136,689 research outputs found

    Distance measures to compare real and ideal quantum processes

    Get PDF
    With growing success in experimental implementations it is critical to identify a "gold standard" for quantum information processing, a single measure of distance that can be used to compare and contrast different experiments. We enumerate a set of criteria such a distance measure must satisfy to be both experimentally and theoretically meaningful. We then assess a wide range of possible measures against these criteria, before making a recommendation as to the best measures to use in characterizing quantum information processing.Comment: 15 pages; this version in line with published versio

    Compression of quantum measurement operations

    Full text link
    We generalize recent work of Massar and Popescu dealing with the amount of classical data that is produced by a quantum measurement on a quantum state ensemble. In the previous work it was shown how spurious randomness generally contained in the outcomes can be eliminated without decreasing the amount of knowledge, to achieve an amount of data equal to the von Neumann entropy of the ensemble. Here we extend this result by giving a more refined description of what constitute equivalent measurements (that is measurements which provide the same knowledge about the quantum state) and also by considering incomplete measurements. In particular we show that one can always associate to a POVM with elements a_j, an equivalent POVM acting on many independent copies of the system which produces an amount of data asymptotically equal to the entropy defect of an ensemble canonically associated to the ensemble average state and the initial measurement (a_j). In the case where the measurement is not maximally refined this amount of data is strictly less than the von Neumann entropy, as obtained in the previous work. We also show that this is the best achievable, i.e. it is impossible to devise a measurement equivalent to the initial measurement (a_j) that produces less data. We discuss the interpretation of these results. In particular we show how they can be used to provide a precise and model independent measure of the amount of knowledge that is obtained about a quantum state by a quantum measurement. We also discuss in detail the relation between our results and Holevo's bound, at the same time providing a new proof of this fundamental inequality.Comment: RevTeX, 13 page

    Kak's three-stage protocol of secure quantum communication revisited: Hitherto unknown strengths and weaknesses of the protocol

    Full text link
    Kak's three-stage protocol for quantum key distribution is revisited with special focus on its hitherto unknown strengths and weaknesses. It is shown that this protocol can be used for secure direct quantum communication. Further, the implementability of this protocol in the realistic situation is analyzed by considering various Markovian noise models. It is found that the Kak's protocol and its variants in their original form can be implemented only in a restricted class of noisy channels, where the protocols can be transformed to corresponding protocols based on logical qubits in decoherence free subspace. Specifically, it is observed that Kak's protocol can be implemented in the presence of collective rotation and collective dephasing noise, but cannot be implemented in its original form in the presence of other types of noise, like amplitude damping and phase damping noise. Further, the performance of the protocol in the noisy environment is quantified by computing average fidelity under various noise models, and subsequently a set of preferred states for secure communication in noisy environment have also been identified.Comment: Kak's protocol is not suitable for quantum cryptography in presence of nois

    Purification-based metric to measure the distance between quantum states and processes

    Get PDF
    In this work we study the properties of an purification-based entropic metric for measuring the distance between both quantum states and quantum processes. This metric is defined as the square root of the entropy of the average of two purifications of mixed quantum states which maximize the overlap between the purified states. We analyze this metric and show that it satisfies many appealing properties, which suggest this metric is an interesting proposal for theoretical and experimental applications of quantum information.Comment: 11 pages, 2 figures. arXiv admin note: text overlap with arXiv:quant-ph/0408063, arXiv:1107.1732 by other author
    • …
    corecore