2,576 research outputs found

    N plus 2 Supersonic Concept Development and Systems Integration

    Get PDF
    Supersonic airplanes for two generations into the future (N+2, 2020-2025 EIS) were designed: the 100 passenger 765-072B, and the 30 passenger 765-076E. Both achieve a trans-Atlantic range of about 4000nm. The larger 765-072B meets fuel burn and emissions goals forecast for the 2025 time-frame, and the smaller 765-076E improves the boom and confidence in utilization that accompanies lower seat count. The boom level of both airplanes was reduced until balanced with performance. The final configuration product is two "realistic", non-proprietary future airplane designs, described in sufficient detail for subsequent multi-disciplinary design and optimization, with emphasis on the smaller 765-076E because of its lower boom characteristics. In addition IGES CAD files of the OML lofts of the two example configurations, a non-proprietary parametric engine model, and a first-cycle Finite Element Model are also provided for use in future multi-disciplinary analysis, optimization, and technology evaluation studies

    The CLIC Programme: Towards a Staged e+e- Linear Collider Exploring the Terascale : CLIC Conceptual Design Report

    Full text link
    This report describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale e+e- linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technology. A high-luminosity high-energy e+e- collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a 125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear e+e- collider built and operated in centre-of-mass energy stages from a few-hundred GeV up to a few TeV will be an ideal physics exploration tool, complementing the LHC. In this document, an overview of the physics potential of CLIC is given. Two example scenarios are presented for a CLIC accelerator built in three main stages of 500 GeV, 1.4 (1.5) TeV, and 3 TeV, together with operating schemes that will make full use of the machine capacity to explore the physics. The accelerator design, construction, and performance are presented, as well as the layout and performance of the experiments. The proposed staging example is accompanied by cost estimates of the accelerator and detectors and by estimates of operating parameters, such as power consumption. The resulting physics potential and measurement precisions are illustrated through detector simulations under realistic beam conditions.Comment: 84 pages, published as CERN Yellow Report https://cdsweb.cern.ch/record/147522

    Conceptual design and assessment of turboelectric and hybrid electric propulsion system architectures for civil transport aircraft.

    Get PDF
    To achieve ambitious future environmental targets for aircraft set out by organisations such as NASA and the European Union, turboelectric distributed propulsion (TeDP) has been proposed as a novel concept that has the potential to achieve these targets by significantly improving integrated propulsion-airframe performance. Realising TeDP as a technology option brings into play a number of design and development challenges due to the highly integrated natured of TeDP-airframe configurations, low technology-readiness-levels of key enabling technologies and new modes of operation opened up by shift to a more electric architecture. In tackling these challenges a multidisciplinary and integrated method to assess the benefits and challenges of turboelectric and hybrid-electric propulsion system configurations by considering the effect of aircraft size, mission specifications, airframe, electrical system, energy storage, propulsor architecture and gas turbine architecture was created. The method created was used in the assessment of turboelectric and hybrid electric performance for a regional transport aircraft and a medium haul transport aircraft. For the regional role the employment of a DC hybrid superconducting turboelectric architecture managed to achieve 16.7% block fuel saving and 3.23% total energy consumption saving over a baseline turboprop aircraft at 600 n.mi range. Driving performance benefits was increased duration of mission time batteries spend discharging at relatively high battery power rating which overcomes weight penalties from installation of electric machinery. For medium haul role the employment of a geared hybrid electric architecture managed to achieve a 3.07% block fuel saving over a baseline turbofan aircraft at 900 n.mi range. Driving performance benefit for the mission was increased battery-operative-cruise time at relatively high battery power rating overcoming aircraft weight penalty and electric machinery installation weight penalty. Despite fuel burn reduction, hybrid electric aircraft consumes more energy than a baseline configuration primarily due to utilisation of additional energy from battery pack.PhD in Aerospac

    Research and technology, 1992

    Get PDF
    Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These activities exemplify the Center's varied and productive research efforts for 1992

    10th EASN International Conference on Innovation in Aviation & Space to the Satisfaction of the European Citizens

    Get PDF
    This Special Issue book contains selected papers from works presented at the 10th EASN (European Aeronautics Science Network) International Conference on Innovation in Aviation & Space, which was held from the 2nd until the 4th of September, 2020. About 350 remote participants contributed to a high-level scientific gathering providing some of the latest research results on the topic, as well as some of the latest relevant technological advancements. Eleven interesting articles, which cover a wide range of topics including characterization, analysis and design, as well as numerical simulation, are contained in this Special Issue

    A prototype computerized synthesis methodology for generic space access vehicle (SAV) conceptual design.

    Get PDF
    This dissertation presents the development steps required towards a generic (configuration independent) hands-on flight vehicle conceptual design synthesis methodology. This process is developed such that it can be applied to any flight vehicle class if desired. In the present context, the methodology has been put into operation for the conceptual design of a tourist Space Access Vehicle. The case study illustrates elements of the design methodology & algorithm for the class of Horizontal Takeoff and Horizontal Landing (HTHL) SAVs. The HTHL SAV design application clearly outlines how the conceptual design process can be centrally organized, executed and documented with focus on design transparency, physical understanding and the capability to reproduce results. This approach offers the project lead and creative design team a management process and tool which iteratively refines the individual design logic chosen, leading to mature design methods and algorithms. As illustrated, the HTHL SAV hands-on design methodology offers growth potential in that the same methodology can be continually updated and extended to other SAV configuration concepts, such as the Vertical Takeoff and Vertical Landing (VTVL) SAV class. Having developed, validated and calibrated the methodology for HTHL designs in the 'hands-on' mode, the report provides an outlook how the methodology will be integrated into a prototype computerized design synthesis software AVDS-PrADOSAV in a follow-on step.Today's and especially tomorrow's competitive launch vehicle design environment requires the development of a dedicated generic Space Access Vehicle (SAV) design methodology. A total of 115 industrial, research, and academic aircraft, helicopter, missile, and launch vehicle design synthesis methodologies have been evaluated. As the survey indicates, each synthesis methodology tends to focus on a specific flight vehicle configuration, thus precluding the key capability to systematically compare flight vehicle design alternatives. The aim of the research investigation is to provide decision-making bodies and the practicing engineer a design process and tool box for robust modeling and simulation of flight vehicles where the ultimate performance characteristics may hinge on numerical subtleties. This will enable the designer of a SAV for the first time to consistently compare different classes of SAV configurations on an impartial basis

    Proceedings of the 8th Annual Summer Conference: NASA/USRA Advanced Design Program

    Get PDF
    Papers presented at the 8th Annual Summer Conference are categorized as Space Projects and Aeronautics projects. Topics covered include: Systematic Propulsion Optimization Tools (SPOT), Assured Crew Return Vehicle Post Landing Configuration Design and Test, Autonomous Support for Microorganism Research in Space, Bioregenerative System Components for Microgravity, The Extended Mission Rover (EMR), Planetary Surface Exploration MESUR/Autonomous Lunar Rover, Automation of Closed Environments in Space for Human Comfort and Safety, Walking Robot Design, Extraterrestrial Surface Propulsion Systems, The Design of Four Hypersonic Reconnaissance Aircraft, Design of a Refueling Tanker Delivering Liquid Hydrogen, The Design of a Long-Range Megatransport Aircraft, and Solar Powered Multipurpose Remotely Powered Aircraft

    Research and Technology Objectives and Plans Summary (RTOPS)

    Get PDF
    This publication represents the NASA research and technology program for FY-93. It is a compilation of the Summary portions of each of the RTOP's (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOP's is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number

    12th EASN International Conference on "Innovation in Aviation & Space for opening New Horizons"

    Get PDF
    Epoxy resins show a combination of thermal stability, good mechanical performance, and durability, which make these materials suitable for many applications in the Aerospace industry. Different types of curing agents can be utilized for curing epoxy systems. The use of aliphatic amines as curing agent is preferable over the toxic aromatic ones, though their incorporation increases the flammability of the resin. Recently, we have developed different hybrid strategies, where the sol-gel technique has been exploited in combination with two DOPO-based flame retardants and other synergists or the use of humic acid and ammonium polyphosphate to achieve non-dripping V-0 classification in UL 94 vertical flame spread tests, with low phosphorous loadings (e.g., 1-2 wt%). These strategies improved the flame retardancy of the epoxy matrix, without any detrimental impact on the mechanical and thermal properties of the composites. Finally, the formation of a hybrid silica-epoxy network accounted for the establishment of tailored interphases, due to a better dispersion of more polar additives in the hydrophobic resin

    Subsonic Ultra Green Aircraft Research

    Get PDF
    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified
    • …
    corecore