6 research outputs found

    Knowledge Compilation of Logic Programs Using Approximation Fixpoint Theory

    Full text link
    To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 2015 Recent advances in knowledge compilation introduced techniques to compile \emph{positive} logic programs into propositional logic, essentially exploiting the constructive nature of the least fixpoint computation. This approach has several advantages over existing approaches: it maintains logical equivalence, does not require (expensive) loop-breaking preprocessing or the introduction of auxiliary variables, and significantly outperforms existing algorithms. Unfortunately, this technique is limited to \emph{negation-free} programs. In this paper, we show how to extend it to general logic programs under the well-founded semantics. We develop our work in approximation fixpoint theory, an algebraical framework that unifies semantics of different logics. As such, our algebraical results are also applicable to autoepistemic logic, default logic and abstract dialectical frameworks

    Beyond the grounding bottleneck: Datalog techniques for inference in probabilistic logic programs

    Get PDF
    State-of-the-art inference approaches in probabilistic logic programming typically start by computing the relevant ground program with respect to the queries of interest, and then use this program for probabilistic inference using knowledge compilation and weighted model counting. We propose an alternative approach that uses efficient Datalog techniques to integrate knowledge compilation with forward reasoning with a non-ground program. This effectively eliminates the grounding bottleneck that so far has prohibited the application of probabilistic logic programming in query answering scenarios over knowledge graphs, while also providing fast approximations on classical benchmarks in the field

    TP-Compilation for inference in probabilistic logic programs

    Get PDF
    We propose TP -compilation, a new inference technique for probabilistic logic programs that is based on forward reasoning. TP -compilation proceeds incrementally in that it interleaves the knowledge compilation step for weighted model counting with forward reasoning on the logic program. This leads to a novel anytime algorithm that provides hard bounds on the inferred probabilities. The main difference with existing inference techniques for probabilistic logic programs is that these are a sequence of isolated transformations. Typically, these transformations include conversion of the ground program into an equivalent propositional formula and compilation of this formula into a more tractable target representation for weighted model counting. An empirical evaluation shows that TP -compilation effectively handles larger instances of complex or cyclic real-world problems than current sequential approaches, both for exact and anytime approximate inference. Furthermore, we show that TP -compilation is conducive to inference in dynamic domains as it supports efficient updates to the compiled model
    corecore