diagram of the partial order relation among the different lower approxi-
mation operators can be seen in Figure 3.4. A completely analogous diagram can be constructed
for the upper approximation operators. Each group of operators is represented in Table 3.1 with
a circled number. The green circles represent operators which form an adjoint pair, with their
dual; the yellow circles represent meet morphisms which do not form an adjoint pair with their
dual; and the red circles represent operators which do not form an adjoint pair with their dual,
neither are meet morphisms. The label P.n is the number of proposition where the order relation
is established.

There are two maximal elements: the group (16), represented by (HC
5 )∂ and the group (1),

represented by apr
N1

. The minimal elements are the groups (11) represented by apr′′
C4

and (12)
represented by apr

S ∩
. Let us recall that maximal elements represent those lower approximation

operators for which the quality of classification in Equation (3.3) is highest.

It is interesting to note that while both top elements of the partial order are meet-morphisms,
they do not form an adjoint pair with their duals. This can be seen as a disadvantage of these
operators, because the adjointness property guarantees for a dual pair (apr,apr) that the fix points
of apr and apr coincide, in other words, apr(A) = A iff apr(A) = A.

The subset of lower approximation operators that satisfy adjointness form a chain, with group
(10), represented by apr′′

C3
, as the top element.
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16

10

14

13

15

11

12

1

3
5

82

6

74

9

N4

N3

N2

N1

apr

apr

apr

apr C3

C3

C1

C1

C4

C4

C2

apr’

apr’

apr’

C2
apr’’

apr’’

apr’’

apr’’

apr’

H2

H7

H1

H5

H4

H6
C

C

C

H3
C

C

C

C

Sapr

apr’C∩

∩

Figure 3.4: Partial order relation for groups of lower approximation operators in Table 3.1.

Finally, the diagram also suggests some additional approximation operators to be considered.
For example, the order relation between the groups (10)-(1), (9)-(5), (4)-(6) and (11)-(7) corre-
sponds to the relation: apr′

C
≤ apr′′

C
. The group (2) is between (9) and (5) and it is defined from

apr
N2

. If we consider the neighborhood operators NC
2 (x) =∪{K : K ∈md(C, x)} for different cover-

ings, we obtain new lower approximation operators: apr
NC1

2
, apr

NC2
2

, apr
N
C3
2

, apr
NC4

2
and apr

NC∩
2

.

Following the proof in Proposition 44.d and f, order relations with the new operators can easily be
established:

1. apr′′
C3
≤ apr

N
C3
2
≤ apr′

C3
.

2. apr′′
C1
≤ apr

NC1
2
≤ apr′

C1
.

3. apr′′
C2
≤ apr

NC∩
2
≤ apr′

C∩
.

4. apr′′
C2
≤ apr

NC2
2
≤ apr′

C2
.

5. apr′′
C4
≤ apr

NC4
2
≤ apr′

C4
.

Example 17 below shows that some of these new approximations operators are different. In
particular we will see that apr′′

C2
, apr

NC∩
2
, apr′

C∩
. Similar results can be established for other

coverings.

Example 17. From the coveringC in Example 10, we have: C2 = {13,14,234} andC∩ = {13,24,34,14,234}.
The minimal description md(C, x) for these coverings and the neighborhood operators NC

2 , are
shown in Table 3.8.
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Table 3.8: Minimal descriptions, and neighborhood operator N2 for the coverings C2 and C∩.

x md(C2, x) md(C∩, x) NC2
2 (x) NC∩

2 (x)
1 {13,14} {13,14} 134 134
2 {234} {24} 234 24
3 {13,234} {13,34} 1234 134
4 {14,234} {14,24,34} 1234 1234

From the neighborhoods in Table 3.8, the lower approximations of A = 24 are: apr
NC2

2
(A) = ∅

and apr
NC∩

2
(A) = 2, so apr

NC2
2
, apr

NC∩
2

. Also, we can see that apr′′
C2

(A) = ∅, apr
NC∩

2
(A) = 2 and

apr′
C∩

(A) = 24, therefore apr′′
C2
, apr

NC∩
2
, apr′

C∩
.

In general, additional approximation operators can be defined combining the different cov-
erings with the neighborhood based lower approximation operators as well as with (HC

i )∂ (i =

1, . . . ,7). All of them may be included in the Hasse diagram in Figure 3.4, but in order not to
complicate the visual representation of the partial order, we refrain from doing so here.

3.4 Summary

In this chapter a study of order relation between lower and upper approximation operators pro-
posed in the literature for covering-based rough sets was done. Among the sixteen dual pairs that
we have considered in our study, we have identified ((HC

5 )∂,HC
5 ) and (apr

N1
,aprN1

) = (apr′
C3
,apr′C3

)
as the ones that produce the finest approximations. If additionally adjointness is required, then the
finest pair is (apr′′

C3
,apr′′C3

). These results may guide practitioners who are faced with an ample
collection of approximation operators to choose from.



CHAPTER 4

Relations and Coverings

Relation based rough sets and covering based rough sets are two important extensions of the
classical rough sets. This chapter investigates relationships between relation based rough sets
and the covering based rough sets, presents a new group of approximation operators obtained
by combining coverings and neighborhood operators and establishes some relationships between
covering based rough sets and relation based rough sets.

4.1 Introduction

W. Zhu, established an equivalence between a type of covering-based rough sets and a type of
binary relation based rough sets [102]. Y. L. Zhang and M. K. Luo established the equivalence be-
tween four types of covering-based rough sets and a type of relation-based rough sets, respectively
[90]. Covering based rough sets and tolerance relation based rough sets are used in information
systems with missing and numerical data [11, 12, 31].

In this chapter, we will extend the connections established by Y. L. Zhang and M. K. Luo to the
Yao and Yao framework. In section 4.2, we present preliminary concepts about rough set theory,
covering based and relation based rough sets. In section 4.3, we review some equivalences between
covering and relation based rough sets. We also present a new group of approximation operators,
combining some coverings with neighborhood operators. Finally, we establish some equivalences
of these operators and relation based rough sets. Section 4.4, presents some conclusions.

4.2 Coverings and Relations

This section establishes an equivalence between relation based rough sets and some types of cov-
ering based rough sets from Yao and Yao’s framework.

49
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4.2.1 Coverings and Neighborhood

Definition 4.1. Let C be a covering of U, for each neighborhood operator NC
i with i = 1,2,3,4,

two relations on U are defined by means of:

xS C
i y⇔ y ∈ NC

i (x) (4.1)

xPCi y⇔ x ∈ NC
i (y) (4.2)

It is easy to see that S C
i and PCi for i = 1,2,3,4 are reflexive relations and S C

1 and PC1 are
transitive relations.

The next propositions establish a connection between element based definition operators and
relation based rough sets. Proposition (45) can be seen as a generalization of Theorem 6 in [102].

Proposition 45. If C is a covering of U, NC
i is any neighborhood operator and aprPi

the upper
approximation operator defined by the relation in Equation 4.2 then aprPi

= GNi
5 .

Proof. We can see that x ∈ aprPi
(A) if and only if Pi(x)∩A , ∅. So, there exist w ∈ U, such that

xPiw with w ∈ A, then x ∈ Ni(w) and w ∈ A if and only if x ∈GNi
5 (A). �

Proposition 46. Let C be a covering of U and NC
i a neighborhood operator. If S i is the relation

defined in Equation (4.1), then apr
S i

= aprC
Ni

and aprS i
= aprCNi

.

Proof. We can see that w ∈ Ni(x) if and only if xS iw, if and only if w ∈ S i(x). So, for a covering
C, Ni(x) = S i(x) and therefore apr

S i
= aprC

Ni
and aprS i

= aprCNi
. �

From Proposition (46), each pair of covering-based approximation operators in element based
definition, (apr

Ni
,aprNi

) can be treated as the relation based approximation operators, generated

by a reflexive relation. Also: GNi
6 = aprCNi

.

Proposition 47. The operators aprS i
and aprPi

are conjugate.

Proof. The conjugate relation between GNi
5 and GNi

6 was established in Section (2.1.2). From
Propositions (45) and (46), we have that aprS i

and aprPi
are conjugate. �

In particular, we have:

• aprN1
= HC

6

• aprM1
= HC

5

• aprM2
= GN2

5 = HC
3

• aprN4
= aprM4

= GN4
5 = apr′′C = HC

2

In the arrow diagram of Figure 4.1, the arrow Ni represents the neighborhood operators given
in Section 1.5.1, S and P arrows represent the successor and the predecessor neighborhood and
apr the operator defining the dual pair of approximations, obtained from a neighborhood operator.
The notation ∂ is used for representing the dual operator.
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S i ((GNi
6 )∂,GNi

6 )

C NC
i

Pi ((GNi
5 )∂,GNi

5 )

-apr

-Ni

HH
HHHjP

�
��

��*S

-apr

Figure 4.1: Arrow diagram for element based definition approximation operators.

Proposition 48. Let C be a covering of U and NC
4 the neighborhood system associated with the

covering C. If S C
4 is the relation defined in Equation (4.1) using NC

4 , then apr′′
C

= aprC
S 4

and

apr′′C = aprCS 4
.

Proof. We will see that apr′′
C

= apr
S 4

. In Proposition the equivalence apr′′
C

= aprC
N4

was estab-

lished. According to Proposition (46), aprC
N4

= apr
S 4

then apr′′
C

= aprC
S 4

. �

According to Proposition (48), any approximation operator apr′′
C

from Yao and Yao’s frame-
work, can be seen as a relation based approximation.

The approximation operators apr′
C

, apr
S ∩

and apr
S ∪

do not have a relation based equivalence,
because they do not satisfy the property (d) in Proposition 2.

So, the four operators aprNi
, in the Yao and Yao’s framework and the operators apr′′C = HC

2 ,
HC

3 , HC
5 and HC

6 can be defined as a relation based operator. The operators apr′C can not be defined
as relation based definition, because they are not join morphisms.

4.2.2 New Approximation Operators

It is interesting to note that we only use the neighborhood system NC
4 to describe all the approxima-

tion operators apr′′
C

, then it seems reasonable to ask about other approximation operators related
with neighborhood systems N1, N2 and N3. For each covering C and each neighborhood operator
NC

i , we have the operators aprC
Ni

.

Combining each covering with the four neighborhood operators, new approximation opera-
tors can be obtained, for example aprC3

N2
is the lower approximation for covering C3 using the

neighborhood operator N2.

Example 18. For the covering C = {1,2,12,12,34,123,24,234} of U = 1234 the Table (4.1) shows
the upper approximation operators aprC j

Ni
for each singletons: 1,2,3 and 4.

The approximations for A ⊆ U can be calculated using the property apr(A) = ∪x∈Aapr(x).

The results in Table (4.1) can be used to establish the difference between some operators. For
example, since aprCN2

(3) , aprCN4
(3) then aprCN2

, aprCN4
.
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Table 4.1: Upper approximation for singletons of U.

Operator 1 2 3 4 Operator 1 2 3 4

aprCN1
1 2 3 4 aprC1

N1
1 2 3 4

aprCN2
123 24 34 234 aprC1

N2
123 24 34 234

aprCN3
1 1234 1234 4 aprC1

N3
1 2 3 4

aprCN4
123 1234 1234 234 aprC1

N4
123 124 134 234

aprC2
N1

1 1234 1234 4 aprC3
N1

1 2 3 4
aprC2

N2
123 1234 1234 234 aprC3

N2
1 2 3 4

aprC2
N3

1 1234 1234 4 aprC3
N3

1 2 3 4
aprC2

N4
123 1234 1234 234 aprC3

N4
1 2 3 4

aprC4
N1

1 1234 1234 4 aprC∩N1
1 2 3 4

aprC4
N2

123 1234 1234 234 aprC∩N2
123 124 134 234

aprC4
N3

1234 1234 1234 1234 aprC∩N3
1 1234 1234 4

aprC4
N4

1234 1234 1234 1234 aprC∩N4
123 1234 1234 234

4.3 Neighborhood Operators based on Coverings

There are four different types of neighborhood operators N and six types of coverings C. We want
to explore if it is necessary to consider all 24 combinations NC j

i , or if there are some equivalent
definitions.

With the following proposition is possible to establish connection between neighborhood op-
erators and approximation operators.

Proposition 49. If Ni , N j then aprCNi
, aprCN j

Proof. We will see that if aprCNi
= aprCN j

then Ni = N j, showing that Ni(x) ⊆ N j(x) and N j(x) ⊆
Ni(x).

For Ni(x) ⊆ N j(x), let us suppose that w ∈ Ni(x), then Ni(x)∩{w} , ∅, i.e., x ∈ aprNi
(w) and x ∈

aprN j
(w). So, x ∈ aprN j

(w), and thus N j(x)∩{w} , ∅ then w ∈ N j(x). Ni(x) ⊇ N j(x) is similar. �

If we look at Example (18), then we see that there are six groups of possibly equivalent oper-
ators.

1. NC
1 , NC1

1 , NC3
1 , NC∩

1 , NC3
2 , NC1

3 , NC3
3 , NC3

4

2. NC
2 , NC1

2

3. NC2
1 , NC4

1 , NC
3 , NC2

3 , NC∩
3

4. NC2
2 , NC4

2 , NC
4 , NC2

4 , NC∩
4

5. NC4
3 , NC4

4

6. NC∩
2 , NC1

4
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A interesting question in this point is about if all the neighborhood operators in one group are
indeed equivalent to each other.

4.3.1 Group 1

Proposition 50. NC
1 = NC1

1

Proof. For all x ∈ U it holds that md(C, x) = md(C1, x). �

Proposition 51. NC
1 = NC3

1

Proof. We can write C3 as follows: C3 = {NC
1 (x) | x ∈ U}. Since C3 is unary, there exists a y ∈ U

such that NC3
1 (x) = NC

1 (y). Because x ∈ NC3
1 (x), x ∈ NC

1 (y) and NC
1 (x) ⊆ NC

1 (y) = NC3
1 (x).

On the other hand, NC3
1 (x) = ∩{NC

1 (z) | x ∈ NC
1 (z)} ⊆ NC

1 (x). �

Proposition 52. NC
1 = NC∩

1

Proof. We will prove that ∩C(C∩, x) = ∩C(C, x). Since C∩ ⊆ C, we always have that ∩C(C∩, x) ⊇
∩C(C, x).

For the other inclusion, let K ∈ C(C, x) \C(C∩, x). Since x ∈ K,

K ∈ {K′ ∈ C | (∃C′ ⊆ C \ {K′})(K′ = ∩C′}.

So, there exist K1, . . . ,Kn ∈ C such that Ki , K, x ∈ Ki and K = K1∩ . . .∩Kn. We can even say that
the Ki’s are in C∩, otherwise we decompose Ki into elements of C∩.

Now let y ∈ ∩C(C∩, x) \∩C(C, x), then

• ∀K ∈ C∩ : x ∈ K⇒ y ∈ K and

• ∃K ∈ C : x ∈ K∧ y < K.

Hence, there exists a K ∈ C(C, x) \C(C∩, x) with y < K. We can decompose K into elements of C∩
as we saw before: K = K1∩ . . .∩Kn. This means there exists a Ki with Ki ∈ C∩, x ∈ Ki and y < Ki

which is a contradiction. Hence, ∩C(C∩, x) = ∩C(C, x).

�

Proposition 53. NC3
1 = NC3

2

Proof. C3 is unary. �

The other three other operators are not equivalent to the five we saw before.

Example 19. Let C = {3,12,13,123}, then C3 = {1,12,3}. We have that NC
1 (1) = {1} = NC1

3 (1) and
NC3

3 (1) = {12} = NC3
4 (1).

Example 20. Let C = {12,123}, then C1 = {12,123}. We have that NC1
1 (1) = {12} and NC1

3 (1) =

{123}.
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Example 21. Let C = {1,12,13}, then C3 = {1,12,13}. We have that NC3
3 (1) = {1} and NC3

4 (1) =

{123}.

It is possible to conclude that the first group exists of four groups of equivalent operators:

• NC
1 , NC1

1 , NC3
1 , NC∩

1 , NC3
2

• NC1
3

• NC3
3

• NC3
4

4.3.2 Group 2

Proposition 54. NC
2 = NC1

2

Proof. For all x ∈ U it holds that md(C, x) = md(C1, x). �

4.3.3 Group 3

Proposition 55. NC2
1 = NC

3

Proof. First, note that C2 ⊆ C. By definition, we have that

• NC2
1 (x) = ∩{K ∈ C | x ∈ K∧ (∃y ∈ U)(K ∈MD(C,y)} and

• NC
3 (x) = ∩{K ∈ C | K ∈MD(C, x)}.

If K ∈MD(C, x), then x ∈ K and (∃y ∈ U)(K ∈MD(C,y). On the other hand, if x ∈ K and (∃y ∈
U)(K ∈MD(C,y), then there exists a K′ ∈MD(C, x) with K ⊆ K′ and since y ∈ K, y ∈ K′. Now,
K ∈MD(C,y), so K = K′ and K ∈MD(C, x).

We conclude that both operators are equivalent. �

Proposition 56. NC
3 = NC2

3 = NC∩
3

Proof. It is trivial that MD(C, x) = MD(C2, x).

We prove that MD(C, x) = MD(C∩, x). First, take A ∈MD(C, x) and K ∈ C∩ with x ∈ K and
A ⊆ K. Since K ∈ C, A = K and thus A ∈ C∩ and A ∈MD(C∩, x). Second, take A ∈MD(C∩, x) and
K ∈ C with x ∈ K and A ⊆ K. If K ∈ C∩, then A = K. If K < C∩, then there exists K1, . . . ,Kn ∈ C∩
with K = K1 ∩ . . .∩Kn. Then for all i, A ⊆ Ki and thus, A = Ki for all i. Again we can conclude
that A = K. Hence, A ∈MD(C, x). �

The fifth operator of this group, NC4
1 , is not equivalent to the other four.

Example 22. Let C= {12,23,13}, then C2 = {12,23,13} and C4 = {123}. We have that NC2
1 (1) = {1}

and NC4
1 (1) = {123}.
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We can conclude that the third group exists of two groups of equivalent operators:

• NC2
1 , NC

3 , NC2
3 , NC∩

3

• NC4
1

4.3.4 Group 4

Proposition 57. NC2
2 = NC2

4

Proof. For all x ∈ U, ∪md(C2, x) ⊆ ∪MD(C2, x), hence, NC2
2 (x) ⊆ NC2

4 (x). Take K ∈MD(C2, x),
then K ∈ C2 and x ∈ K. Let S ∈ C2 with x ∈ S and S ⊆ K. Since S ∈ C2, there exists a y ∈ U such
that S ∈MD(C,y). Since S ⊆ K, y ∈ K, K ∈C2 ⊆C and since S maximal for y, we have that S = K.
Hence, K ∈md(C2, x) and NC2

2 (x) ⊇ NC2
4 (x). �

Proposition 58. NC
4 = NC2

4 = NC∩
4

Proof. For all x ∈ U we have that MD(C, x) = MD(C2, x) = MD(C∩, x). �

The fifth operator is not equivalent with the other.

Example 23. Let C = {12,23,34,14}, then C2 = {12,23,34,14} and C4 = {124,123,234,134}. We
have that NC2

2 (1) = {124} and NC4
2 (1) = {1234}.

The fourth group decomposes in two groups of equivalent operators:

• NC2
2 , NC

4 , NC2
4 , NC∩

4

• NC4
2

4.3.5 Group 5

The two operators are not equivalent.

Example 24. Let C = {12,23,13}, then C4 = {12,23,13}. We have that NC4
3 (1) = {1} and NC4

4 (1) =

{123}.

4.3.6 Group 6

The two operators are not equivalent.

Example 25. Let C = {1,23,14,123}, then C∩ = {14,23,123} and C1 = {1,14,23}. We have that
NC∩

2 (1) = {1234} and NC1
4 (1) = {14}.

It is possible to conclude that there are 13 groups of equivalent neighborhood operators, shown
in table 4.2.

The concepts of minimal and maximal description are related with a covering. For different
coverings, different minimal and maximal descriptions are obtained. Some preliminary results
about the operators defined in Table (4.1), are:
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Table 4.2: Groups of neighborhood operators.

A NC
1 , NC1

1 , NC3
1 , NC∩

1 , NC3
2 H NC∩

2
B NC

2 , NC1
2 I NC4

1
C NC1

3 J NC2
2 , NC

4 , NC2
4 , NC∩

4
D NC3

3 K NC4
3

E NC3
4 L NC4

2
F NC1

4 M NC4
4

G NC2
1 , NC

3 , NC2
3 , NC∩

3

Proposition 59. Let C be a covering of U, then C3 is an unary covering and aprC3
N1

= aprC3
N2

.

Proof. The elements in C3 are the neighborhoods NC
1 (x), so C3 = {NC

1 (x)} and it is unary, because
the minimal description of each x ∈ U has only an element, |md(C, x)| = 1. In this case the neigh-
borhood NC3

1 and NC3
2 are the same and therefore the approximation operators aprC3

N1
and aprC3

N2
are equal. �

Proposition 60. For a covering approximation space and the coverings defined above, we have:

a. md(C, x) = md(C1, x).

b. MD(C, x) = MD(C2, x) = MD(C∩, x).

Proof. (a.). Let us recall that C1 is the covering with the minimal sets of C, so the minimal sets of
C1 are equals to C1. (b). Similarly for maximal description. �

Corollary 4.1. The relations among neighborhood system are:

a. NC
1 = NC1

1 and NC
2 = NC1

2 .

b. NC
3 = NC2

3 = NC∩
3 and NC

4 = NC2
4 = NC∩

4 .

Proof. Let us recall that N1 and N2 are defined from md(C, x) and N3 and N4 are defined from
MD(C, x). �

Corollary 4.2. The relations among approximation operators are:

a. aprCN1
= aprC1

N1
and aprCN2

= aprC1
N2

.

b. aprCN3
= aprC2

N3
= aprC∩N3

and aprCN4
= aprC2

N4
= aprC∩N4

.

�

The example 26 is used to show differences between apr
Mi

and apr
Ni

. We will concentrate only
in operators apr

Ni
, because operators apr

Mi
, satisfy the same properties.
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Example 26. For the covering C = {1,12,13,24,123,234} of U = 1234 we have the lower approx-
imations for the operators apr

N
in Table 4.3:

Table 4.3: Lower approximations for subsets of A = 1234.

A apr
M1

apr
M2

apr
M3

apr
M4

apr
N1

apr
N2

apr
N3

apr
N4

1 1 ∅ 1 ∅ 1 1 ∅ ∅

2 ∅ ∅ ∅ ∅ 2 ∅ ∅ ∅

3 3 3 ∅ ∅ 3 ∅ ∅ ∅

4 4 ∅ 4 ∅ ∅ ∅ ∅ ∅

12 1 ∅ 1 ∅ 12 1 ∅ ∅

13 13 3 1 ∅ 13 1 ∅ ∅

14 14 ∅ 14 ∅ 1 1 ∅ ∅

23 3 3 ∅ ∅ 23 ∅ 23 ∅

24 24 24 ∅ ∅ 24 4 ∅ ∅

34 34 3 4 ∅ 3 ∅ ∅ ∅

123 13 13 1 1 123 123 1 1
124 124 ∅ 14 ∅ 124 124 ∅ ∅

134 134 3 14 ∅ 13 1 ∅ ∅

234 234 234 4 4 234 4 234 4
1234 1234 1234 1234 1234 1234 1234 1234 1234

4.4 Order Relation for Neighborhood Operators

In the previous section, we have established which neighborhood operators based on coverings
are equivalent. Furthermore, we have proved that two different neighborhood operators define
two different approximation operators. To this end, it suffices to study the order relations between
different sets of equivalent neighborhood operators to obtain the order relations for approximation
operators based on neighborhoods.

In Proposition 32, it is proven that for a fixed covering C, the following order relations for
neighborhood operators hold:

a. NC
1 ≤ NC

2 ≤ NC
4 ,

b. NC
1 ≤ NC

3 ≤ NC
4 .

Now, it is possible to establish order relations between neighborhood operators based on dif-
ferent coverings. The first step is related with the neighborhood operator N1.

Proposition 61. Let C be a covering, then

a. NC
1 ≤ NC2

1 ,

b. NC2
1 ≤ NC4

1 .

Proof. For (i), we show that NC
1 (x) ⊆ NC2

1 (x) for all x ∈ U. By definition, it holds that C2 ⊆ C.
Furthermore, C(C2, x) ⊆ C(C, x). This implies that ∩C(C, x) ⊆ ∩C(C2, x), so NC

1 (x) ⊆ NC2
1 (x).
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For (ii), take x ∈ U and y ∈ NC2
1 (x). Then for all K ∈ C2 with x ∈ K it holds that y ∈ K. Take

K′ ∈C(C4, x), then there exist K1, . . . ,Kn ∈C2 such that K′ = K1∪ . . .∪Kn. Since x ∈ K′, there exists
a Ki ∈ {K1, . . . ,Kn} such that x ∈ Ki. Hence, y ∈ Ki and thus y ∈ K′. We conclude that y ∈ NC4

1 (x). �

The order relation NC2
1 ≤ NC

1 cannot hold.

Example 27. Let U = {1,2,3,4} andC= {{1}, {1,2}, {1,3}, {2,4}, {3,4}, {1,2,3}, {2,3,4}}, then NC
1 (1) =

{1} and NC2
1 (1) = {1,2,3}.

The order relation NC4
1 ≤ NC2

1 cannot hold.

Example 28. Let U = {1,2,3} and C= {{1,2}, {1,3}, {2,3}}, then NC2
1 (1) = {1} and NC4

1 (1) = {1,2,3}.

We continue with neighborhood operator N2.

Proposition 62. Let C be a covering, then

a. NC3
2 ≤ NC

2 ,

b. NC
2 ≤ NC∩

2 ,

c. NC∩
2 ≤ NC2

2 ,

d. NC2
2 ≤ NC4

2 .

Proof. For (a.), take x ∈ U and y ∈ NC3
2 (x), then there exists a K ∈ md(C3, x) with y ∈ K. Since

C3 is unary, K is the unique set in md(C3, x). By definition of C3, K = ∩md(C, x). Hence, for all
K′ ∈md(C, x) it holds that y ∈ K′. We conclude that y ∈ NC

2 (x).

For (b.), take x ∈U and y ∈NC
2 (x), then there exists a K ∈md(C, x) with y ∈K. We need to prove

that there exists a K′ ∈ md(C∩, x) such that y ∈ K′. If K ∈ C∩, take K′ = K. Then K′ ∈ md(C∩, x)
and y ∈ K′, hence y ∈ NC∩

2 (x). If K < C∩, then there exist K1, . . . ,Kn ∈ C∩ with K = K1∩ . . .∩Kn.
Take K′ = K1, then y ∈ K′. Let L ∈ C∩ with x ∈ L and L ⊆ K′. Then L ∈ C with x ∈ L and L ⊆ K.
Since K ∈ md(C, x), it holds that L = K, hence L = K′. We conclude that K′ ∈ md(C∩, x) and
y ∈ NC∩

2 (x).

For (c.), take x ∈ U and y ∈ NC∩
2 (x), then there exists a K ∈ md(C∩, x) with y ∈ K. Since

K ∈ C∩ ⊆ C, there exists a K′ ∈MD(C, x) with K ⊆ K′. This means that y ∈ K′ and K′ ∈ C2. We
prove that K′ ∈md(C2, x). Take L ∈ C2 with x ∈ L and L ( K′. Since K′ ∈MD(C, x), L cannot be
in C2. Hence, K′ ∈md(C2, x) and y ∈ NC2

2 (x).

For (d.), take x ∈U and y ∈ NC2
2 (x), then there exists a K ∈md(C2, x) with y ∈ K. Since K ∈ C2,

there exists a K′ ∈C4 with K ⊆ K′ and there exists a K′′ ∈MD(C4, x) with K′ ⊆ K′′. Hence, y ∈ K′′

and y ∈ NC4
2 (x). �

The order relations NC
2 ≤ NC3

2 , NC∩
2 ≤ NC

2 and NC2
2 ≤ NC∩

2 cannot hold.

Example 29. Let U = {1,2,3,4} and C = {{1}, {1,2}, {1,3}, {2,4}, {3,4}, {1,2,3}, {2,3,4}}, then

(i) NC3
2 (2) = {2} and NC

2 (2) = {1,2,4},

(ii) NC
2 (1) = {1} and NC∩

2 (1) = {1,2,3},
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(iii) NC∩
2 (2) = {1,2,4} and NC2

2 (2) = {1,2,3,4}.

The order relation NC4
2 ≤ NC2

2 cannot hold.

Example 30. Let U = {1,2,3,4} and C = {{1,2}, {2,3}, {3,4}, {1,4}}, then NC2
2 (1) = {1,2,4} and

NC4
2 (1) = {1,2,3,4}.

Next, we discuss neighborhood operator N3.

Proposition 63. Let C be a covering, then

a. NC1
3 ≤ NC

3 ,

b. NC
3 ≤ NC4

3 .

Proof. For (a.), take x ∈ U and y ∈ NC1
3 (x), then we need to prove that y ∈ ∩{K | K ∈MD(C, x)}.

Take K ∈MD(C, x), then there exists a K′ ∈MD(C1, x) with K′ ⊆ K. Since y ∈ NC1
3 (x), it holds that

y ∈ K′ and thus y ∈ K. Hence, y ∈ NC
3 (x).

For (b.), we know by [54] that NC
3 = NC2

1 . By Propositions 61 and 62, we know that NC2
1 ≤

NC4
1 ≤ NC4

3 . We conclude that NC
3 ≤ NC4

3 . �

The neighborhood operator NC3
3 is not comparable with the other neighborhood operators N3.

Example 31. Let U = {1,2,3,4} andC= {{1}, {2}, {1,4}, {2,4}, {3,4}, {1,3,4}}, then NC
3 (4) = NC1

3 (4) =

{4}, NC4
3 (4) = {1,2,3,4} and NC3

3 (4) = {3,4}.

Example 32. Let U = {1,2,3,4} and C = {{1}, {4}, {1,2,4}, {1,3,4}, {1,2,3}}, then NC
3 (4) = NC1

3 (4) =

{1,4}, NC4
3 (4) = {1,2,3,4} and NC3

3 (4) = {4}.

Example 32 also shows that NC4
3 ≤ NC

3 cannot hold. We illustrate that the order relation NC
3 ≤

NC1
3 cannot hold as well.

Example 33. Let U = {1,2,3,4} andC= {{1}, {1,2}, {1,3}, {2,4}, {3,4}, {1,2,3}, {2,3,4}}, then NC
3 (1) =

{1,2,3} and NC1
3 (1) = {1}.

Finally, we discuss the order relation for neighborhood operators based on N4.

Proposition 64. Let C be a covering, then

a. NC3
4 ≤ NC1

4 ,

b. NC1
4 ≤ NC

4 ,

c. NC
4 ≤ NC4

4 .

Proof. For (a.), take x ∈ U and y ∈ NC3
4 (x), then there exists a K ∈MD(C3, x) with y ∈ K. Then

there exists a K′ ∈ C1 with K ⊆ K′ and there exists a K′′ ∈ MD(C1, x) with K′ ⊆ K′′. Thus,
y ∈ K′′ ⊆ NC1

4 (x).

For (b.), take x ∈ U and y ∈ NC1
4 (x), then there exists a K ∈ MD(C1, x) with y ∈ K. Thus,

K ∈ C1 ⊆ C, so there exists a K′ ∈MD(C, x) with K ⊆ K′. Hence, y ∈ K′ and y ∈ NC
4 (x).
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For (c.), take x ∈ U and y ∈ NC
4 (x), then there exists a K ∈MD(C, x) with y ∈ K. Take K′ =

∪MD(C, x) ∈ C4, then y ∈ K′ and there exists a K′′ ∈MD(C4, x) with K′ ⊆ K′′. Hence, y ∈ K′′ ⊆
NC4

4 (x). �

The order relations NC1
4 ≤ NC3

4 , NC
4 ≤ NC1

4 and NC4
4 ≤ NC

4 cannot hold.

Example 34. Let U = {1,2,3,4} and C = {{1}, {1,2}, {1,3}, {2,4}, {3,4}, {1,2,3}, {2,3,4}}, then

(i) NC3
4 (1) = {1} and NC1

4 (1) = {1,2,3},

(ii) NC1
4 (2) = {1,2,4} and NC

4 (2) = {1,2,3,4},

(iii) NC
4 (1) = {1,2,3} and NC4

4 (1) = {1,2,3,4}.

Therefore there are 13 groups of neighborhood operators based on coverings. A diagram with
the order relations studied is constructed.

A

C

E

B

F HG

D

J6I

LK

M

Figure 4.2: Partial order for neighborhood operators.

Integrating the diagrams in Figure (3.4) and Figure (4.2) we have the diagram of Figure (4.3).
In this case, we put together the equivalent operators. The operators A to M correspond to op-
erators in diagram of Figure (4.2). The operators Y and Z can be expressed as a relation based
operators, using other relations different from NC

i as was established in [91].



CHAPTER 4. RELATIONS AND COVERINGS 61

16

10

14

13

15

11

1

3
5

82

6

74

9

AZ

Y

C
E

B

F

H

GD

J
I

L K

M

12

Figure 4.3: Partial order for neighborhood and covering based operators.

4.5 Summary

This chapter studies relationships between relation based and covering based rough sets, In parti-
cular it has been shown that each element based definition approximation apr

Ni
and aprNi

and each

granule based definition approximation apr′′
C

and apr′′C can be treated as a relation based approxi-
mation operator. We also defined new approximation operators combining coverings and neigh-
borhood operators. Finally a connection between the framework of covering based approximation
operators and the framework of relations based approximation operators has been established.
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Conclusions

Two different frameworks of approximation operators in covering based rough sets were unified in
a general framework of dual pairs. The most important contribution of this work is related to the
systematic study of approximation operators in covering based rough sets. The first element in this
study is the characterization of approximation operators, using notions of duality, conjugacy and
adjointness. The second element is the construction of partial order relation between the operators.
A partial order relation for lower and upper approximation operators for covering based rough sets
and relation based have been established.

The characterization of approximation operators can be used to deduce properties of approx-
imation. For example, if a similarity relation R is used in datasets with continuous attributes,
the pair of approximation operators apr

R
and aprR is a Galois Connection. The order relation

between approximation operators can be used to improve some discretization and attribute reduc-
tion algorithms. For example, the Structured Genetic Algorithm used for selecting approximation
operators, selects generally maximal elements in the Hasse diagram presented in section 3.3.5.

The characterization of approximation operators was published by International Journal of
Approximate Reasoning 55 (2014) and the partial order relation was published in Information
Sciences 284 (2014). One Journal’s reviewer said: “this work will not have a major impact as it
is a very specialized work in the research on rough sets”. Two years later, I realize that this work
had aroused interest among some researchers and now is an important reference for them. The
theoretical aspects of a subject, usually have a bigger impact than a specific application.

A second contribution of this work is the establishment of some relationships between the most
important generalization of rough set theory: Covering based and relation based rough sets. A first
relationship was introduced in Chapter 4, where new approximation operators were obtained. In
particular each element based definition approximation apr

Ni
and aprNi

and each granule based

definition approximation apr′′
C

and apr′′C can be treated as a relation based approximation operator.

The relationship between covering and relation based rough sets was published in Lecture
Notes on Artificial Intelligence 8537 (2014) and the generalization was submitted to Information
Sciences Journal (2015).

This work has also helped to develop new lines of work, such as the generalization of these
approximation operator’s properties in fuzzy context, led by Dr. Chris Cornelis, University of
Ghent in Belgium, some work proposals of Dr. Piero Plagiani of Research Group on Knowledge
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and Communication Models in Italy and other work proposal from Dr. Rafael Bello, Universidad
Central de las Villas Cuba for the study of coverings obtained from similarity relation in datasets.



6

Future work

A very important continuation of this work involves studying order relationships that hold be-
tween the various approximation operators, such as apr′′C(A) ⊆ apr′C(A). Such order relations have
already been studied partially in [93], where they are induced by means of entropy and co-entropy
measures, generalized for covering based rough sets, and [39], which studies order relations be-
tween various types of neighborhood-related in covering based rough sets. Since approximation
operators are used frequently in data analysis applications of rough sets such as feature selection
and classification (see e.g. [10] in the case of covering-based rough sets), order relationships can
be meaningfully used to guide the selection of appropriate pairs of approximation operators.

Formal concept analysis (FCA) and rough set theory have the formal context as a common
framework [69, 84]. A formal concept (U,A,R) is defined by two finite sets U, A, and a binary
relation from U to A. A regular formal context defines a covering CA as the set of object sets
of attributes a ∈ A. A dual pair of approximation operators is defined from this covering, using
the operator apr′

C
. In this point there are at least two interesting ways of work. The first one is

the attribute reduction problem, as is showed in [69]. On the other hand, and according to the
approximation frameworks presented, we have other approximation operators associated with a
particular covering C. Therefore it makes sense to study the properties and the order relation
among these approximation operators.

I would like to obtain further characterizations of covering based approximation operators. In
particular, an interesting question is whether there exist dual pairs of approximation operators that
are both idempotent and adjoint. Also, I plan to study different order relations among pairs of
approximation operators, for example the extension of the Entropy based order relation defined by
Zhu and Wen in [94].

I want to explore relationships between approximation operators apr′
C

and apr′C with relation
based rough sets and to establish other relationships between the new approximation operators
defined in Section 4.2.2.

Grothendieck topologies and the relationship with rough sets theory was presented in [52]. It
is an interesting topic that deserve study.

Finally, in 2013 some ideas about matroids and the relationship with rough sets, were studied
in the Information Networks Theory seminary, led by professor Humberto Sarria at department of
mathematics, Universidad Nacional de Colombia. Here, there are many ideas to develop.
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Evolutionary approach

This appendix presents a technique for attribute selection and data discretization from the hy-
bridization of rough set theory and structured genetic algorithms. It is not a systematic study of
algorithm efficiency but an illustration of how we can implement some ideas. From a theoretical
point of view the algorithms maintain the quality of classification as an optimum value in any
classification problem.

Quality of classification measures the number of instances that can be classified without am-
biguity and it can be obtained from the lower approximations. Clearly it depends on the approxi-
mation operator used. In this way, the attribute selection and data discretization problems can be
seen as an optimization problem with a constrain given by the quality of classification.

A.1 Introduction

The attribute selection and data discretization are considered important tasks in the data mining
and machine learning areas. In one hand, the attribute selection can be presented as finding a
subset of m attributes from a total of n attributes defining a data table, with no significant loss
of performance when is used to classify the records in the data table, according to a dependent
attribute. On the other hand, attribute discretization is based on searching for cuts that determine
intervals for real or integer valued attributes (values that lie within each interval are then treated as
indiscernible).

There are several research works that apply rough set theory to the attribute selection and dis-
cretization problems, and combine it with evolutionary algorithms [13, 29, 35, 38, 41, 42, 43].
Evolutionary algorithms (EA) are efficient search methods based on the principles of natural se-
lection in which some genetic operators, applied to encoded versions (chromosomes) of candidate
solutions, are employed to generate better solutions. There are several different EA techniques,
in this work we used the classical genetic algorithm and the evolutionary algorithm that adapts
the operator rates while it is solving the optimization problem proposed in [19, 18]. The Hybrid
Adaptive Evolutionary Algorithm is a mixture of ideas borrowed from Evolutionary Strategies,
decentralized control adaptation, and central control adaptation.

Some attribute selection (reduction) algorithms, based on genetic algorithms, were presented
in [2, 13, 35] and it is focused on improving the fitness function to obtain a reduct (considering
the rough sets associated to the attributes). The fitness function used for Xu, et al. in [75] consider
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the number of elements in positive region and the number of selected attributes. In our proposal
attribute reduction problem in rough sets can be seen like an optimization problem with a constrain
given for the classification quality. However, such technique does not guarantee to get a reduct.
Partalain and Shen present, in [48], a new approach on tolerance rough sets model, for feature
(attribute) selection and use the positive region and boundary for defining a suitable metric for
continuous attribute.

We present a technique for attribute selection and data discretization from the rough set theory
and genetic algorithm points of view. Section A.2 describes the basic evolutionary/rough approach
to attribute selection. Section A.3 presents the evolutionary/rough approach to attribute discretiza-
tion. Section A.4 introduces the structured evolutionary algorithm that combines the previous two
approaches. Section A.5 extends the structured evolutionary algorithm in order to include the
approximation operators to be used. Finally, Section A.6 draws some conclusions.

A.2 Attribute Selection

We extend the approach proposed by Xu, et al. in [75] of considering the attribute selection as an
optimization problem. Basically, we try to minimize the number of attributes S with the constrain
γP(U) = 1, using an evolutionary algorithm. Here, γP(U) is the quality of classification value
defined in rough set theory.

γP(U) =

∑
|L(Yi)|
|U |

(A.1)

Using a penalization method, the fitness function can be written as follows:

f = rm−β|1−γP(U)| −S (A.2)

where rm is the minimum expected number of attributes and it is a simple translation of fitness
function, S is the number of selected attributes in an iteration and β is a parameter that needs to be
tuned. The negative sign is used because minimization. In the case where γP(U) = 1, the global
optimum value must be zero.

We encoded, a candidate solution, as a binary string, one bit per each attribute, where a zero
(’0’) in position i means the attribute i must be ignored. The classical binary crossover and bit
mutation were used by the evolutionary algorithm.

A.2.1 Experiments

We run a classical Genetic Algorithm during 100 iterations, with a population of 100 individuals, a
crossover rate of 0.8, a mutation rate of 0.001 and a Elitism selection mechanism, on two different
data sets (zoo and colombian coffee growers). The Elitism selection operator is defined in terms
of two parameters the elite (10%) and cull (10%) percentages. The zoo data set is taken from UCI
repository 1. It has 101 examples with 16 condition attributes and a decision attribute with seven
different classes. All attributes are categorical and do not have missing data. The Colombian
coffee growers, which information was collected from a survey applied to growers in different
Colombian municipalities. It contains information about 338 coffee growers with 55 condition

1http://archive.ics.uci.edu/ml/
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attributes and one decision attribute. The decision attribute is an evaluation made by Colombian
Coffee Federation and it defines the price they can get for their production. The values of decision
attribute are: Preferential, Strategic and Evaluated. All the 55 attributes are categorical and are
related with conditions of houses, farming and technology used in the diary working.

A.2.2 Results

Our approach was able to select in general, five (5) out of sixteen (16) attributes for the zoo
data set and seven (7) out of fifty five (55) in the coffee data set, maintaining the quality of the
classification equals to one. In some cases it found sets of a smaller number of attributes, but with
a quality slightly below from one. These results depend on determining an appropriated value of
the β parameter. Table A.1 shows the tuning of parameter β for the coffee dataset.

Table A.1: Tuning parameter β for Coffe dataset.

Values Attributes Quality Fitness
β = 1 0 0 6
β = 5 4 0.83 2.1691
β = 10 5 0.91 1.1253
β = 20 5 0.95 1.0087
β = 50 6 0.99 0.7084
β = 80 7 1.0 0
β = 100 7 1.0 0
β = 150 7 1.0 0
β = 1000 8 1.0 −1

When the constrain, given by quality, is satisfied the factor β|1−γP(U)| is equals to zero and
the fitness is equals to the difference between the expected number of attributes and the number
of attribute found by the algorithm. As we can see lower values of β influences in a low number
of attributes but does not care about quality. By the other hand, higher values of β ensures quality
but not the minimal number of attributes. We found appropriate values of β for the goal.

A.3 Attribute Discretization

In order to discretize numerical attributes, we use the idea behind the LEM2 algorithm proposed
in [21]. The LEM2 algorithm is based on an attribute-value pair blocks. For an attribute-value pair
(a,v), (a ∈ A and v ∈ Va) a block is a set of all cases from U such that for attribute a have value
v. For numerical attributes the algorithm computes blocks in a different way than for symbolic
attributes. First, it sorts all values of a numerical attribute. Then it computes cut-points as averages
for any two consecutive values of the sorted list. For each cut point x creates two blocks, the first
block contains all cases for which values of the numerical attribute are smaller than x, the second
block contains remaining cases, i.e., all cases for which values of the numerical attribute are larger
than x as we can see in Figure A.1.

All the block form a covering C of U. The induced covering is the set of all blocks computed
in this way, together with blocks defined by symbolic attributes. Sets in the induced covering can
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be ordered and indexed in an unique form. Take the data base shown in Table A.2 as example of
the LEM2 algorithm.

Table A.2: Decision system with mixed data.

Objects Attributes
Patient A1 A2 A3 Class

1 good 1.0 180 normal
2 good 1.6 240 sick
3 good 1.4 280 normal
4 bad 1.4 240 normal
5 bad 2.0 280 sick
6 bad 1.0 320 sick

The set of candidate cuts for each one of the numerical attributes are shown in Figure A.1. So,
the induced covering is (see Equation A.3).

C = {123,456,16,2345,1346,25,12346,5,1,23456,124,356,12345,6} (A.3)

A2
1.0 1.4 1.6 2.0

A3
180 240 280 320

Figure A.1: Possible cuts from dataset in Table 2.

Each set in the induced covering is represented with a bit in a binary string. Here, a bit ‘1’
means the corresponding set is present in the covering. Following our previous example, the 14-bit
array represents the covering C = {123,16,2345,1346,1,23456,6}

1 0 1 1 1 0 0 0 1 1 0 0 0 1

As can be noticed, some chromosomes cannot represent a covering, so we introduce a constrain
in the model: “The solution must represent a covering”.

The function must maximize the quality of classification and minimize the number of sets in
the covering, therefore it is a multi objective problem. In order to make it simpler, we use the
weighting method for converting the multi objective problem in a single objective problem. In this
way, the fitness function is defined as a linear combination of three parameters:

f (c, s,q) = αc−βq−γs + ε

where, c is the number of elements of U covered by C, q is the quality of classification, s is the
number of sets in C, α, β, γ and ε are positive constants. For our example, with the fitness function
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defined as:
f (c, s,q) = 4c−1.5s−2q−17,

the optimal value is f (6,4,0) = 1 for the array 00001100000011. This bit-array represents the
covering C = {1346,25,12345,6} and represents the cuts showed in Figure A.2:

A2
1.0 1.4 1.6 2.0

A3
180 240 280 320

Figure A.2: Cuts selected by the genetic algorithm.

A.4 Attribute Discretization and Selection

A Structured Genetic Algorithm (S-GA) is a variation of the Genetic Algorithm, which categorizes
genes into levels, as is shown in Figure A.3. Genes in higher levels are able to control the activation
state of genes in lower levels. In this section we use S-GA to solve attribute reduction problem
[14]. A chromosome is represented by a set of independent substrings at different levels, with
higher level genes controlling neutrality of lower genes. Only those genes currently active in the
chromosome contribute to the fitness and genetic operations.

1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1

off

on

High level

genes

on

Figure A.3: The structured Genetic algorithm.

Following our example, for the covering in Equation A.3, (representing the possible cuts in
Table A.2), we need a 14-bit array. The structured GA, requires three additional bits for the
attributes, so each chromosome needs a 17-bit array.

1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1

High level

genes

Figure A.4: Codification of a structured Genetic algorithm.

According to solution shown in Figure A.4 it does not include the three last sets in the covering.
In this case the covering represented is C = {123,16,2345,1346,25}.

The fitness function is defined as a linear combination of the objectives:

f (c,q, s,att) = αc−βq−γs−δatt− ε
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where, att is the number of attributes, c is the number of elements covered by C, q is the quality of
classification, s is the number of sets in C, and α, β, γ, δ and ε are positive constants. The quality
of classification is given by the equation

γP (U) =

∑
i |apr (Yi) |

|U |
, (A.4)

where apr is a lower approximation operator and P is a subset of attributes.

With the fitness function defined in Equation A.5 and the quality of classification, the optimal
value was f (6,2,4,0) = 2.

f (c, s,q,att) = 3c− s−3q−2att± ε (A.5)

Different solution are shown in Figure A.5.

0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 1 1

0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1

0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1

High level

genes

Figure A.5: Solutions for structured Genetic algorithm.

A.5 Selecting approximation operators

Clearly the quality of classification and other metrics used in rough sets, depend on the approx-
imation operator used in classification. Coding a group of pairs of approximation operators in
chromosome is possible to use the Structured GA for selecting the most appropriate approxima-
tion operator for a specific task. In this case we want to minimize the training error.

Following with our example, for the covering in Equation 3,(representing the possible cuts in
Table A.2), needs a 14-bit array, the structured GA, requires three bits for the attributes and three
additional bits for a group of eight pairs of approximation operators selected form the framework.
So each chromosome needs a 20-bit array.

The list of pairs of approximation operators used in this case is:

1. (LC2 ,H
C
5 ), (001)2

2. (LC2 ,H
C
6 ), (010)2

3. (LC1 ,H
C
2 ), (011)2

4. (LC1 ,H
C
3 ), (100)2

5. (aprC
N2
,aprCN2

), (101)2

6. (aprC
N3
,aprCN3

), (110)2
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7. (aprC
N4
,aprCN4

), (111)2

8. (LC2 ,H
C
7 ) (Default case), (000)2

In this case, the fitness function is the same function defined before. A switch controls the
approximation operator selected, the default case is (LC2 ,H

C
7 ). The fitness function for the Example

dataset was defined as:

f (c, s,q,att) = −2att− t−3q + 3c−8± ε (A.6)

the optimal value can be reached with the approximation operators 0, 1 and 2. Figure A.6
shows some solution obtained by the Structured Evolutionary Algorithm.

1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1

1 1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 1

1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0

Attributes A1 A2 A3

0 0 1

0 1 0

0 0 0

Appr. Op.

Figure A.6: Solutions of S-GA with selection.

In this case the pairs of approximation operators selected by S-GA are: (LC2 ,H
C
7 ), (LC2 ,H

C
6 ) and

(LC2 ,H
C
7 ). The percentages of selection of approximation operators are the following.

• (LC2 ,H
C
7 ), 33% (HC

7 is self-conjugate).

• (LC2 ,H
C
6 ), 18% (A dual pair).

• (LC2 ,H
C
5 ), 45% (A Galois Connection).

We apply our approach to the Iris data set. The possible cuts for Iris data set determine a
covering of 238 sets. Considering the four attributes and the same eight approximation operators
the chromosome for the sGA needs a 254-bit array.

The fitness function was defined as:

f (c,att, t,q) = 3c−2att−4t−5q.

for c the number of elements covered, att, number of attributes selected, t is the number of sets
in C and q number of elements in the boundary. The optimal value was f (150,2,13,3) = 387, for
c = 150, att = 2, t = 13 and q = 3.

The sGA found a reduct of two attributes (petal length and petal width), a covering with 13
sets. The operator selected was (LC2 ,H

C
6 ) and the number of elements in lower approximation for

the classes: Setosa (X), Versicolor (Y) and Virginica (Z) were: |apr(X)| = 50, |apr(Y)| = 49 and
|apr(Z)| = 48, i.e. the number of elements in the boundary was 3.
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A.6 Summary

This appendix presents the implementation of a structured genetic algorithm for attribute reduction
in rough set theory like an optimization problem with a constrain given by quality. The algorithm
can find a set of cuts for discretizing data and reducts. The last structured GA was built to select
the appropriate approximation operator.

The selected attributes importance and the minimal number of attributes in a reduct were
confirmed using ROSE2, an implementation of rough sets theory which is appropriate for small
data sets. The Structured Genetic Algorithm not only helps to reduce attribute, it also selects
approximation operators for minimizing the training error.
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