3,874 research outputs found

    Analysis of a database insider threat model

    Get PDF
    According to Silicon.com\u27s CIO Insight - Beware the Insider Security Threat, insiders are bigger threats to corporate security than external threats such as denial of service attacks or malware. Statistics show that 70% of fraud is perpetrated by staff and that the main data security threat comes from poorly trained or disgruntled employees who are authorized to have access to data and file stores [4]. This research project focuses specifically on the problem of insider threat in relational database systems. The project involves simulating research conducted in Qussai Yaseen and Brajendra Panda\u27s research paper, Predicting and Preventing Insider Threat in Relational Database Systems. The objective of this project is to develop the knowledgebase for an insider as they request access to attributes in transactions. The generated knowledge base for a given user or insider is then used to develop a Threat Prediction Graph that can be used to predict and prevent insider threat. Generating the knowledge graph and threat prediction graph, which will issue warnings if insiders have the ability to infer values of data items to which they do not have authorized access, provides an effective solution to the insider threat problem in relational database systems. Conducting this test across different relational database schemas gives an idea of how long it takes to obtain unauthorized knowledge of data items for various types of relational databases and reveals which areas are most susceptible to insider threat

    Mitigating Insider Threat in Relational Database Systems

    Get PDF
    The dissertation concentrates on addressing the factors and capabilities that enable insiders to violate systems security. It focuses on modeling the accumulative knowledge that insiders get throughout legal accesses, and it concentrates on analyzing the dependencies and constraints among data items and represents them using graph-based methods. The dissertation proposes new types of Knowledge Graphs (KGs) to represent insiders\u27 knowledgebases. Furthermore, it introduces the Neural Dependency and Inference Graph (NDIG) and Constraints and Dependencies Graph (CDG) to demonstrate the dependencies and constraints among data items. The dissertation discusses in detail how insiders use knowledgebases and dependencies and constraints to get unauthorized knowledge. It suggests new approaches to predict and prevent the aforementioned threat. The proposed models use KGs, NDIG and CDG in analyzing the threat status, and leverage the effect of updates on the lifetimes of data items in insiders\u27 knowledgebases to prevent the threat without affecting the availability of data items. Furthermore, the dissertation uses the aforementioned idea in ordering the operations of concurrent tasks such that write operations that update risky data items in knowledgebases are executed before the risky data items can be used in unauthorized inferences. In addition to unauthorized knowledge, the dissertation discusses how insiders can make unauthorized modifications in sensitive data items. It introduces new approaches to build Modification Graphs that demonstrate the authorized and unauthorized data items which insiders are able to update. To prevent this threat, the dissertation provides two methods, which are hiding sensitive dependencies and denying risky write requests. In addition to traditional RDBMS, the dissertation investigates insider threat in cloud relational database systems (cloud RDMS). It discusses the vulnerabilities in the cloud computing structure that may enable insiders to launch attacks. To prevent such threats, the dissertation suggests three models and addresses the advantages and limitations of each one. To prove the correctness and the effectiveness of the proposed approaches, the dissertation uses well stated algorithms, theorems, proofs and simulations. The simulations have been executed according to various parameters that represent the different conditions and environments of executing tasks

    Insider Threat Mitigation Models Based on Thresholds and Dependencies

    Get PDF
    Insider threat causes great damage to data in any organization and is considered a serious issue. In spite of the presence of threat prevention mechanisms, sophisticated insiders still continue to attack a database with new techniques. One such technique which remains an advantage for insiders to attack databases is the dependency relationship among data items. This thesis investigates the ways by which an authorized insider detects dependencies in order to perform malicious write operations. The goal is to monitor malicious write operations performed by an insider by taking advantage of dependencies. A term called `threshold\u27 is associated with every data item, which defines the limit and constraints to which changes could be made to a data item by a write operation. Having threshold as the key factor, the thesis proposes two different attack prevention systems which involve log and dependency graphs that aid in monitoring malicious activities and ultimately secure the data items in a database. The proposed systems continuously monitors all the data items to prevent malicious operations, but the priority is to secure the most sensitive data items first, since any damage to them can hinder the functions of critical applications that use the database. By prioritizing the data items, delay in the transaction execution time is reduced in addition to mitigating insider threats arising from write operations. The developed algorithms have been implemented on a simulated database and the results show that the models mitigate insider threats arising from write operations effectively

    Predicting and Preventing Insider Threat in Relational Database Systems

    Full text link

    An Insider Misuse Threat Detection and Prediction Language

    Get PDF
    Numerous studies indicate that amongst the various types of security threats, the problem of insider misuse of IT systems can have serious consequences for the health of computing infrastructures. Although incidents of external origin are also dangerous, the insider IT misuse problem is difficult to address for a number of reasons. A fundamental reason that makes the problem mitigation difficult relates to the level of trust legitimate users possess inside the organization. The trust factor makes it difficult to detect threats originating from the actions and credentials of individual users. An equally important difficulty in the process of mitigating insider IT threats is based on the variability of the problem. The nature of Insider IT misuse varies amongst organizations. Hence, the problem of expressing what constitutes a threat, as well as the process of detecting and predicting it are non trivial tasks that add up to the multi- factorial nature of insider IT misuse. This thesis is concerned with the process of systematizing the specification of insider threats, focusing on their system-level detection and prediction. The design of suitable user audit mechanisms and semantics form a Domain Specific Language to detect and predict insider misuse incidents. As a result, the thesis proposes in detail ways to construct standardized descriptions (signatures) of insider threat incidents, as means of aiding researchers and IT system experts mitigate the problem of insider IT misuse. The produced audit engine (LUARM – Logging User Actions in Relational Mode) and the Insider Threat Prediction and Specification Language (ITPSL) are two utilities that can be added to the IT insider misuse mitigation arsenal. LUARM is a novel audit engine designed specifically to address the needs of monitoring insider actions. These needs cannot be met by traditional open source audit utilities. ITPSL is an XML based markup that can standardize the description of incidents and threats and thus make use of the LUARM audit data. Its novelty lies on the fact that it can be used to detect as well as predict instances of threats, a task that has not been achieved to this date by a domain specific language to address threats. The research project evaluated the produced language using a cyber-misuse experiment approach derived from real world misuse incident data. The results of the experiment showed that the ITPSL and its associated audit engine LUARM provide a good foundation for insider threat specification and prediction. Some language deficiencies relate to the fact that the insider threat specification process requires a good knowledge of the software applications used in a computer system. As the language is easily expandable, future developments to improve the language towards this direction are suggested

    Risk Assessment Framework for Evaluation of Cybersecurity Threats and Vulnerabilities in Medical Devices

    Get PDF
    Medical devices are vulnerable to cybersecurity exploitation and, while they can provide improvements to clinical care, they can put healthcare organizations and their patients at risk of adverse impacts. Evidence has shown that the proliferation of devices on medical networks present cybersecurity challenges for healthcare organizations due to their lack of built-in cybersecurity controls and the inability for organizations to implement security controls on them. The negative impacts of cybersecurity exploitation in healthcare can include the loss of patient confidentiality, risk to patient safety, negative financial consequences for the organization, and loss of business reputation. Assessing the risk of vulnerabilities and threats to medical devices can inform healthcare organizations toward prioritization of resources to reduce risk most effectively. In this research, we build upon a database-driven approach to risk assessment that is based on the elements of threat, vulnerability, asset, and control (TVA-C). We contribute a novel framework for the cybersecurity risk assessment of medical devices. Using a series of papers, we answer questions related to the risk assessment of networked medical devices. We first conducted a case study empirical analysis that determined the scope of security vulnerabilities in a typical computerized medical environment. We then created a cybersecurity risk framework to identify threats and vulnerabilities to medical devices and produce a quantified risk assessment. These results supported actionable decision making at managerial and operational levels of a typical healthcare organization. Finally, we applied the framework using a data set of medical devices received from a partnering healthcare organization. We compare the assessment results of our framework to a commercial risk assessment vulnerability management system used to analyze the same assets. The study also compares our framework results to the NIST Common Vulnerability Scoring System (CVSS) scores related to identified vulnerabilities reported through the Common Vulnerability and Exposure (CVE) program. As a result of these studies, we recognize several contributions to the area of healthcare cybersecurity. To begin with, we provide the first comprehensive vulnerability assessment of a robotic surgical environment, using a da Vinci surgical robot along with its supporting computing assets. This assessment supports the assertion that networked computer environments are at risk of being compromised in healthcare facilities. Next, our framework, known as MedDevRisk, provides a novel method for risk quantification. In addition, our assessment approach uniquely considers the assets that are of value to a medical organization, going beyond the medical device itself. Finally, our incorporation of risk scenarios into the framework represents a novel approach to medical device risk assessment, which was synthesized from other well-known standards. To our knowledge, our research is the first to apply a quantified assessment framework to the problem area of healthcare cybersecurity and medical networked devices. We would conclude that a reduction in the uncertainty about the riskiness of the cybersecurity status of medical devices can be achieved using this framework

    Authentication Protocol for Cloud Databases Using Blockchain Mechanism

    Get PDF
    Cloud computing has made the software development process fast and flexible but on the other hand it has contributed to increasing security attacks. Employees who manage the data in cloud companies may face insider attack, affecting their reputation. They have the advantage of accessing the user data by interacting with the authentication mechanism. The primary aim of this research paper is to provide a novel secure authentication mechanism by using Blockchain technology for cloud databases. Blockchain makes it difficult to change user login credentials details in the user authentication process by an insider. The insider is not able to access the user authentication data due to the distributed ledger-based authentication scheme. Activity of insider can be traced and cannot be changed. Both insider and outsider user’s are authenticated using individual IDs and signatures. Furthermore, the user access control on the cloud database is also authenticated. The algorithm and theorem of the proposed mechanism have been given to demonstrate the applicability and correctness.The proposed mechanism is tested on the Scyther formal system tool against denial of service, impersonation, offline guessing, and no replay attacks. Scyther results show that the proposed methodology is secure cum robust

    NOUS: Construction and Querying of Dynamic Knowledge Graphs

    Get PDF
    The ability to construct domain specific knowledge graphs (KG) and perform question-answering or hypothesis generation is a transformative capability. Despite their value, automated construction of knowledge graphs remains an expensive technical challenge that is beyond the reach for most enterprises and academic institutions. We propose an end-to-end framework for developing custom knowledge graph driven analytics for arbitrary application domains. The uniqueness of our system lies A) in its combination of curated KGs along with knowledge extracted from unstructured text, B) support for advanced trending and explanatory questions on a dynamic KG, and C) the ability to answer queries where the answer is embedded across multiple data sources.Comment: Codebase: https://github.com/streaming-graphs/NOU

    Impact and key challenges of insider threats on organizations and critical businesses

    Get PDF
    The insider threat has consistently been identified as a key threat to organizations and governments. Understanding the nature of insider threats and the related threat landscape can help in forming mitigation strategies, including non-technical means. In this paper, we survey and highlight challenges associated with the identification and detection of insider threats in both public and private sector organizations, especially those part of a nation’s critical infrastructure. We explore the utility of the cyber kill chain to understand insider threats, as well as understanding the underpinning human behavior and psychological factors. The existing defense techniques are discussed and critically analyzed, and improvements are suggested, in line with the current state-of-the-art cyber security requirements. Finally, open problems related to the insider threat are identified and future research directions are discussed
    • …
    corecore