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ABSTRACT 

 

The dissertation concentrates on addressing the factors and capabilities that enable insiders to 

violate systems security. It focuses on modeling the accumulative knowledge that insiders get 

throughout legal accesses, and it concentrates on analyzing the dependencies and constraints 

among data items and represents them using graph-based methods.  The dissertation proposes 

new types of Knowledge Graphs (KGs) to represent insiders’ knowledgebases. Furthermore, it 

introduces the Neural Dependency and Inference Graph (NDIG) and Constraints and 

Dependencies Graph (CDG) to demonstrate the dependencies and constraints among data items. 

The dissertation discusses in detail how insiders use knowledgebases and dependencies and 

constraints to get unauthorized knowledge. It suggests new approaches to predict and prevent the 

aforementioned threat. The proposed models use KGs, NDIG and CDG in analyzing the threat 

status, and leverage the effect of updates on the lifetimes of data items in insiders’ 

knowledgebases to prevent the threat without affecting the availability of data items. 

Furthermore, the dissertation uses the aforementioned idea in ordering the operations of 

concurrent tasks such that write operations that update risky data items in knowledgebases are 

executed before the risky data items can be used in unauthorized inferences. In addition to 

unauthorized knowledge, the dissertation discusses how insiders can make unauthorized 

modifications in sensitive data items. It introduces new approaches to build Modification Graphs 

that demonstrate the authorized and unauthorized data items which insiders are able to update. 

To prevent this threat, the dissertation provides two methods, which are hiding sensitive 

dependencies and denying risky write requests. In addition to traditional RDBMS, the 

dissertation investigates insider threat in cloud relational database systems (cloud RDMS). It 

discusses the vulnerabilities in the cloud computing structure that may enable insiders to launch 
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attacks. To prevent such threats, the dissertation suggests three models and addresses the 

advantages and limitations of each one.  

 

To prove the correctness and the effectiveness of the proposed approaches, the dissertation uses 

well stated algorithms, theorems, proofs and simulations. The simulations have been executed 

according to various parameters that represent the different conditions and environments of 

executing tasks.  
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1. INTRODUCTION 

 

 

Protecting information is as important as protecting other organizational sensitive assets such as 

money. In this era of rapid revolution in computer technologies and communications, attacks on 

this vital resource are getting more complicated and harmful. Thus, information security has 

become a crucial goal to organizations and individuals. Information security means protecting 

information and information systems from interception, interruption, modification, and 

fabrication in order to preserve the confidentiality, availability and integrity of information 

[LII][NIST95]. Confidentiality means hiding information or resources from unauthorized users 

in order to protect the personnel information privacy, whereas availability means providing 

timely access to information and information resources. Availability is an important part of 

systems’ reliability and design since limited availability of a system is as bad as if the system 

does not exist. Information integrity indicates protecting data against inappropriate or 

unauthorized modifications. Moreover, it means ensuring the accuracy of sources of information, 

which is called information authenticity [Bishop03] [LII].   

 

Research in information security is generally focused on two fields, network security and 

databases security. Network security deals with mechanisms that protect information during 

transmission via networks, while database security represents the methods that protect stored 

information in DBMS. The dissertation concentrates on database security and proposes methods 

to protect relational database systems from insider threat. 
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1.1 Database Security 

Database security is a major field in computer security. Databases are targeted by tremendous 

types of attacks that aim to breach the security of the high value assets that databases store. 

Threats to databases could be physical, such as theft and destroying physical storage, or could be 

logical, which are categorized as follows [Baraani96]. 

a) Unauthorized modifications of information attacks: This type of threat can be launched 

accidentally by authorized users or intentionally by legal or illegal users. Notice that this type 

affects information integrity. 

b) Exposure of information attacks: Information leaks can occur by direct access or indirect 

access to information. Indirect exposure of information is performed by inferring the values 

of unauthorized data items using authorized data items. Hence, information disclosure affects 

the confidentiality of information. 

c) Denial of service attacks: These attacks can be launched by controlling or dominating 

resources such that other users in a system cannot access them. For example, attackers may 

consume the computational resources, such as bandwidth, disk space, or processor time, 

preventing any work from being done. 

 

Significant research has been performed to secure databases against attacks by identifying proper 

security policies and mechanisms. A security policy represents what is expected from a security 

system, whereas a security mechanism demonstrates how to achieve security goals. Security 

policies should have some features or properties that should be satisfied by security mechanisms. 

The properties that a security policy in databases should have include access control, inference, 

consistency, accountability, and user identification. Access control guarantees that direct 

http://en.wikipedia.org/wiki/Central_processing_unit
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accesses to objects are granted according to predefined privileges. In addition, a security policy 

should protect sensitive information from exposure by unauthorized users using indirect access 

or inference. Consistency preserves the integrity of databases, and accountability represents the 

requirements to record all accesses to database objects by users. Accountability is an important 

feature for preserving the consistency of databases. Finally, user authentication consists of 

system requirements that lead to the correct identification of legal users in the system 

[Baraani96][Bishop03]. 

 

Extensive research has been done to address mechanisms that achieve the goals of security 

policies. The access matrix model is an example of access control mechanisms. It was introduced 

by Lampson [Lampson71] and improved later by other researchers [Conway72] [Harrison76] to 

manage accesses to resources. The access matrix model uses three components to organize 

accesses, which are subjects, objects and privileges. Subjects indicate users, which are 

represented by the rows of the matrix, objects indicate resources and are represented by the 

columns of the matrix, and privileges indicate permissions of read, write, execute … etc. 

Privileges are represented inside the cells of the matrix. Figure 1.1 shows an example of an 

access matrix model, where Pr(Subi, Objj) represents the privileges that Subi have on the object 

Objj. 

 Objects 

S
u

b
je

ct
s 

 Obj1 Obj2 Obj3 …. Objn 

Sub1 Pr(Sub1, Obj1) Pr(Sub1, Obj2) Pr(Sub1, Obj3) …. Pr(Sub1, Objn) 

Sub2 Pr(Sub2, Obj1) Pr(Sub2, Obj2) Pr(Sub2, Obj3) …. Pr(Sub2, Objn) 

. . . . …  

Subm Pr(Subm, Obj1) Pr(Subm, Obj2) Pr(Subm, Obj3) …. Pr(Subm, Objn) 

 Figure 1.1. An Access Matrix 
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Inference control has been discussed broadly, and many models have been addressed to prevent 

unauthorized inference of information. Inference channels can be eliminated during database 

design by building good and secure schema, or  they can  be  removed  by  evaluating queries to 

ensure that they do not lead to illegal inference. Biskup et. al [Biskup08] proposed mechanisms 

and constraints that reduce inference problem in relational databases to access control, in which 

inference can be controlled. Woodruff and Staddon [David04] introduced the private inference 

control (PIC), which provides inference control on the server side without learning the 

information that is retrieved. Hence, inference problem is discussed in detail in the related work 

chapter. Integrity and authentication can be assured using different techniques such as 

cryptographic techniques. For example, RSA [Rivest78] is used as a public key authentication. 

Similarly, encryption methods such as Tripple-DES [DES] and AES [AES] are used to ensure 

information integrity.   

 

Databases have become increasingly vulnerable to attack due to the vast and continuous 

revolution in communications and new technologies such as cloud computing. Cloud computing 

refers to the use of the internet to host computer resources instead of keeping them on local 

computers. It delivers services (applications) over the internet and the hardware and systems in 

data centers [Armbrust09]. Applications are hosted and accessible through datacenters. 

Resources on the cloud are sold (leased) on demand. The price of leasing resources depends on 

the time duration and the amount and the type of resources needed. Users can have what they 

want from resources at any time. Resources in the cloud are fully managed by the cloud 

resources providers. The management of resources includes monitoring, provisioning, de-

provisioning, workload balancing, and changing requests [Boss]. The services provided by the 
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cloud include Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-

a-Service (SaaS). Moreover, the Amazon cloud enables insiders to create and manage a 

relational database, which is called Amazon Relational Database Services (RDS) [RDS]. Cloud 

databases induce new security challenges since sensitive data are migrated to the servers of the 

cloud providers. Moreover, databases are managed and maintained by the employees of services 

providers. This maximizes threat, especially insider threat, which is discussed in the next section. 

 

1.2 Insider Threat 

Insider threat is a critical security problem. The threat of insiders can be posed intentionally by 

malicious insiders or unintentionally. Malicious insider threat is defined as the threat that is 

caused by a person who has authorized access privileges and knowledge of the computer systems 

of an organization, and is inspired to antagonistically influence the organization [Brackney04]. 

For the rest of the dissertation, we will use the term “insider threat” to indicate malicious insider 

threat. We define insider threat according to relational database systems, which is the context of 

the dissertation, as follows. 

 

Definition 1 (Insider Threat). Insider threat is the threat that is posed by a person who has 

authorized access and knowledge of the relational database system s/he uses, is familiar with the 

dependencies and constraints among data items, and is motivated to violate the security policy of 

the system throughout authorized access. 

 

Insiders could be employees, contractors, or business partners. They have the capabilities, which 

outsiders do not have, that enable them to launch attacks. In the context of relational database 
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systems, insiders are familiar with the structure of the relational database systems on which they 

are working. That is, they are familiar with the dependencies and constraints among data items, 

the sensitive information and the insensitive information, and the inference channels insiders can 

exploit to infer unauthorized information. Insiders get knowledge during their work on 

organizations’ systems. They can get a part of the knowledge through their activities and 

transactions in systems, and they get other parts by collaborating with other insiders in the 

systems. This accumulated knowledge enables insiders to discover the strengths and weaknesses 

in the defense mechanisms and the systems’ structure. Nonetheless, outsiders have little 

information (in comparison to insiders) about the structure of the systems they attack. Moreover, 

insiders use legal paths to breach the systems’ security throughout legal access, whereas 

outsiders rely on violating systems security using different methods such as bogus URLs in 

phishing attacks, SQL injection, Man-in-the Middle attacks … etc. Table 1.1 shows some 

examples of insiders’ attacks and outsiders’ attacks according to different criteria [Probst10].  

Table 1.1 Insider Attacks vs. Outsider Attacks [Probst10]. 

Attribute Outsiders Insiders 

Authentication Penetrations, attacks on authentication 

Infrastructures. 

Misuse of intended authority by over-

authorized users, illegal seizure of 

super-user access and root keys. 

Authorization Unauthorized exploitation of 

inadequate controls. 

Authorized manipulation of access 

controls. 

Confidentiality  Unencrypted password capture or 

expose of encrypted passwords. 

National security leaks and other 

disclosures; access to crypto keys. 

Integrity Creating Trojan horses in untrusted 

components, Word macro viruses, 

untrustworthy Web code, Man-in-the-

Middle attacks. 

Inserting Trojan horses or trapdoors 

in trusted or untrusted components, 

altering configurations, schedules, 

and priorities. 

Accountability Masquerading, DoS attacks on 

accounting infrastructures. 

Hacking beneath the audit trails, 

altering audit logs, compromising 

misuse detection. 
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According to different surveys [Gordon05][Cert11], insider threat is as risky as outsiders’ threat 

(hackers) due to the extreme harm that it may pose. The 2005 FBI Computer Crime Survey 

[Gordon05] reported that trusted insiders were responsible of about 33% of all security breaches 

in 2005. Similarly, the 2011 Cyber Security Watch Survey [CERT11] showed that 58% of 

attacks are caused by outsiders, whereas 21% of attacks are caused by insiders. Figure 1.2 shows 

how the percentage of security breaches by insiders and outsiders have changed over the years, 

according to the latter survey. Moreover, the survey shows that insider threat is as costly as 

outsider threat. However, Forrester Research [Forrester11] showed that insider threat is the most 

costly type of incident. In addition, after analyzing the security practices of more than 300 

European, American, and Australian enterprises, Forrester estimated that insiders were 

responsible for 75% of data security incidents in those enterprises in 2010. Similarly, Verizon 

Business breach report [Cooper08][Subashini10] stated that outsiders exposed about 30,000 

records, whereas insiders exposed about 375,000 records indicating that the cost of insider threat 

is greatly more than the cost of outsider threat. 

 

 

Obviously, many surveys have shown that insider threat is an immense and urgent security 

problem. Yet, organizations are investing very little to defend their systems against insider threat. 

Most organizations’ investments are focused on protecting their assets from outsiders’ threat. 

0%

20%

40%
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80%
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Outsiders (Long bar)

Figure 1.2. Security Violations by Insiders and Outsiders 
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Organizations rely on insiders’ morals and ethics not to violate systems security. Nonetheless, 

surveys show that this assumption is incorrect. Mechanisms that have been proposed for 

protecting data from outside attacks are inappropriate to secure systems from authorized users 

who may misuse their privileges. Thus, the development of mechanisms that protect sensitive 

data from insiders has become a key demand due to the amount of harm that can be caused by 

malicious insiders. 

 

1.3 The Contribution of the Dissertation 

The focus of this dissertation is on the insider as an object with properties and capabilities that 

facilitate exposing systems’ unauthorized information or making unauthorized changes. The 

knowledgebases of insiders and their privileges form their power. Therefore, insider threat 

prediction and prevention mechanisms should identify those properties before going forward in 

the prediction process. Discovering and representing the knowledgebases and privileges of 

insiders have gotten a significant focus in this work through developing and using many graphs. 

As mentioned earlier, the dissertation discusses insider threat in relational database systems in 

detail. It describes the factors, resources, and features that facilitate insider threat such as 

dependencies and constraints. In addition, the dissertation demonstrates the paths and approaches 

that insiders may follow to acquire unauthorized information. Furthermore, it investigates the 

approaches that insiders may use to make unauthorized modifications to data items. To protect 

relational databases from these types of insider threat, the dissertation proposes effective 

methods to detect, prevent, or mitigate those attacks.  
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In addition, the dissertation shows how different sequences of execution of the same operations 

of concurrent tasks impose different levels of risk. In addition, it shows how some sequences 

may lead to limiting the availability of data items or posing threat. For this case, the dissertation 

shows how to order the operations of concurrent tasks in a safe sequence that prevents insider 

threat without limiting insiders’ tasks. Furthermore, the dissertation investigates the problem in 

the cloud computing environment and addresses new vulnerabilities that may be used by insiders 

to launch attacks. It introduces different models to tackle insider threat in cloud relational 

databases. Finally, the dissertation provides algorithms, theorems, proofs and simulations to 

prove the efficiency of the proposed approaches in defending relational databases against insider 

threat. 

 

The rest of the dissertation is organized as follows. The next chapter introduces some related 

work. Chapter 3 introduces the types of dependencies and constraints in relational database 

systems. Chapters 4 and 5 discuss the paths and approaches that insiders may follow to acquire 

unauthorized information or make unauthorized changes in sensitive data items respectively. 

Moreover, the chapters propose methods to detect and prevent such attacks. Organizing accesses 

to data items in concurrent tasks is discussed in chapter 6, while chapter 7 discusses insider 

threat in cloud computing and suggests methods to mitigate insider threat in cloud relational 

databases. Finally, chapter 8 presents the conclusions.  
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2. BACKGROUND AND RELATED WORK  

 

 

Protecting information from insider threat is a very important and difficult research field. Little 

research has been performed in this area. Moreover, most research in insider threat has been 

focused at the system level. Very little research has been performed at the application level such 

as database systems. In this chapter, we introduce some related work that has been accomplished 

in this area. Furthermore, since dependencies are a major part of insider threat in relational 

database systems, some work on dependencies and inference channels is introduced. In addition, 

some work in cloud security is presented to understand the vulnerabilities that threaten cloud 

relational databases and increase the possibility of insider threat. 

 

2.1  Dependencies and Inference Channels 

Dependencies play a major role in the insider threat problem. Dependencies and constraints can 

be used by insiders to infer unauthorized information or make unauthorized modifications. 

Dependencies as well as the inference problem have been discussed extensively by many 

researchers. Most inferences in relational database systems are acquired by combining database 

constraints with insensitive data items. Inference channels can be discovered during database 

design [Dawson99, Marks96a, Su91, Yi98] or during queries processing [Marks96b, Stachour90, 

Farkas07]. In the first approach, database design is modified or the classifications of some data 

are elevated to remove inference channels. In the second approach, inference is detected during 

the execution of queries. To remove inference channels in the latter case, malicious queries are 

either rejected or modified.  
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Farkas and Jajodia [Farkas07] presented a survey of some research in data inference control in 

different fields such as statistical and multilevel databases, data mining and web. They discussed 

how users use insensitive data to get sensitive data to which they have no direct access. Brodsky 

et al. [Brodsky00] discussed the inference channels that happen when database constraints are 

used with insensitive data to get information about sensitive data items. They presented the 

Disclosure Monitor (DiMon) model that detects and removes inference channels that are created 

by database constraints. Moreover, they used the Disclosure Inference Engine (DiIE) that 

retrieves all possible information that can be acquired based on users’ previous and current 

queries and database constraints. Their work was well structured and supported by robust 

algorithms and theorems that analyse the problem and prove the completeness and soundness of 

the proposed approaches. However, their work considered the problem from a static point of 

view. That is, they neither considered the updates on data items nor discussed the effects of 

updates on data items’ lifetimes.  

 

Farkas et al. [Farkas01] demonstrated how updates on data items can increase data availability. 

They stated that updates make data outdated, and stated that the inference based on outdated data 

does not pose any threat since it would be incorrect. They used this idea to extend the DiMon 

model used by Brodsky et. al [Brodsky00], which is discussed in the previous paragraph, and 

developed a new model called Dynamic Disclosure Monitor. The new model ensures that only 

the inference based on up-to-date data is considered a threat. To facilitate implementing the idea, 

they established a new mechanism, called the Update Consolidator, that uses a user’s history file, 

updates on data items, and database constraints to generate a new history file for the user in 

which outdated data are marked, and then, only valid inferences are considered. The authors 



12 
 

assumed that updates always make data expired. Nonetheless, in this dissertation, we show that 

considering modified data as always expired data may lead to exposing sensitive information. 

Moreover, we state the conditions that an update process should meet in order to consider an 

updated data as expired.   

 

Most researchers focus on functional dependencies when dealing with inference channels. 

However, Yip and Levitt [Yip98] showed that detecting inference channels using functional 

dependencies only is insufficient. They introduced new inference rules based on analayzing the 

data stored in databases. The rules are constructed using the overlap between the results of 

queries, uniqueness of some tuples in databases, and the complement of the results of queries. 

For instance, as an example of unique tuples, if Bob is the only manager of an age between 30 

and 50, then the query that retrieves the salaries of all managers of any age between 30 and 50 

exposes Bob’s salary. The query itself could be allowed, but the results that it returns in this case 

should not be allowed. Using the new rules, the authors built an inference detection system that 

uses a rule based approach to detect inference channels. Morgenstern [Morgenstern87] defined 

the INFER function that computes the amount of knowledge a user can get about data objects in 

database systems using dependencies and constraints. The INFER function is used to define the 

set of all information that can be inferred using a core, which is a set of data objects, such as 

attributes, relationships and inference channels. Morgenstern employed classical information 

theory, which was developed by Shannon [Shanon48], to measure inference in multilevel 

databases. In information theory, entropy quantifies the uncertainty of information or the missing 

information content when the value of a random variable is unknown. The more uncertain or 

random an event the more entropy it has [Motahari09]. Conditional entropy is the uncertainty of 
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a random variable when some information is given. Morgenstern used this concept to compute 

the amount of inference in databases. The idea is based on computing the uncertainty (the range 

of values) of a data item when no other information is given, and computing the uncertainty of 

the data item when another data item (or a group of data items) is given. By using these values, 

the INFER function computes how much information a user can get about a data item by 

knowing other data items.    

 

2.2 Insider Threat at System Level 

Different researchers have introduced different definitions for insiders at system level. Brackney 

and Anderson [Brackney04] defined an insider as a person who has knowledge of or access 

privileges to the information or services of a system, whereas they defined a malicious insider as 

an insider who is motivated to breach a system’s security intentionally. Bishop and Gates 

[Bishop08] defined an insider according to two primitive actions. The first one is to breach a 

security policy using authorized access, and the second action is to break an access control policy 

by obtaining unauthorized access. Obviously, the authors defined insiders based on attributes or 

actions, instead of defining a person as either an insider or not. That is, an insider could be a 

person or a system that has access privileges to a domain or a system. We should mention here 

that in this dissertation we use the term “insider”  to indicate a malicious insider. 

 

Some researchers used existing methods of detecting external   threat to   detect   insider   threat, 

while others introduced new methods. Spitzner [Spitzner03] used honeypot technologies for 

insider threat detection. Althebyan and Panda [Althebyan08a][ Althebyan08b] introduced new 

methods to deal with this problem. The authors presented new graphs, which are knowledge 
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graphs and dependency graphs, that can be used in insider threat prediction and prevention. The 

knowledge graph of an insider shows the objects about which the insider has information, 

whereas, a dependency graph shows the dependencies among objects that can be used by insiders 

to get new knowledge. Bardford and Hu [Bradford05] used intrusion detection mechanisms with 

forensics tools to detect insider threat in a layered approach. 

 

Park and Giordano [Park06] developed a role-based profile analysis method for preventing 

insider misuse by focusing on the relationship between insiders and their systems to detect 

anomalies. Their approach works by analyzing the behaviors of insiders based on their roles. If 

an insider uses the associated methods in a task according to his/her role, the insider has no 

malicious intention. However, if the patterns of methods are not appropriate to the task, a 

malicious activity alert is raised. Hu et. al [Hu06] used the Role Based Access Control (RBAC) 

and genetic algorithms to generate rules that can detect the differences between users roles and 

the processes, where the existence of differences indicates insider threat. Chinchani et. al 

[Chinchani05] proposed a methodology for insider threat assessment, which uses a new threat 

model called Key Challenge Graph. The new graph relies on an insider’s knowledge, the location 

of the targeted information (key), and the capabilities of the insider to assess the threat. They 

addressed the conditions of successful attacks and stated formulas for computing the cost of 

attacks.  

Aleman-Meza et. al [Menza05] proposed an ontological approach using semantic associations to 

detemine the relevance of a document to a domain. Their approach starts by determining the 

context of investigation, which represents a set of entity classes, relationships, instances and 

keywords values. The goal of specifying a context of investigation is to capture the types of 
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entities and relationships that are considered important. Next, documents are processed to 

produce semantically annontated documents, which indicate documents with metadata that 

describes them. After that, the relevance of a document to the context of investigation is 

computed and classified according to a list of relevance levels. Based on the relevance level, the 

proposed methodology helps in addressing illegal documents access, which in turn detects 

insider threat.  

 

The research work in this section dealt with insider threat at the system level without considering 

relational databases. The next section introduces an overview of some research that has been 

performed on insider threat in relational databases.  

 

2.3 Insider Threat in Relational Database Systems 

Very little research has been performed on insider threat at the database level. Chagarlamudi et. 

al [Chagarlamudi09] used a Petri-Nets model to identify malicious insiders’ activities. They used 

the model to prevent unauthorized modifications in data items. In their work, Petri-Nets are used 

to model the normal tasks for each user in a system, where places in a Petri-Net represent the 

transactions of the modeled task. That is, the Petri-Net model of a task represents the partial 

order of executing the transactions of the task. Any execution of the transactions of a task that 

does not follow the order in the associated Petri-Net is considered a malicious activity.  

 

Jabbour and Menasce [Jabbour09a] showed a list of security breaches that insiders can launch in 

systems. In addition, they described a preliminary model that can be integrated into systems for 

self-protection from insider threat. In their other work [Jabbour09b], Jabbour and Menasce 
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proposed a self-protection mechanism that is fully integrated into the computing system, called 

the Insider Threat Security Architecture (ITSA). The new framework forces privileged users, 

even DBAs, to go through defense mechanisms before making changes to systems or security 

policies. The authors presented a security scenario which shows that privileged users can expose 

the system that the users protect, and showed how similar scenarios can be mitigated using the 

ITSA framework. Other researchers [Hu03][Chung99] developed insider threat detection models 

based on profiling data access patterns or profiling user access patterns using log files.  

 

Mathew et. al [Mathew10] relied on the results of queries rather than the syntax to detect 

malicious insiders’ activities using a data-centric approach. They claimed that queries with 

similar syntax can retrieve different results, which enable insiders to launch malicious queries 

similar (syntactically) to legitimate ones to pose a threat. In order to reduce the complexity of 

retrieving and checking the possibly huge results of queries, they suggested an approach that 

picks a small number of tuples that is representative and sufficient to detect insider threat. 

Garfinkel et al. [Garfinkel02] suggested retrieving a range of results in malicious queries instead 

of exact results. Using this idea, they provided algorithms for maintaining confidentiality in 

databases. Their approach adds concealment vectors to database queries which return interval 

results to protect the original database information from the disclosure of sensitive information. 

White and Panda [White10] proposed approaches to identify critical data items, which are the 

target of insiders in general. Addressing critical data items helps in focusing the monitoring 

process on specific elements of databases which makes fighting insider threat more effective.  
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Since this dissertation discusses insider threat in cloud Relational Databases, the next section 

introduces some related work in cloud computing, especially in cloud security. 

 

2.4 Cloud Computing 

Cloud computing is a promising technology that offers large-scale and on-demand computing 

infrastructure. According to Kaufman [Kaufman09], the spending of the US government on 

cloud computing projects will pass 15 billion dollars by 2015. Achieving low cost live migration 

is one of the goals of the research on cloud computing. Das et. al [Das11] introduced Albatross, 

an end-to-end technique for live migration in shared storage databases. Albatross maximizes the 

availability during a migration process by migrating the cache and the state of active transactions 

instead of stopping transactions at source nodes and restarting them at destination nodes. Zephyr 

[Elmore11] minimizes service interruption and increases availability during live migration by 

using a synchronized dual mode. The proposed dual mode enables both the source and 

destination nodes to execute transactions simultaneously while the migration process is being 

run. Zephyr transfers the tenant’s (migrated application) metadata to the destination to start 

executing new transactions; meanwhile, the source node continues executing the transactions that 

were active before starting the migration process.   

 

Cloud security is one of the major problems in cloud computing. Arshad et. al [Arshad09] 

presented models to quantify cloud security as a set of security metrics. Furthermore, they 

discussed the problem of random migration of virtual machines. Live migration of a virtual 

machine (VM) aims to balance the load among all VMs. However, a VM may be migrated to a 

node without taking into account security requirements. In this case, a VM could be migrated to 
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a less secure node than the one that is migrated from. The authors called this problem the 

“random migration problem”. They suggested using Service Level Agreements (SLA) by 

allowing the owner of a VM to determine the security requirements for his/her VM using SLAs; 

therefore, the resource manager can take into account these requirements before migrating the 

VM. Wang et. al [Wang09] investigated the problem of data security in cloud data storage. They 

utilized the homomorphic token with distributed verification of erasure coded data to achieve 

storage correctness insurance.  Hwang et. al [Hwang09] demonstrated a comparison between a 

number of cloud providers regarding architecture, reliability and security. Furthermore, they 

addressed outlines for an integrated architecture to guarantee security and privacy in cloud 

applications. Chow et. al [Chow09] suggested extending control measures in the cloud by using 

trusted computing and cryptography.  

 

The research in cloud databases is still in its early stages. Few papers have been published in this 

field. Hacigumus et. al [Hacigumus12] introduced CloudDB, a data management platform in the 

cloud. CloudDB has several features that satisfy the cloud environment. It maintains three types 

of data stores, which are row store, key-value store, and analytics store, to satisfy different 

workload types.  For instance, analytics store is a read-optimized and a throughput oriented to 

efficiently handle OLAP workloads, while key-store is used to achieve higher levels of 

scalability for read/write intensive workloads. Moreover, CloudDB uses both partitioning and 

replication techniques to achieve availability and scalability.  The cloud relational database 

service has been introduced by some providers such as Amazon [RDS12] (Amazon RDS) and 

Microsoft [Azure12] (Microsoft SQL Azure). Curino et. al [Curino11] introduced a new 

comprehensive framework for relational databases on the cloud, called Relational Cloud. It 
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supports new models for efficient multi-tenancy to minimize the resources needed for a 

workload, an elastic scale-out model to satisfy growing workloads, and models to preserve 

database privacy. Furthermore, Relational Cloud involves techniques for efficient partitioning, 

replication, and migration to achieve maximum availability and reliability.  Unlike other multi-

tenant databases, Relational Cloud does not mix the data of different tenants into a shared 

database or table. Instead, databases belonging to different tenants are run on the same database 

server.  We should mention here that, to the best of our knowledge, there is no concrete research 

that has been performed on the problem of insider threat in cloud relational databases.   
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3. DEPENDENCIES AND CONSTRAINTS 

 

 

 

3.1 Introduction 

Dependencies and constraints play a crucial role in insider threat in relational database systems 

(RDBMS). This chapter discusses the types of dependencies and constraints among data items in 

RDBMS. To demonstrate the problem, let us introduce the following example. Suppose that 

Figure 3.1 represents a part of the relational database developed by a university. Assume that the 

database has the following dependencies. 

 

- Rank Base_Salary. 

- {Base_Salary, Experience}  Total_Salary. 

- Number of Dependents  HI_Premium. 

- {HI_Premium, Total_Salary, Tax}  Net_Salary. 

- Score  Grade.  

 

Suppose that Net_Salary and Total_Salary are calculated using the following formulas: 

 

Total_Salary = Base_Salary + 500 * Experience.  

Net_salary = Total_Salary – (Total_Salary * Tax + HI_Premium). 

 

The next subsections define the types of dependencies and constraints using this example. 
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 Employee Table                                                                      Student Table 

EMP_ID FName LName Rank HI_Premium ..  STD_ID FName LName …  

 

Salary Table                                                                                    

 

           Course Table                                                                                    

EMP_ID Base_Salary Experience …  CRS_NO Name Description …  

 

Dependent Table 

 

           Grade Table 

EMP_ID Dependent_Name Relationship …  … Score Grade …  

 

Tax Table 

 

Salary Tax …  

<70K 6%   

70K - 90K 8%   

>=90K 10%   

                                                                           .    

                                                                           .    

                                                                           .                                        

 

 
Figure  3.1 A Part of a University Relational Database 

 

3.2 Types of Dependencies 

Two data items X and Y have a dependency relationship if at least one of them depends on the 

other. The dependency between X and Y that is represented by the notation XY means that Y 

depends on X. Dependencies are classified into three types: functional dependencies, 

multivalued dependencies [Heping05], and fuzzy dependencies [Zuo04]. In addition to these 

types, the dissertation classifies dependencies according to a number of categories, which are the 

strength, the direction, and the transitivity. We classify the strength of a dependency into two 

types: Strong and Weak, which are defined as follows.  

 

Definition 11 (A Strong Dependency). Given a dependency XY, where X and Y are two data 

items, the dependency is called a Strong Dependency if a change in X must make a change in Y. 

This type is represented by XY. 
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Definition 12 (A Weak Dependency). Given the two data items X and Y, if a change in X may or 

may not make a change in Y, then the two data items have a dependency called a Weak 

Dependency and is represented by  X  Y.  

 

For example, the dependency (Rank  Base_Salary), in Figure 3.1, is an example of a Strong 

Dependency, whereas the dependency (Score  Grade) is an example of a Weak Dependency.  

The direction indicates the source (left side) and the destination (right side) of a dependency. The 

direction of a dependency is classified into One_Way and Two_Way (Cyclic) dependencies. The 

following two definitions explain these types. 

 

Definition 13 (A One_Way Dependency). Given a dependency XY, where X and Y are two 

data items, if Y depends on X but X does not depend on Y, then this dependency is called a 

One_Way Dependency and is represented by X Y. 

 

Definition 14 (A Two_Way Dependency or A Cyclic Dependency). Given the two data items X 

and Y and the dependency XY, X and Y have a Two_Way Dependency if both data items 

depend on each other. This type of dependency is represented by X⇆ Y. 

 

The dependency (Rank  Base_Salary) is an example of a One_Way dependency. A Two_Way 

Dependency contains two relationships between the two data items, which may be both Strong, 

both are Weak, or one is Weak and the other is Strong. Two_Way Dependencies mostly exist 

between tables, which may have more than one dependency.    
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Finally, based on the transitivity property, dependencies are classified into Direct and Transitive 

dependencies as follows. 

 

Definition 15 (A Direct Dependency). Given a dependency XY, where X and Y are two data 

items, the dependency is called a Direct Dependency if a change in X directly affects (make a 

change in) Y. Such type of dependency is represented by X Y. 

 

Definition 16 ( A Transitive Dependency). Consider the three data items X, Y, and Z that have 

the dependencies {Y  Z, X Y}. If a change in X makes a change in Y, and this change in Y 

makes a change in Z, then Z depends transitively on X and the dependency is represented by X  

Z. 

 

For example, the Dependency (Rank  Base_Salary) is an example of a Direct Dependency, 

whereas the dependency (Rank    Net_Salary) is an example of a Transitive Dependency. 

Obviously, a change in the Rank changes the Base_Salary, which in turn changes the 

Net_Salary.  

 

Dependencies exist at different levels of granularities in relational database systems. These levels 

are the Low Level (Attribute Level), the Intermediate Level (Record level) and the High Level 

(Table Level).  All types of dependencies, except the Cyclic (Two_Way) Dependency, are 

usually found at the Low Level.  Actually, some relational database systems may have a Cyclic 

Dependency at the Low Level, but we have not found a good example of it. Likewise, all types 

of dependencies exist at the High Level since a table inherits the dependencies that are present at 
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its Attribute Level. That is, a dependency between two tables is basically a dependency between 

attributes that belong to the tables. However, two tables may have more than one type of 

dependency. Similarly, records inherit dependencies from their attributes. This means that 

various types of dependencies exist at Record Level.  

 

3.3 Constraints on Dependencies 

Dependencies may involve constraints. That is, a change on a dependent data item (the right side 

of a dependency) occurs only when a specified constraint is met on the left side of the 

dependency. Constraints are classified into two types: those that restrict change in an attribute’s 

value, and those that monitor insertion or deletion of records. Section 3.3.1 discusses how to 

represent the first type, whereas the second type is discussed section 3.3.2. 

 

3.3.1 Using Petri Nets for Representing Constraints and Dependencies 

Representing dependencies and constraints between data items facilitates understanding the 

relationships between them and the overall structure of relational database systems. For example, 

in order to change the Grade of a student to ‘A’, his/her Score should be changed to a value 

above 90. This is an example about the first type of constraints on the dependency Score  

Grade.  

 

The modeling tool that is needed for representation should show the flow of information between 

different data items at different granularities. Moreover, it should be able to represent various 

forms of dependencies and constraints. Some constraints could be complex.  In some cases, a 

dependency can be represented using a formula, whereas in other cases it is difficult to represent 
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dependencies that way. For instance, consider the dependency constraints between the two 

attributes t1 and t2 that says the value of t2 must equal c3 when t1 is in the range c1 and c2, and t2 

must equal c4 when the value of t1 is less than c1; otherwise, the value of t2 is c5, where c1, c2, c3, 

c4 and c5 are constants.  

 

To meet these goals, the dissertation uses Petri Nets [Murata89] to construct dependency graphs 

that represents dependencies as well as constraints. Petri Nets are a mathematical and graphical 

modeling tool. Basically, they are used to represent information processing flow in systems that 

are nondeterministic, parallel, distributed, asynchronous or concurrent. A Petri Net is a directed, 

weighted and bipartite graph. It consists of two types of nodes: places and transitions. Places are 

represented by circles, while transitions are represented by bars or boxes. Arcs are from input 

places to transitions or from transitions to output places. A weight on an arc represents tokens, 

which are represented by dots in the input place. A transition can fire if the number of tokens in 

its input place is greater than or equal to the weight of the corresponding arc. The properties of 

Petri Nets and other details are beyond the scope of this dissertation. Interested readers may refer 

to [Murata 89].  Figure 3.2 shows an example of a Petri-Net representing the formula 

X=2*a+3*b, where the tokens are represented by black spots. In the rest of this dissertation, the 

conditions for firing are assumed to be met always, thus, the tokens will not be shown. 

 

 

 

 

 

 
Figure 3.2.Using Petri Nets to Represent a Formula 

+ 2 

3 

X 

 

a 

b 
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To show more examples of how Petri-Nets can be used to represent dependencies and 

constraints, consider the two tables T1(t1,t2,t3) and T2(t4,t5,t6,t7) having the following 

dependencies and constraints: 

- c1 =< t1<= c2 t2 = c3 

- c1> t1 t2 = c4 

- t1> c2  t2 = c5 

- t4=3*t3+1 

- t6=2*t2+3*t5 

 

The dependency graph that is constructed by using Perti-Nets is called the Constraint and 

Dependency Graph (CDG). Figure 3.3 shows the CDG of the previous tables using Petri Nets. In 

the figure, one of the three transitions connected to the attribute t1 can be fired. Actually, the 

value of the attribute determines which transition is fired. Thus, the token transfers to one of the 

constants c3, c4 or c5, which in turn follows its way to the attribute t2. This makes the attribute t2 

equal the value of the constant from which the token comes. This mapping represents the 

dependency and constraints between t1 and t2. Notice that each attribute name is preceded by the 

name of the table to which it belongs. The dependency between the attributes {t2, t5}, on one 

side, and the attribute t6, on the other side, is represented using the same way of representing the 

formula in Figure 3.2.  Similarly, the dependency between t3 and t4 is represented in the same 

manner. The transition with no inputs is called a source transition. It is used in this graph to make 

three copies of the attribute t1. This aims to explain that firing t6 does not always depend on 

firing t1. That is, a change in t6 may be caused by a change in t1 or a change in t2. 
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Obviously, Figure 3.3 shows how Petri Nets can be used efficiently to construct CDGs. 

Moreover, since each attribute name is preceded by the corresponding table name, both attribute 

and table level dependencies and constraints can be represented. Dependencies and constraints 

between records are shown implicitly. Strictly speaking, a dependency between two records that 

belong to two different tables can be reduced to a dependency between attributes. For instance, if 

an attribute k in a table B depends on an attribute j in a table A, then every record in B depends 

on its related record in A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CDGs are used to build the knowledge graphs of insiders. Strictly speaking, CDGs are used to 

show how insiders can follow dependencies to infer knowledge about data items to which they 

do not have access privileges. Constraints in CDGs show what values of data items are stored in 

the knowledgebase of insiders exactly. The complete details are discussed later in chapter 4. 

+ 

Figure 3.3. A Constraint and Dependency Graph CDG 
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3.3.2 The Dependency Matrix 

Petri Nets can be used to represent constraints on dependencies between attributes. However, it 

cannot represent the second type of constraints, which is insertion or deletion of records. An 

insertion/deletion of a record to/from a table may make a change in the dependent table. For 

instance, consider the dependency between the Employee and the Dependents tables in Figure 

3.1. Suppose that the table Employee contains the attribute Health_Insurance_Premium, which 

depends on the number of dependents of the corresponding employee. In this case, a change in 

the number of dependents (insertion or deletion of a record into/from the Dependents table) of 

the employee changes the value of his/her health insurance. Strictly speaking, the insertion or 

deletion of records changes the related record of the corresponding employee. This type of 

constraint exists at both table and record levels.  

 

To represent both types of constraints at the table level (and implicitly at the record level), the 

Dependency Matrix is used. Figure 3.4 represents an example of a dependency matrix that shows 

dependencies between different tables as well as the constraints on such dependencies. The first 

column and the first row represent tables. Each cell contains a set of pairs (C, T), where C 

denotes a constraint and T denotes the type of the dependency. The value 2 means a Strong 

Dependency and 1 indicates a Weak Dependency. For instance, the cell (T1, T2) means that if the 

constraint C1 is satisfied on T1, a change on T2 must happen since the dependency is strong. As 

discussed earlier, two tables may have different dependencies, which are represented in the 

Dependency Matrix by multiple pairs in the given cell. Using the Dependency Matrix, Hot and 

Safe clusters are constructed. A Safe Cluster is defined as follows.  
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Definition 17 (Safe Cluster). Given the Dependency Matrix of a relational database, a Safe 

Cluster SC ={T1, … ,Tn} is a group of tables in which each table Ti is independent, directly and 

transitively, from all other tables that belong to the same cluster. 

 

Whereas, a Hot Cluster is defined as follows. 

 

Definition 18 (Hot Cluster). Given the dependency matrix of a relational database, a Hot 

Cluster HC = {T1,… ,Tn} is a set of tables in which each table Ti is directly dependent on all 

other tables that belong to the same cluster.   

 

Based on Figure 3.4, Figure 3.5 shows examples of Hot and Safe Clusters, where Hot Clusters 

are represented by dashed ovals and Safe Clusters are represented by solid ones. For instance, 

clusters C3 to C7 are Safe Clusters, whereas clusters C1 and C2 are Hot Clusters. As shown in 

Figure 3.5, Hot Clusters and/or Safe Clusters may overlap. Notice that tables that belong to 

different clusters may still have a dependency relationship, but not a Cyclic Dependency. For 

instance, tables T1 and T2 still have a One_Way dependency.   

 

 T1 T2 T3 T4 T5 T6 

T1 - {(C1,2), (C8,2)} {(C2,2)} 0 0 0 

T2 0 - 0 {(C3,2)} 0 0 

T3 0 0 - 0 {(C4,2) 0 

T4 0 {(C5,1)} 0 - 0 0 

T5 0 0 {(C6,2)} 0 - 0 

T6 0 0 0 0 0 - 

 

Figure 3.4.  A Dependency Matrix 
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Figure 3.5. Hot and safe clusters 
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4. INSIDER THREAT: UNAUTHORIZED KNOWLEDGE AQUISTION 

 

 

4.1 Introduction 

Insiders may be able to predict the values of data items, which they may not be authorized to 

access, by investigating dependencies and constraints. For instance, in Figure 3.3 in Chapter 3, 

assume that an insider has a read access to t1 and has no authorized access to t2.  In this case, s/he 

can infer the value of t2 using the associated dependencies and constraints. Similarly, assume that 

the insider has a read access to t2 and has no access to t1. Then, if the value of t2 is changed to c3, 

the insider would realize that the value of t1 has been changed to c1. The latter case is called 

Cyclic Inference. Likewise, the insider can deduce the correct value of t1 if the value of t2 is 

changed to either c4 or c5. Thus, insiders may use their knowledge about data dependencies and 

constraints to acquire knowledge about some data items to which s/he has no authorized read 

access. This chapter demonstrates how insiders can get unauthorized information and broaden 

their knowledgebases using dependencies and constraints.  

 

4.2 Insiders’ Knowledge 

Understanding the various types of dependencies and constraints in relational databases enables 

us to discover the knowledge that insiders can get. As discussed earlier, insiders may use 

dependencies and constraints to acquire unauthorized knowledge, which are classified into three 

types: inferred knowledge, computed knowledge, and aggregated knowledge. The next 

subsections address how insiders can acquire these different types of knowledge.  
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4.2.1 Inferred Knowledge 

The type of knowledge that insiders can get using inference is called inferred knowledge, which 

is defined formally as follows: 

 

Definition 19 (Inferred Knowledge).  Given a dependency A  B in a relational database, 

where A and B are data items, the knowledge that an insider deduces about B by accessing A is 

called inferred knowledge. 

 

The knowledge that an insider infers can be partial or exact. To measure the amount of 

knowledge an insider can get, the INFER function [Morgenstern87] is used, which is as follows: 

INFER (x  y) = (H(y) – Hx(y)) /H(y)                                                (1) 

INFER (xy) represents the amount of information about a data item y that can be inferred using 

a data item x. H(y) represents the uncertainty of y and Hx(y) represents the uncertainty of y given 

x. The amount of inferred knowledge ranges between 0 for no knowledge to 1 for exact 

knowledge.  

 

An insider may use functional dependencies to infer knowledge. For instance, let us consider the 

trivial example of the functional dependency between the attribute “Score” and the attribute 

“Grade” (Score  Grade). Figure 4.1 shows the dependency and constraints. Hence, the 

dependency is a Weak and a Direct dependency. 
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An insider can infer information if he/she has access to any side of the dependency, but the 

amount of information s/he can get differs. For instance, the uncertainty of the Grade is 5 since 

we assume that grades range from A to F. However, the uncertainty of the Grade given the Score 

is 0 since if the insider is given a Score, he/she can directly and exactly infer the Grade value. 

The amount of information the insider can get about the Grade is calculated as follows: 

 

INFER( Score  Grade) = (H(Grade)-HScore(Grade)) / H(Grade)  = (5-0)/5 = 100%. 

 

This means that the insider can get exact knowledge about the Grade if he/she has an access to 

the Score. On the other hand, if the insider has an access to the Grade attribute only, the 

knowledge that s/he can get is partial since the dependency is Weak. Moreover, the amount of 

information s/he can get using this dependency is either 90% or 40% since the Score intervals are 

not equally likely. Notice that the insider can infer information using Cyclic Inference. Hence, if 

the dependency is a Strong, the insider can get exact knowledge.  

The amount of information that can be inferred when the Score interval is 10 is computed as 

follows: 

 

INFER(Grade  Score) = (Score-HGrade(Score)) / H(Score)  = (101-10)/101 = 90%. 

 

Score Grade 

>=90 and <=100 A 

>=80 and <90 B 

>=70 and <80 C 

>=60 and <70 D 

<60 F 

Figure 4.1  A  Functional Dependency 
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While the amount of information that can be inferred when the Score interval is less than 60 is 

computed as follows: 

 

INFER(Grade  Score) = H(Score)-HGrade(Score)) / H(Score)  = (101 – 60)/101 = 40%. 

 

An insider can also gain knowledge using fuzzy dependencies. For example, consider the fuzzy 

dependency between the “Project type” attribute and the “Project name” attribute as shown in 

Figure 2. Suppose that James is working at the company F as a programmer, then the uncertainty 

about which projects he/she is working on is 4 since there are 4 projects at the company. 

However, if the insider is given that James is working on an accounting project (given access to 

project type), then the amount of knowledge the insider can get about the projects on which 

James is working is computed as follows: 

 

INFER(project type  project name) = (project name) - Hproject type(project name))/H(project 

name)= (4-2)/4 = 50%. 

 

 

 

 

 

Multivalued dependencies [Su87] do not enable insiders to infer information. To clarify this 

point, consider Figure 4.3 that shows an example of a trivial multivalued dependency between 

the attribute Emp and the attribute Project. Suppose that an insider has an access to the records of 

employee B, and the insider has no access to the records of employee A. Using the records of B, 

Project type Project name Due date 

Accounting A Jan,1 

Accounting B Feb,1 

Marketing C Jan,1 

Marketing D Feb,1 

Figure 4.2 Projects in a Company F 
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the insider can get the values of the “Project” attribute of employee A, which are M and N in the 

example. 

 

 

 

 

 

 

 

 

However, the following observations need to be taken into consideration in the case of 

multivalued dependencies. If the insider is familiar with the multivalued dependencies as well as 

the constraints, accessing some records in a table that has a multivalued dependency does not 

provide any new information to the insider. Meanwhile, if the insider is not familiar with the 

constraints of the multivalued dependency, the access of the insider to some records gives 

him/her exact knowledge about other records in that table. For instance, if an insider knows that 

every employee is working on the projects M and N, as shown in Figure 4.3, accessing the 

records of an employee does not reveal any new information about other employees. Since we 

assume that insiders are familiar with the dependencies as well as the related constraints, we will 

not consider this case as an inference problem. 

 

An insider can also use a combination of accessed attributes to infer information. That is, the 

variable X in the INFER function could be a set of attributes. In this case, the insider can use all 

attributes in X together to infer information about Y. The modified version of the INFER function 

[Morgenstern87] is:  

INFER ({x1,..,xn}y)=(H(y)-Hx1,..,xn(y))/H(y)              (2) 

 Emp Project 

t1 A M 

t2 A N 

t3 B M 

t4 B N 

 Figure 4.3 Multivalued Dependency 
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For instance, in the example of Figure 4.3, suppose that an insider has access to the “Due date” 

attribute in addition to the “Project type” attribute. Then the amount of information that can be 

inferred is computed as following: 

INFER ({project type, due date}  project name) =     (H(project_name)-Hproject-type,due-

date(project_name) /H(project_ name) =100%. 

 

The inference that has been discussed so far is direct inference. However, insiders can infer 

knowledge transitively using transitive dependencies (Definition 7), which is called transitive 

inference and is defined as follows:  

 

Definition 20 (Transitive Inference).  Given a transitive dependency A  B  C in a relational 

database D, where A, B, and C are data items in D, the knowledge an insider infers about C by 

accessing A is called transitive inference. 

 

4.2.2 Computed Knowledge  

Computed knowledge is similar to inferred knowledge except that it is acquired through 

computation. Formally, the computed knowledge is defined as follows: 

 

Definition 21 (Computed Knowledge).  Given a dependency A  B in a relational database, 

where  A and B are data items, the knowledge an insider gets about B through computation by 

using A is called computed knowledge. 

For example, consider the dependency between the Rank attribute and the Total_Salary attribute 

in Figure 4.4. Suppose that the range of total salaries of academic staff is between 65k and 130k, 
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and there are three ranks for academic staff, which are known to insiders. In addition, suppose 

that the Total_Salary of an academic staff is computed as follows: Total_Salary = Base_Salary + 

500 * experience, where Base_Salary is the left side of the ranges of Total_Salary. If an insider 

has an access to the Rank attribute, the amount of information he/she can infer about the 

Total_Salary of any academic staff is either 80 % or 61.5% because Total_Salary intervals are 

not equally likely. If the insider has an access to the Rank attribute and the Experience of an 

academic staff, the information he/she  can  acquire about the Total_Salary attribute is 100% 

(exact knowledge), which is computed as shown.  

 

INFER({Rank, Experience}Total_Salary) = (H (Total_Salary)- Hrank,experience(Total_ Salary)) / 

H(Total_Salary) =100%. 

 

 

 

 

 

 
 

 

 

The above computation is based on the assumption that the left side of a Total_Salary interval is 

the Base_Salary of an academic staff without any experience, and the right side is the maximum 

total salary an academic staff (with respect to the corresponding Rank) can get.             

Rank Total_Salary 

Assistant Prof 65k-90k 

Associate Prof 91k-116k 

Full Prof 117k-130k 

Figure 4.4. Rank  Total_Salary Dependency 
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4.2.3 Aggregated knowledge 

Aggregated knowledge is the knowledge that results from combining two or more data items. It 

may be called composite knowledge or combined knowledge as well. Formally, the aggregated 

knowledge is defined as follows: 

 

Definition 22 (Aggregated Knowledge).  Given two related data items A and B in a relational 

database, the knowledge achieved by combing A and B together is called aggregated knowledge. 

 

An insider may have direct access to basic knowledge units (attributes or virtual knowledge 

units) or aggregated knowledge units. To show how aggregated knowledge could be a threat, 

consider the following example. Suppose that the relation R(Name, Rank, Salary) is a relational 

schema and the knowledge units Name, Rank and Salary can be accessed separately by an 

insider. Similarly, the aggregated knowledge [Name, Rank] or [Rank, Salary] can be accessed 

separately by the insider, but the insider should not get access to the aggregated knowledge 

[Name, Salary], which is unauthorized information to the insider. Obviously, using the two 

aggregated knowledge [Name, Rank] and [Rank, Salary] and the dependency between the two 

attributes Rank and Salary, the insider obtains the aggregated knowledge [Name, Salary], which 

is considered a threat [Brodsky00].  

 

Figure 4.5 shows an example of how aggregated knowledge is constructed, where KU indicates a 

knowledge unit and AK indicates an aggregated knowledge unit. Aggregated knowledge can be 

gained using dependencies and the transitivity property. Therefore, in case of the  dependency  
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ABC, if an insider has access to data item A, he/she can get the aggregated  knowledge  

[A,B],  [B,C] and  [A,C]. Formally, an insider R can aggregate knowledge as follows. 

(ABC) ∧ Access(R,A)  Access(R,[A,B]) ∧ Access(R,[B,C]) ∧ Access(R,[A,C]) 

 

Where Access (R, [A,B]) means that an insider R has access to the aggregated knowledge [A,B].  

 

The knowledge that can be acquired by an insider, but not stored in the database, is called virtual 

knowledge [Morgenstern87]. Thus, an insider can have two types of knowledge: stored 

knowledge, which is stored in the database, and virtual knowledge. 

 

The term “data item” may represent an attribute, a record, or a table. Dependencies between 

tables or records occur due to dependencies between attributes in those tables or records.  Thus, 

in this work, the discussion about knowledge or a dependency relationship at a lower level of 

granularity (attribute level) is applicable for other levels to granularity. However, in the next 

sections, we use the term “data item” to indicate a basic knowledge unit (a stored basic 

knowledge unit, which is an attribute, or a virtual basic knowledge unit).  

 

 

 

 

 

 

 

 

 

 

 

KU11 

AK3 

KU12 KU21 

Data Item 1 Data Item 2 

AK1 

AK2 

            Figure 4.5 Aggregated Knowledge 
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Based on the concepts of knowledge acquisition and Figure 3.1, Figure 4.6 demonstrates how an 

insider broadens his/her knowledge using his/her access privileges, and dependencies and 

constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Neural Dependency and Inference Graph 

A dependency graph can be used to show dependencies among different data items in a relational 

database system [Althebyan07]. In addition to CDG, this dissertation introduces another type of 

dependency graphs called the Neural Dependency and Inference Graph (NDIG). An NDIG 

represents dependencies among data items in relational databases, the amount of knowledge that 

can be acquired from/by accessing a single data item about other data items, and the amount of 

Insider 

Rank Experience # of dependents 

HI_Premium 

Direct Access 
Direct Access 

Infer 

Compute 

Infer 

Direct Access 

[Name, 

Dependents, 

Rank, 

Experience] 

Direct Access 

Name 

Direct Access 

Base_Salary 

Total_Salary 

Compute 

Tax 

Direct Access 

Net_Salary 
Compute 

Compute 
Compute 

[Name, Rank, Dependents, Experience, Base_Salary, Net_Salary,Total_Salary, 

Health_ Insurance] 

 

Aggregate 

Aggregate 
Aggregate 

Aggregate 

Aggregate 

Figure 4.6 Acquiring knowledge 
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knowledge that can be deduced from/by accessing a group of data items about other data items. 

The NDIG is defined formally as follows: 

 

Definition 23 (NDIG). The Neural Dependency and Inference Graph NDIG (O,N,W,E) is a 

graph that shows dependencies among data items and the amount of information that can be 

acquired about  data items using dependencies, where: 

1. O represents data items, which are demonstrated by rectangles. 

2. N indicates neurons, which are represented by ellipses. 

3. W indicates weights on edges. 

4. E indicates edges, which represent dependencies among data items such that: 

a. The edges E(Oi, Nk) and E(Nk, Oj) indicate that the data item Oj depends on the data item 

Oi. 

b. The weight on the edge E(Oi, Nk) represents the amount of information that can be 

acquired about the data item Oj using the data item Oi. 

c. The weight on the edge E(Nk, Oj) represents the amount of information that can be 

acquired about the data item Oj using all data items {O1…Ox} together, such that      
  

E(Os, Nk) ∈ E. 

 

 An example of NDIG is shown in Figure 4.7. NDIG uses some ideas from artificial neural 

networks, where rectangles represent data items (input or output data items), elliptical nodes 

represent neurons, and weights on edges represent inputs to neurons or output from neurons. 

Each neuron consists of the function INFER and a weight. The weight, which is the output, 

represents the amount of information that can be inferred about the output data items using the 

input data items. Obviously, the INFER function is used to compute weights in  neurons.  Solid 
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lines show that there is a dependency between input and output data items, which indicates that 

output data items depend on input data items. Dashed lines represent cyclic inference, which was 

discussed earlier. For instance, as shown in Figure 4.7, O5 depends on O1 and O2. The weight 

11% on the edge e(O1, n3) means that an insider who accesses O1 can acquire about 11% of 

knowledge about O5. Furthermore, the weight 78% on the edge e(n3 ,O5)  means that an insider 

who accesses both O1 and O2 can infer about 78% of knowledge about O5.   

 

Figure 4.8 demonstrates the NDIG of the academic staff database that is shown in Figure 3.1. As 

shown, the amount of knowledge that can be acquired about the Net_Salary using the Tax table 

only is 0%. As assumed, some insiders may already know dependencies and constraints. Thus, 

accessing the Tax table does not reduce the uncertainty of the Net_ Salary for them. Similarly, 

using the HI_Premium (Health_Insurance_Premium) value only provides negligible information  

 

 

Figure 4.7 Neural Dependency and Inference Graph (NDIG) 
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 O2 

 O3 

n3  O5 
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since it does not reduce the uncertainty of the Net_Salary. To clarify this point, suppose that 

possible minimum and maximum values of Total_Salary based on Figure 4.4 are $65000 and 

$130000 respectively. The range of Net_Salary without knowing HI_Premium is [65000 - Tax, 

130000 - Tax]. The range of values of Net_Salary given HI_Premium is [65000 - HI_Premium - 

Tax, 13000 – HI_Premium - Tax], which does not reduce the uncertainty of Net_Salary. Thus, 

the edge that connects both knowledge units is labeled with 0% as shown in Figure 4.8.    

 

However, the insider who accesses the Total_Salary of an employee gets a huge amount of 

information about the Net_Salary of the employee. Obviously, the insider can use Total_Salary 

in conjunction with his/her knowledge about Tax table to get information about the Net_Salary 

of the employee. Strictly speaking, he/she can get a reduced range of the Net_Salary of the 

employee. Using these criteria, the amount of information the insider can acquire about the 

Net_Salary ranges between 98% and 99%, which is based on the assumption that the maximum 

Figure 4.8 NDIG for the Academic Staff Database 

 

n1 

 

100% 100% 

100% 0%  
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100% 100% 
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HI_Premium is 1000. However, the insider can acquire the exact knowledge about the 

Net_Salary of an employee if he/she knows exactly the HI_Premium and the Total_Salary 

values. To make the NDIG in Figure 4.7 simpler, we have omitted most cyclic inference lines.  

 

4.4 Insiders' Knowledgebases  

 

A knowledgebase determines which data items the corresponding insider has read. That is, it is a 

profile of insider accesses to data items. This section demonstrates how to build up the 

knowledgebases of insiders at different levels of granularities. The dissertation defines 

knowledgebase as follows. 

 

Definition 24 (Knowledgebase). Given an insider R and a relational database RDB, the 

knowledgebase of R, written as KB(R),  is the set of data items in RDB that R has accessed using 

his/her privileges, and the data items about which R can acquire information using dependencies 

and constraints. 

 

Based on the concepts of Hot and Safe Clusters in section 3.2, the following observations are 

made. First, if an insider gets read access to a table that belongs to a Hot Cluster, s/he can acquire 

information about all other tables in that cluster. Secondly, if an insider gets read access to a 

table in a Safe Cluster, s/he cannot infer any information about any other table that belongs to the 

same cluster (without accessing them directly). Finally, if an insider gets read access to a table in 

some cluster, s/he still may infer information about other dependent tables that belong to 

different clusters. The latter case would occur when the dependency between them is One-Way 

dependency.  

In addition to the above conclusions, an insider can acquire information transitively about other 
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tables using the transitive dependencies among attributes as follows. Suppose that a relational 

database has the following dependency:  T1  T2 … Tn-1  Tn, where T1 to Tn are tables in the 

database. The insider who has a read access to Tk (1 ≤ k ≤ n-2) can infer information about Tj 

transitively (transitive inference), where j ranges from k+2 to n, if the dependencies between the 

tables Tk to Tj are between attributes in the form Ck  Ck+1  Ck+2 … Cn-2  Cn-1  Cn  such 

that     
 Cx ∈ Tx. Obviously, a transitive dependency is formed by a sequence of connected 

direct dependencies. Notice that the condition imposes the continuity of the dependencies 

between tables. Strictly speaking, the destination attribute (right side) in a direct dependency is 

the source attribute (left side) for the next direct dependency. Hence, the insider who has access 

to Tn can infer information about predecessors in the chain in the same way (cyclic inference). 

 

The existence of inferable tables in the knowledgebase of an insider does not necessarily mean 

that the insider can infer all information about those tables. To reveal more details, dependencies 

and constraints between attributes in those tables should be investigated. To perform this, the 

dependency graph CDG is used. For instance, in Figure 3.3, suppose that an insider has full read 

and write access on table T1. Then, both tables T1 and T2 are added to the knowledgebase of the 

insider since they have a dependency relationship. The insider knows all information about T1, 

whereas his/her information about T2 is limited by the dependency between the two tables. To 

clarify what information the insider can infer about T2, dependencies between attributes in both 

tables should be investigated. Clearly, s/he infers information about a4 and a6, and acquires 

information about a5 by cyclic inference. However, s/he does not have information about other 

attributes in T2. To compute how much information the insider has about specific attributes, the 

corresponding NDIG is used. 
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A similar scenario is used at the records level. If the insider has read a record, then the record is 

added to his/her knowledgebase. In addition, other records that depend on this record are added 

to. But this does not mean that s/he has full information about the latter records. To determine 

what information the insider has about those records, the dependencies among attributes should 

be investigated. 

 

4.4.1 Knowledgebase Algorithm 

Algorithm 4.1 shows how to build a knowledge graph, which represents knowledgebases at 

different levels of granularity. It uses the NDIG and the CDG of the corresponding relational 

database as well as the Dependency Matrix. In addition, it uses Hot and Safe clusters to facilitate 

construction of the knowledge graph. 

 

The algorithm starts by adding the insider as the root of a knowledge graph. The second level of 

the graph contains the tables about which the insider has information (by direct access or by 

inference). For each table at the second level, the algorithm determines which attributes the 

insider has information of (by direct access or by inference). The NDIG is used to label edges by 

the amount of information the insider can have about each data item (attribute or table). Either 

the NDIG or the CDG is used to show dependencies between knowledge units (attributes), where 

dependencies are represented by an edge (arrow) from the source attribute (left side of a 

dependency) to the destination (dependent) attribute. Moreover, the CDG is used to show what 

values of attributes are stored in the insider’s knowledgebase, which is used in insider threat 

prediction and prevention later in section 4.5. Notice that the amount of information the insider 
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has about a table is the average of all information s/he has about all attributes that belong to the 

table.  

 

 

Algorithm 4.1. Knowledgebase Algorithm 
 
Input: An insider I, Dependency Matrix, CDG, NDIG, Hot and Safe clusters, S: Set of tables to which   

             the insider has direct read access. 

Output: The knowledge graph of the insider I. 

 

1. Initialize the KG = (V,E), where V = {I}, E={}. 

2. For each table Tk in S //add directly accessed tables 

3.    V=V ∪ Tk // add the node Tk to KG  

4.    E=E ∪ {e(I, Tk)} // add the edge e(I, Tk) to the KG 

5.    For each t ∈ attributes(Tk) and the insider has a read access to it // add directly accessed attributes 

6.       V=V ∪ {t} // add the attribute t to KG  

7.       E=E ∪ {e(Tk, t)} // add edge e(Tk, t) to the KG 

8.    Endfor 

9. Endfor 

10. For each Tk in S do // consider dependencies 

11.    For each Safe Cluster R to which Tk belongs 

12.        X ∈ R ∧ X ∉ D  X ∉ KB(I) //exclude X from KG   

13.  Endfor 

14.    For each Hot Cluster H to which Tk belongs 

15.       For  Tm ∈ H ∧ Tm ≠ Tk 

16.          V = V ∪ {Tm}// add the node Tm to KG  

17.          E = E ∪ {e(I, Tm)} // add edge e(I, Tm) to the KG 

18.          For each tm ∈ attributes(Tm)  ∧ tk  tm, where tk ∈ attributes(Tk) // add directly inferred attribute(s)                                                                                                                                        

         to the  KG      
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19.              V = V ∪ { tm } // add the attribute tm to KG 

20.              E = E ∪ { e(Tm, tm)} // add e(Tm, tm) to KG 

21.              E = E ∪ { e(tk, tm) } //   add e(tk, tm) to KG                                                                                                                               

22.          Endfor 

23.       Endfor 

24.    Endfor 

25.    For each other table Ts that has dependency (one_way) with Tk // add tables from other clusters 

26.        Repeat steps 16 to 22 for the table Ts 

27.    Endfor 

28.    For each table Tj that depends transitively on Tk (Definition 20) // transitive inference 

29.        V=V ∪ { Tj } //add the node Ts to KG 

30.        E=E ∪ {e(I, Tj)} // add edge e(I, Tj) to the KG  

31.        For each tj ∈ attributes(Tj) ∧ tk    tj (transitive inference), where tk ∈ attributes(Tk) //add the transitively  

inferred attribute(s) to the KG 

 

32.          V=V ∪ { tj } // add the attribute t j to KG 

33.          E=E ∪ {e(Tj, t j)} // add edge e(Tj, t j) to the KG 

34.          E= E ∪ {e(tk, t j)} // add edge e(tk, t j) to the KG 

35.        Endfor 

36.    Endfor 

37. Endfor 

38. For each edge e(T,t) // T is a table and t is an Attribute 

39.    Weight (e(T,t)) =  the amount of information the insider has about t // using NDIG 

40. Endfor 

41. For each edge e(I,T) // weight of tables 

42.    Weight(e(I,T) ) = ∑                
 
      , where n is the number of attributes in Tz. 

43. Endfor 
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To clarify how this algorithm works, suppose that the corresponding NDIG for the CDG in 

Figure 3.3 is as shown in Figure 4.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let the insider have read T1. In this case, Figure 4.10 shows the KG of the insider based on the 

algorithm. Solid arrows point to data items to which the insider has direct access, whereas dotted 

arrows point to data items about which the insider can infer information. Dashed arrows 

represent the paths the insider follows to infer information. For instance, the insider acquires 

information about the attribute a2 using direct access, whereas s/he gets information about a6 by 

inference using the attribute a2. Weights on edges show the amount of information the insider 

can have about the destination data items. The weight on edges between the root and a table is 

the average value of weights on the edges between the table and its corresponding attributes. 

Notice that these values are based on the assumption that the tables do not have any other 

attributes other than what are shown. 

Figure 4.9. The NDIG of the Database in Figure 3.3 
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4.4.2 Proof of Correctness of Algorithm 4.1 

 

Insiders can get knowledge in different ways. First, they can get knowledge directly using their 

privileges. Second, they can infer knowledge directly (using direct dependencies). Finally, they 

can acquire knowledge transitively (using transitive dependencies). The following theorems 

prove that the algorithm considers all these ways when building knowledge graphs. 

 

Theorem 1. Given a table B in a relational database DB, and the knowledge graph KG of an 

insider I, 

B ∈ KG ⇔ B ∈ D (I) ∨ B ∈ DD(A) ∨ B ∈ TD(A)  

where D(I) is the set of tables to which the insider has direct access, DD(A) and TD(A) are the 

set of tables that depend directly or transitively on a table A respectively, and A ∈ D(I).  

 

The theorem lists the three ways which insiders follow to get knowledge. The following proof 

proves that the algorithm adds every table about which the insider may get knowledge using 

those ways. 

 

100% 

Figure 4.10. The Knowledge Graph KG of an Insider 
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Proof: 

() Suppose that A ∈ D (I), and DB has the following dependencies: 

- AB (direct dependency). 

- A    C (transitive dependency).  

It is obvious that A ∈ KG by steps 2 to 4, which add every directly accessed table to the 

knowledge graph. This proves the part of directly accessed tables. In the case of table B, let H(A) 

be a Hot Cluster that  contains A. Now, since A  B, then either B ∈ H(A) (A and B have a 

cyclic dependency), or B ∉ H(A). In the first case, B ∈ KG by steps 14 to 17. In the second case, 

B ∈ KG by steps 25 to 27, which proves the  part of directly dependent tables. In the case of C, 

where C depends transitively on A, C ∈ KG by steps 28 to 30, which proves the part of 

transitively dependent tables. In summary, all tables about which the insider can get knowledge 

are added to the knowledge graph.  

 

() (Proof by Contradiction) This part proves that no other table is added to the knowledge 

graph of the insider. Suppose that ∃B ∈ KG: (B ∉  D(I)  ∧  B ∉  DD(A) ∧  B ∉  TD(A)), where A 

∈ D(I). In this case, B should exist in a Safe Cluster. Thus, B ∉ KG by steps 11 to 13, which is a 

contradiction.   

 

As discussed earlier, the existence of a table in the knowledge graph of an insider does not mean 

that the insider has knowledge about every attribute in that table. The following theorem clarifies 

this point.  
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Theorem 2. Given an attribute k, where k ∈ B for some table B in a relational database DB, and 

the knowledge graph KG of an insider I:  

k ∈ KG ⇔ (k ∈ DA(I) ∨  k ∈ DDA(s) ∨  k ∈ TDA(s)) 

where DA(I) is the set of attributes to which the insider has direct access, DDA(s) and TDA(s) 

are the set of attributes that depends directly or transitively on an attribute s respectively, and s 

∈ DA(I). 

 

The theorem states that an attribute belongs to the KG of an insider if and only if it is accessed 

directly, inferred directly or inferred transitively by the insider. The following proof proves the 

correctness of Theorem 2. 

 

Proof: 

() Suppose that the DB has the following dependencies: 

- A  B ... T, where A, B and T, etc. are tables in DB. 

- k  r ...  z, where k, r and z etc. are attributes such that k ∈ A, r ∈ B and z ∈ T , and k ∈ 

DA(I) and  A ∈ D(I). 

 

First, steps 5 to 8 state that   k: ( k ∈ DA(I) : ( k ∈ A  ∧  A ∈ D(I) ) )  k ∈ KG. This proves the 

part of directly accessed attributes. Second, steps 18 to 22 state that   r: ( r ∈ DDA(k) : ( k ∈ A ∧  

A ∈ D(I) ∧  r ∈ B ∧  B ∈  DD(A) ) )  r ∈ KG. This proves the part of directly dependent 

attributes. Finally, steps 31 to 35 state that   z: ( z ∈ TDA(k) : ( k ∈ A ∧  A ∈ D(I) ∧  z ∈ T ∧  T 

∈ TD(A) ) )  z ∈ KG. This proves the third case.     
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( ) (Proof by Contradiction) Suppose that ∃k ∈ KG: (k ∉  DA(I) ∧  k ∉  DDA(s) ∧  k ∉ 

TDA(s)), where s ∈ DA (I). In this case, there are four cases:  

 

1. k ∈ A , where A ∈ D(I) but k ∉   DA(I). In this case, k is excluded (not added) using steps 5 

to 8. 

2. k ∈ B , where B ∈ DD(A) but k ∉  DDA(s) for some A ∈ D(I) and s ∈ DA (I). In this case, k 

is excluded using steps 18 to 22.  

3. k ∈ T , where T ∈ TD(A) but k ∉ TDA(s) for some A ∈ D(I) and s ∈ DA(I). In this case, k is 

excluded using steps 31 to 35.   

4. k ∈ A and A ∈ S(P), where S(P) is a Safe Cluster of a table P about which the insider has 

knowledge. In this case, k is excluded using steps 11 to 13. 

 

Obviously, all mentioned cases contradict the assumption.   

 

4.5 Insider Threat Prediction and Prevention 

As discussed earlier in previous sections, insiders can use their read access privileges, 

dependencies and constraints to acquire information about unauthorized data items. In addition, 

data items in a knowledgebase could be risky. This section introduces the role of a 

knowledgebase and the life times of data items in insider threat situation. Moreover, it introduces 

the proposed models for insider threat prediction and prevention. 

   

4.5.1 The Role of Knowledgebase and Lifetimes of Data items in Insider Threat 

The values of data items in the knowledgebase of an insider may be combined with some 
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insensitive data items that the insider may request to infer sensitive information, which poses a 

threat [Yaseen09][Yaseen10b]. Revoking read accesses from previously accessed data items 

does not eliminate the threat since the values still exist in the insider’s knowledgebase. For 

instance, consider the dependency ( {Rank, Experience}  Total_Salary ). If the insider has 

accessed the Rank attribute (which is added to his/her knowledgebase) and then he/she is given a 

read access to the Experience attribute, he/she can combine both data items to infer the value of 

the Total_Salary attribute, which could be sensitive information. 

 

Clearly, an insider’s knowledgebase could pose a serious threat, but not if the data items in the 

knowledgebase are expired. That is, if other insiders modify the data items, the lifetimes of those 

data items (old values) may expire. Thus, using them to infer sensitive information would not 

pose a threat. In light of this, considering the lifetime of data items in an insider’s knowledgebase 

is important. However, merely updating values of data items does not always make their 

lifetimes expire. Changing the value of an attribute that belongs to a Strong Dependency makes it 

expire. However, it may or may not expire if the attribute belongs to a Weak Dependency. To 

clarify this point, consider the Strong Dependency (Rank  Base_Salary). In addition, assume 

that an insider, say K, has the information (Jiff, Assistant Professor) in his/her knowledgebase 

about the professor Jiff. In this case, K can infer exact information about the Base_Salary of Jiff. 

However, changing the Rank attribute of Jiff by other insiders must change the Base_Salary of 

Jiff. In this case, the Rank value in K’s knowledgebase is expired. That is, if K uses it to infer the 

Base_Salary of Jiff, K’s inference will be incorrect.  

 

On the other hand, consider the Weak Dependency (Score  Grade) in a student table. A change 
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in the Score attribute does not always make a change in the Grade attribute. That is, changing 

Score does not always make the old value of Score expire. To clarify this point, suppose that the 

insider has read a student’s score, say 85, which enables him/her to infer the student’s grade ( B 

in this case) . However, suppose that the student’s score has been updated to 88 and the insider is 

prevented from accessing the student’s score again. In this case, the insider still infers the correct 

value of the student’s grade based on the old value of the student’s score. We say in this case that 

the old value of the student’s score in the insider’s knowledgebase has not expired although it 

has been updated. However, if the Score value is changed to 91, which will change the Grade to 

A, the old value of Score will expire since the inference based on it is incorrect. The concept 

“Expired data item” is defined as follows.  

 

Definition 25 (Expired Data Items). Given the data items A and B in a relational database DB 

and the dependency A  B, A is called an expired data item if its value is updated to a new value 

such that the inferred information about B based on A’s old value is incorrect.  

 

Checking the lifetimes of data items has a great impact on insider threat prevention and on the 

performance of systems. For example, suppose that a security protocol denied the request of an 

insider to access a data item (X) because s/he may combine it with a data item R in his/her 

knowledgebase to infer some unauthorized information. However, if the value of data item R has 

expired, the system unnecessarily denied the access to X since providing the value of X would 

not create a problem; rather by denying access to X, stops the user from performing his/her job 

on a timely basis. Similarly, ignoring the knowledgebase and granting access irrespective of the 

history of previous accesses and data item’s lifetime may pose a threat. Thus, both these issues 
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should be considered when an insider requests accesses to data items. 

 

The work by Farkas et. al [Farkas01] attempted to increase the availability of data items by 

checking the updates history. In their work, each insider has a history file that stores all data 

items, which the insider either has previously received or can disclose from the received data 

items. When an insider launches a query, all data items that can be received from this query are 

stored in the file. The data items that a user can infer are discovered by considering the current 

request, the history file, and the dependencies among data items. Based on the inferred data 

items, the system decides whether to grant or deny the requested data items. However, some data 

items that were accessed in the past may have been updated by others as explained before. 

Therefore, the inferred data items based on those expired data items would be incorrect. We 

should mention here that the researchers in [Farkas01] consider that a knowledge unit is expired 

if it is updated after the last access to it by the user. However, this dissertation states that 

updating the value of a knowledge unit does not always mean that its lifetime is expired. 

Actually, its lifetime is not expired as long as its old value can still make correct inference.  

Hence, their assumption may lead to the disclosure of sensitive data and failure to detect and 

prevent insider threat.  

 

4.5.2 The Proposed Approach  

Constructing the knowledge graph of an insider, which shows his/her knowledgebase, helps in 

predicting and preventing insider threat (disclosure of unauthorized information). This 

dissertation introduces the Threat Prediction Graph (TPG), which is built based on the 

knowledge graph, to predict and prevent this type of insider threat. Before defining the TPG 
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formally, let us introduce the Threat Prediction Value (TPV). A TPV is a value stored in each 

attribute that belongs to the TPG of the insider, and it is used to predict insider threat. A TPG is 

computed as follows.  

TPV(k) = F(k) / T(k)                       (3) 

 

where k is an attribute, F(k) is the amount of information the insider has about k, and T(k) is the 

threshold value of k according to the insider. T(k) represents the amount of information that the 

insider is allowed to get about k. TPG uses TPV to detect and prevent insider threat. An attribute 

is considered a threat if its TPV is greater than 1, which means that the insider can get more 

information than allowed about the attribute. TPG is defined as follows. 

 

Definition 26 (TPG). The Threat Prediction Graph  (V, E, L) is a graph that is used to predict 

and prevent insider threat, where: 

1. V indicates nodes such that: 

- The insider node represents the corresponding insider. 

- The second level of nodes (with labels Ti inside) represents the tables about which the 

insider has knowledge (tables' nodes). 

- The third level of nodes (with labels ai inside) is the attributes about which the insider 

has knowledge (attributes' nodes).  

2. E indicates the edges such that: 

- Dashed edges (arrows) represent the paths the insider follows to get knowledge about 

destination data items (tables or attributes).  
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- Solid edges (arrows) point to destination objects (tables or insider nodes) to which 

source data items (tables or attributes) belong. 

3. L represents the TPV values of attributes’ nodes. 

 Figure 4.10 shows an instance of a TPG. The following points should be taken into account 

when analyzing a TPG:  

a) A solid arrow from a table node to the insider node ( e(Ti, Insider) ) indicates that the insider 

has information about the table. 

b) A solid arrow from an attribute node to a table node ( e(ai, Ti) ) indicates that the attribute 

belongs to the table. 

c) A dashed arrow from the insider node to a table node ( e(Insider, Ti) ) or from a table node to 

an attribute node (e(Ti, ai)) indicates that the insider has direct read access to those data 

items. 

d) A dashed arrow from an attribute node to another attribute node ( e(ai, aj) )  indicates that the 

first attribute (ai) is used to infer information about the second one (aj).  

 

 

 

 

 

 

 

For instance, in Figure 4.11, the insider has information about the tables T1 (by direct access) and 

T2 (by inference). Similarly, s/he can get information about the attribute a1 by direct access, 

 I 

a1 

Figure 4.11. An Instance of TPG 
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however, s/he infers information about a5 and a2 using a1, where a2 belong to T2 and the other 

two attributes belong to T1. The values inside the attributes nodes represent the TPV for those 

attributes. To construct a TPG, NDIG, the KG and the set of threshold values according to the 

underlying insider are used. The threshold value of an attribute according to an insider represents 

the percentage amount of information that the insider is allowed to get about the data item, where 

100% indicates that the insider can get full information about the corresponding data item, and a 

value less than 100% indicates that the insider can get partial information. As discussed earlier, 

the amount of information that an insider gets about a data item is retrieved using NDIG. 

 

 

4.5.2.1 The Algorithm for Insider Threat Prediction and Prevention 

 

Algorithm 2 shows how to detect and prevent insider threat using TPG. The algorithm uses 

NDIG and KG to build the TPG. Moreover, it uses the threshold values for data items according 

to the corresponding insider to compute TPVs.  

 

Algorithm 4.2. Insider Threat Prediction and Prevention 

Input: An insider I, the set of threshold values according to the insider, NDIG, the knowledge    

            graph KG  of the insider. 

Output: The Threat Prediction Graph TPG of the insider I. 

1. Initialize the set of pairs T ={(KU,TKU)}, where TKU is the threshold value about a knowledge unit  KU 

according to the insider I, an empty set S={} 

2. Recall the KG of the insider and the NDIG, initialize the TPG as TPG = KG, but without labels 

3. For each KU ∈ V // knowledge unit  

4.     TPV(KU) = F(KU) / T(KU) //compute the TPV of KU 

5.     KU.TPV = TPV(KU) //store the TPV inside the node 

6. Endfor 

7. For each requested knowledge unit RKU by the insider 



60 
 

8.  If TPV(RKU) > 1 //threat predicted 

9.    Deny this request 

10.  Else  //add RKU temporarily for further inspection 

11.    V = V ∪ {Tk}, where RKU ∈ Tk // add table Tk, where Tk  ∉ TPG   

12.    E = E ∪ {e(I, Tk)} //add an edge if e(I, Tk) ∉ E  

13.    V = V ∪ {RKU} // add a node for RKU 

14.    E = E ∪ {Tk, RKU} //add an edge to the TPG 

15.    RKU.TPV = TPV(RKU) // Store the TPV(RKU) inside its node 

16.    For each knowledge unit KUx that has a dependency with RKU //add inferred attributes 

17.       If TPV(KUx) > 1 // threat predicted 

18.          Deny RKU and remove it from TPG 

19.       Else // no threat so far, still needs further inspection 

20.            If KUx ∉ V // not in the TPG 

21.                If KUx and RKU are not in the same table 

22.                     Repeat steps 11 to 15 for KUx //add inferred attributes 

23.                     Add KUx to the set S // for further inspection (step 37) 

24.                Else 

25.                     V = V ∪ {KUx} // Add a node for KUx 

26.                     E=E ∪ {e(RKU, KUx )} // add an edge 

27.                     KUx.TPV = TPV(KUx) // Store the TPV(KUx ) inside its node 

28.                     Add KUx to the set S // for further inspection step37 

29.                Endif 

30.            Else // KUx  ∈  V,  already in the TPG 

31.                Add KUx to the set S // for further inspection step37 

32.                E=E ∪ {e(RKU, KUx )} // add an edge 

33.                Update the TPV of KUx // re-calculate its TPV 

34.            Endif 

35.       Endif 
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36.    Endfor 

37.    For each KU in S 

38.         If  TPV(KU) > 1  // threat predicted  

             Two solutions: // threat prevention 

39.              First: Allow RKU but revoke insiders’ accesses to a knowledge unit(s), say KUz, that has   

                            the following properties: 

(a). KUz already exists in the knowledgebase of the insider. 

(b). KUz can be used in conjunction with RKU to compromise the unauthorized          

        information about KU.  

(c). The lifetime of KUz is expired. 

(d)  Revoking access to KUz preserves the security of all attributes.  

                    OR: //If the first solution is not possible 

40.              Second: Deny the insider’s request to RKU and recover the TPG as it was before step 7.  

41.   Endif 

42.     Endfor 

43.   Endif 

44.Endfor 

 

The algorithm works as follows. First, it initializes the TPG to the KG of the corresponding 

insider (step 2). Next, it computes the TPV for each attribute in TPG and stores the value in the 

attribute’s node (steps 3-6). When an insider requests an access to a data item, say RKU, the 

algorithm checks whether the TPV of RKU is greater than 1. If TPV(RKU) > 1, the request is 

denied (steps 8-9). Similarly, the request is denied if RKU can be used alone to infer 

unauthorized information (steps 17-18). Otherwise, RKU and all data items dependent on RKU 

are added temporarily to the TPG (19-34). These data items are inspected further by the 

algorithm later in the following steps.   
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Before going further, we should mention here that the TPV of all data items in the TPG are 

recalculated after adding RKU. This is because RKU and some data items in the knowledgebase 

(in the TPG) of the insider may be combined to get more information about other data items. 

Thus, the algorithm checks if RKU can be combined with a data item(s) in the insider's 

knowledgebase to make the TPV of other data item(s), say KUj , greater than 1, which indicates 

a threat. To prevent this threat, the algorithm introduces two solutions to solve this problem. The 

first solution is to deny the insider’s request (RKU). The second one is to grant the insider an 

access to RKU, but to revoke access(es) to a data item(s), say KUz, that can be combined with 

RKU to pose the threat (unauthorized information about KUj). KUz should have the following 

properties. First, it already exists in the knowledgebase of the insider. Second, it can be used in 

conjunction with RKU to compromise unauthorized information about KUj. Third, its life time is 

expired. Finally, revoking access to it preserves the security of all attributes. Both solutions 

prevent insider threat; however, the second solution preserves the availability of the data items 

needed to execute the insiders' tasks. Thus, the second solution should be considered first, if it is 

possible. Otherwise, the second solution is used. 

 

The second solution states that when a data item (KUz) is expired, the inference based on it is 

incorrect. In this case, if the insider uses the old (expired) value of KUz, which exists in his 

knowledgebase, and combines it with RKU to infer unauthorized information, his/her inference 

would be incorrect. Moreover, if the insider tries to re-read the new value of KUz to use it in 

inference, his/her attempt is denied since s/he does not have permission anymore to access KUz.  
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4.5.2.2 The Proof of Correctness of Algorithm 4.2 

 

The following lemmas and theorem prove that the algorithm predicts and prevents insider threat. 

Lemma 1. Consider RKU, T(RKU) and F(RKU) as stated in the algorithm, then: 

  RKU: (T(RKU) < F(RKU))  Deny(RKU) 

where Deny (RKU) means that access request for RKU is not granted. 

 

Proof: 

The proof of this lemma is fairly straight forward. Obviously, steps 8-9 states that a requested 

attribute is not granted if the insider can get more information than allowed about it (greater than 

the threshold value). 

 

Lemma 2. Consider KU, TPG, KG and insider I as stated in the algorithm, then: 

KU ∈ KG(I)  KU ∈ TPG(I). 

Proof:  

The lemma states that every attribute about which the insider has knowledge is added to the 

TPG. This is obvious in step 2, which states that the TPG is initialized to the knowledge graph of 

the insider. Thus, since the knowledge graph contains all attributes about which the insider has 

knowledge, as proved in Theorem 1, the initialized TPG contains all those attributes.  

 

Theorem 3. Consider RKU and TPV as stated in the algorithm, then: 

  RKU: Grant(RKU)     t ∈ TPG: TPV(t) ≤ 1,  
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where Grant(RKU) means that RKU is granted. 

 

The theorem states that a requested attribute is granted if the granting preserves the safety of all 

attributes. 

 

Proof: 

Initially, assume that no threat exists. That is, all attributes are safe. Let x represent the requested 

attribute. By lemma 1, if TPV(x) > 1, the request is denied, which prevents the threat and keeps 

all attributes secure. Otherwise, x is granted if for all attributes t in TPG, TPV(t) ≤ 1, which is 

proved as follows. First, x is added to the TPG by steps 11 to 15. Then, the algorithm checks 

what new knowledge the insider can infer using x. This is performed by investigating 

dependencies between x and all other attributes that are already in the knowledgebase of the 

insider. This is easy to accomplish since these attributes are added to the TPG (by lemma 2). 

Next, the algorithm updates the TPVs of the attributes about which the insider may get new (or 

more) knowledge. This is performed by steps 20-33. Then, steps 37-38 check whether any of the 

TPVs is greater than 1 (threat). If a threat is discovered, steps 39-40 suggest two solutions. First, 

deny the insider’s request to access x and recover the state of the TPG to step 7, which is a safe 

state as assumed earlier. Second, allow the insider to access x, but revoke his/her access to other 

attribute(s), such that revoking the access moves the TPG to a new safe state. This proves that 

accessing a data item is allowed if granting it to the corresponding insider preserves the security 

of all data items in the TPG.  
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4.5.2.3 An Example Scenario 

Suppose that Figure 4.12 represents the NDIG of a relational database, where the table T1 

contains the attributes {a1, a5}, the table T2 contains {a2}, and the table T3 contains {a3, a4, a6}. 

Also, assume that the set of attributes to which the corresponding insider has direct access is 

{a1}. Obviously, the knowledgebase of the insider is {(a1, 100%), (a5, 11%), (a2, 5%)}. The 

percentages of values represent the amount of information that the insider has about data items; 

100% indicates exact knowledge and less than 100% means partial knowledge. Notice that the 

amount of knowledge about a2 is acquired by cyclic inference. We should mention here that the 

weights on edges in the graph are the amount of information the insider gets if s/he has exact 

knowledge about source data items (left side of a dependency). Now, assume that T = {(a1, 

100%), (a2, 19%), (a3, 100%), (a4, 100%), (a5, 50%), (a6, 65%)}, where T is the set of threshold 

values for data items according to the given insider. These values indicate the maximum amount 

of information that the corresponding insider is allowed to get about each data item. The 

initialized TPG for this insider is shown in Figure 4.13 (a).  
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Figure 4.12. An NDIG of a Relational Database 
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Now, assume that the insider has requested access to a3. Obviously, granting an access to a3 does 

not form any threat as shown in Figure 4.13 (b) since the TPV will be less than or equal to 1 for 

all attributes when granting a3. Bold dashed arrows demonstrate how the graph would look if the 

requested attribute (a3 in this case) is granted. Notice that the TPV of a4 is 0.35 if the insider has 

exact knowledge about a6 and a4. But since the insider has partial knowledge about a6, the 

assumed value of the TPV is 0.15. Next, suppose that the insider has requested access to a4. 

Obviously, the TPV of a4 is 1, which is legal. However, granting it makes the TPG as shown in 

Figure 4.13 (c). In this TPG, the TPV of a6 is greater than 1, which indicates a threat. In this case, 

the system has two choices. First, the system grants the insider an access to  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Predicting and Preventing Insider Threat Using the TPG 
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a4, but revokes his/her access to a3 (if its lifetime is expired). Second, the system denies the 

insider’s request to read a4. If the system chooses the first choice, the TPG of the insider will 

look as shown in Figure 4.13 (d). This option allows the insider to perform his/her task without 

limiting the availability of data items or revealing sensitive information. 

 

4.6  Simulation 

The simulation was performed using MS C#.net and SQL Server. A sample relational database 

of 10 tables was created manually. The dependencies and the NDIG of the database were created 

randomly. Similarly, the threshold values of insiders about data items were created randomly as 

well. The simulation was performed by choosing the number of insiders, the number of 

transactions, and the number of attributes in transactions at each round. The timestamps of 

reading or writing data items was stored to show whether data items are expired in the 

knowledgebases of insiders. Moreover, the amount of information that insiders get about each 

data item was computed and stored using the NDIG of the database. The approach was tested 

according to different parameters to show its effectiveness. The parameters used were the 

number of insiders in the system, the number of transactions, and the percentage of write 

operations in transactions. For the same values of parameters, the simulation was executed 100 

times and the average was taken as the result. We should mention here that all threats were 

prevented either by finding and removing expired data items from knowledgebases or by 

denying read accesses. However, the percentage of prevented threats shown in the figures below 

indicates the number of threats that was prevented by finding and removing expired data items 
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over the total number of threat, which shows the effectiveness of using the proposed approach in 

preventing threat without limiting the availability of data items. 

 

Figure 4.14 shows the results of the simulation with different number of insiders. The number of 

transactions is fixed at 250 at each round. The results show that when the number of transactions 

and the number of insiders are fixed, the performance of the proposed approach improves as the 

percentage of write operations increases. This is due to the fact that when the number of write 

operations increases, the number of expired data items increases as well. Thus, the probability of 

finding an expired data item to prevent a threat using the proposed approach gets higher.  

Contrarily, the figure shows that there is no trend when the number of insiders increases. The 

analysis of this result is as follows. When insiders execute a small number of transactions, the 

data items in their knowledgebases will be few. Fewer data items in an insider's knowledgebase 

leads to two conclusions. First, it means a smaller number of threats is possible by the insider. 

That is, the probability of using data items in knowledgebase to pose a security violation gets 

smaller. Second, it means that there is less probability of finding an expired data item when a 

threat arises since few updates are executed when the number of transactions is small. These two 

opposite effects keep the percentage of prevented threats almost stable in general as the number 

of insiders increases or decreases.  
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Figure 4.15 shows the results of the simulation according to different number of transactions and 

different percentage of write operations, whereas the number of insiders is fixed at 20. The figure 

shows that for the same number of transactions and insiders, the percentage of prevented threat 

by removing risky expired data items increases as the percentage of write operations increases. 

The analysis of this result is similar to that of Figure 4.14. In addition, Figure 4.15 shows that the 

number of prevented threats increases as the number of transactions increases. At first glance, 

this result seems strange since an increase in the number of transactions causes both the number 

of write and read operations to increase. Thus, data items are expired and refreshed quicker when 

executing the transactions. That is, no general trend of the prevented threats should be detected. 

However, this assumption is incorrect as shown in the figure and the reason is as follows. Since 

there are 20 insiders in the system, when an insider refreshes an expired data item in his/her 

knowledgebase by executing read operations, there are 19 other insiders available to update the 

expired data item and make it expire. Thus, the probability of preventing threat by finding and 
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removing expired data items increases. In summary, increasing the number of transactions 

increment the probability of re-reading a data item by an insider, but it greatly increases the 

probability of updating and expiring the data item by other insiders. 

 

The simulation shows that the proposed approach prevents all detected insider threats. Moreover, 

it shows the effectiveness of the proposed approach in preventing insider threats without limiting 

the availability of data items (without denying read access requests). As shown in the figures, the 

percentage of the prevented threats ranges from 8% to 30% depending on the number of 

transactions and the percentage of write operations in transactions. 
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5.   INSIDER THREAT: UNAUTHORIZED MODIFICATIONS ATTACKS 

 

5.1 Introduction 

By discovering constraints on dependencies, an insider may be able to modify a dependent data 

item, to which s/he has no write access, to a desired value by updating the pre-cursor data 

item(s). For instance, consider the dependency {Rank, Experience}  Total_Salary as discussed 

earlier. Assume that an insider has a write access on Rank and Experience, but s/he has no write 

access on Total_Salary. In addition, assume that the insider is familiar with the dependency and 

constraints. In this case, the insider can modify the value of Total_Salary for an academic staff to 

the value s/he prefers, which can be performed by choosing the appropriate values of Rank and 

Experience for the academic staff. This section discusses this problem and suggests possible 

solutions.   

 

5.2 Insiders’ Modification-Lists 

A modification-list determines which data items an insider can modify.  It is constructed based 

on the different levels of granularity of relational databases. Based on the concepts of Hot and 

Safe clusters, the followings are concluded. First, if an insider is granted write access to a table 

that belongs to a Hot Cluster, s/he can make changes in all other tables in that cluster. Second, if 

an insider is given a write access to a table in a Safe Cluster, s/he cannot modify any other table 

(without having direct write access to it) that belongs to the same cluster. Finally, if an insider 

gets write access to a table in some cluster, s/he still can modify other dependent tables that 

belong to different clusters. This case occurs when the dependency between tables is a One_Way  
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dependency. In addition to the above conclusions, an insider can make changes in other tables 

transitively. The modification-list of an insider does not necessarily mean that the insider can 

make arbitrary changes to the associated tables.  To know what changes are possible, 

dependencies among attributes in those tables and associated constraints should be investigated. 

To do this, the dependency graph CDG is used. For instance, suppose that an insider has full 

write access on table T1 as shown in Figure 5.1. Both tables T1 and T2 are added to the 

modification-list of the insider since they have a dependency relationship. The insider can 

change data in T1 as and when s/he wishes, whereas his/her write access to T2 is limited by the 

dependency between the two tables. To determine what changes the insider can make in T2, 

dependencies between attributes in both tables should be investigated. Clearly, s/he can modify 

attributes t4 and t6 only in T2.  

 

Figure 5.1. A Constraint and Dependency Graph CDG 

+ 

5 
9 

          T2.t6  

 T1.t2 T2.t5 

c1 =< T1.t1 <= c2 

T1.t1 T1.t1 < c1 

T1.t1 > c2 

c3 

 

 

c4 

c5 

 T1.t2 

- 5 

 

T2.t4  

7 

T1.t3 

       T3.t7 <= c1 

T3.t7 T3.t7 > c1 

c7 

 
c8 

 T4.t8 



73 
 

A similar scenario is used for items at the records level. If the insider has write access to a 

record, then this record must be in his/her modification-list. In addition, other records that 

depend on this record must be there as well. Nonetheless, this does not mean that the insider can 

change data in all fields in those records. To investigate what information the insider can change, 

dependencies among attributes should be investigated.  

 

5.3 The Modification Algorithm 

Algorithm 5.1 shows how to construct Modification Graphs, which represent modification-lists 

at different levels of granularity. The algorithm uses the CDG and Dependency Matrix to 

construct the modification graphs of insiders. In addition, it uses Hot and Safe clusters to 

facilitate the construction process. A Modification Graph is defined formally as follows. 

 

Definition 27 (MG). The Modification Graph MG (V, E) is a graph that demonstrates the data 

items (tables and attributes) that an insider can modify directly or indirectly in a relational 

database system, where: 

6. V indicates nodes such that: 

- The insider node represents the corresponding insider. 

- The second level of nodes (labeled Ti) represents the tables which the insider can modify 

(Tables’ nodes). 

- The third level of nodes (labeled ai) shows the attributes which the insider can change 

(attributes' nodes).  

7. E indicates the edges such that: 
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- Dashed edges (arrows) represent the paths the insider follows to modify destination data 

items (tables or attributes). 

- Solid edges (arrows) point to destination objects (tables or insider nodes) to which 

source data items (attributes) belong or which the insider can change. 

 

The modification algorithm starts by adding the insider as the root of the modification graph. 

Next, it adds the tables which the insider can change directly or indirectly (using dependencies), 

at the second level. For each table at the second level, the algorithm determines to which 

attributes the insider has a write access (direct or indirect) and inserts them at the third level. 

 

Consider the CDG as shown in Figure 5.1 and assume that the insider has a write access to T1. 

Figure 5.2 shows the modification graph of the insider. Dashed arrows represent the paths that 

the insider follows to make changes. For instance, the insider can modify attribute t2 directly, 

whereas s/he can modify t6 indirectly through t2. 

 

Algorithm 5.1. The Modification Algorithm 

 

Input: An insider I, Dependency Matrix, CDG, Hot and Safe clusters, Set of tables to which the insider has write 

access S. 

Output: The Modification graph MG of the insider I. 

 

1. Initialize the MG = (V,E) , where V={I} and  E={}. 

2. For each table Tk in S //add direct write accessed tables to the graph 

3.     V = V ∪ { Tk } //add the node Tk to MG 

4.     E = E ∪ {e(I, Tk)}  // add edge e(I, Tk) to the MG  

5.     For each attribute t ∊ Tk that the insider has a write access to it // add directly accessed attributes to  the MG 

                                                                                                              

6.         V=V ∪ { t } //add the node t to MG 
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7.         E=E ∪ {e(Tk, t)}// add edge e(Tk, t) to the MG  

8.     Endfor 

9. Endfor 

10. For each Tk in S do // tables in S  

11.     For each Safe Cluster R to which Tk belongs  

12. Exclude all tables in R (that does not belong to S) from the MG of  the insider 

13.     Endfor 

14.     For each Hot Cluster H to which Tk belongs 

15.          For each table Tm ∈ H 

16.               V = V ∪ { Tm }  //add the node Tm to the MG 

17.               E = E ∪ {e(I, Tm)} // add the edge e(I, Tm) to the MG  

18.          Endfor 

19.           For each attribute t ∊ Tm  that the insider can change depending on direct dependencies//add  t to  the MG                                       

                                                                                                                                                         

20.               V= V ∪ { t } //add the node t to MG 

21.               E= E ∪ {e(Tm, t)} //add the edge e(Tm, t) to the MG  

22.              E= E ∪ {e(d, t)}, where d is an attribute that belongs to  Tk and  on which t depends                                       

23.          Endfor 

24.     Endfor 

25.  For each other table Ts that depends (one-way) on Tk//add tables from other clusters  

26.          Repeat steps 15 to 23 for the table Ts 

27.     Endfor 

28.     For each table Tj that depends transitively on Tk (transitive  dependency) // transitive change                                                                                      

29.         V=V ∪ {Tj} //add the node T j  to MG 

30.         E=E ∪ {e(I, Tj)}// add edge e(I, Tj)  to the MG   

31.     Endfor 

32.  For each t ∊ attributes(Tj)  that the insider can  change it transitively (transitive  dependency) //add t 

                                                                                                                                     to the MG                    



76 
 

5.4 The Proof of Correctness of Algorithm 5.1 

Insiders can modify data items in different ways. First, they can modify data items using their 

privileges. Second, they can modify data items indirectly using direct dependencies. Finally, they 

can modify data items transitively using transitive dependencies. The following theorems prove 

that Algorithm 5.1 considers all these ways when building modification graphs. We should 

mention here that the proofs are similar to the proofs in Algorithm 4.1. However, Algorithm 5.1 

deals with modification graphs instead of knowledge graphs. 

 

Theorem 1. Given a table B in a relational database DB, and the modification graph MG of an 

insider, then: 

B ∊ MG ⇔ B ∊ D(I) ∨ B ∊ DD(A) ∨ B ∊ TD(A) 

33.         V = V ∪ {t} //add the node t to MG 

34.         E = E ∪ {e(Tj, t)}//add edge e(Tj, t) to the MG  

35.   E = E ∪ {e(f, t)}, where f is an attribute that belongs to a table in MG  and on which t depends directly                                                                                                                                                                                                                                   

                                                                                                                                              

36.     Endfor 

37. Endfor 

 

 

 

 

 

 

 

 

 

Figure 5.2 A Modification Graph of an Insider. 
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where D(I) is the set of tables to which the insider has direct write access, the table A ∊ D(I), and 

DD(A) and TD(A) are the set of tables  that depend directly and transitively respectively on A.  

 

The theorem lists the three ways which insiders follow to modify data items. The following 

proof verifies that the algorithm adds all tables which the insider may modify using those ways. 

 

Proof:   

() Suppose that A ∊ D (I) and DB has the following dependencies: 

1) AB, which means that B depends directly on A. 

2) A   C, which means that C depends transitively on A. 

It is obvious that A∊ MG by steps 2 to 4, which add every directly accessed table (write 

access) to the modification graph. This proves the part of directly accessed tables with a write 

privilege. In the case of table B, let H(A) be a Hot Cluster that contains A. Now, since A  B, 

then either B∊ H(A)   (A and B have cyclic dependency), or B ∉ H(A). In the first case, B ∊ MG 

by steps 14 to 18. In the second case, B ∊ MG by steps 25 to 27. This proves the part of directly 

dependent tables. In the case of C, where C depends transitively on A, C ∊ MG by steps 28 to 31. 

This proves the part of transitively dependent tables. In summary, all tables which the insider can 

modify are added to the modification graph. □  

 

() (Proof by Contradiction) This part proves that there is no table added to the modification 

graph of the insider but those added in the previous part. Suppose that ∃B ∊ MG: (B ∉ D(I) ∧ B 

∉ DD(A) ∧ B ∉ TD(A)),where A ∊ D(I). In this case, B should exist in a Safe Cluster (Definition 

8). Thus, B ∉ MG by steps 11 to 13, contradiction.□  
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As discussed earlier, if a table exists in the modification graph of an insider, this does not mean 

that the insider can modify every attribute in that table. The following theorem clarifies this 

claim. 

 

Theorem 2. Given an attribute k, where k ∊ B for some table B in a relational database DB, and 

the modification graph MG of an insider I, we have, 

k ∊ MG ⇔ k ϵ DA(I) ∨ k ∊ DDA(s) ∨ k ∊ TDA(s) 

where DA(I) is the set of attributes to which the insider has direct write access, the attribute s ∊ 

DA(I), DDA(s) and TDA(s) are the set of attributes that depend directly and transitively on  s 

respectively. 

 

Proof:  

() Suppose that DB has the following dependencies: 

1) AB ...  T, where A, B and T are tables in DB, and A ∊ D(I).  

2) k r ...  z, where k, r and z are attributes, and k ∊ A, k ∊ DA(I), r ∊ B and z ∊ T.  

First, steps 5 to 8 state that   k: ( k ∈ DA(I) : ( k ∈ A  ∧  A ∈ D(I) ) )  k ∈ V(MG) ∧ e(A, k) ∊ 

E(MG). This proves the part of directly accessed attributes with a write privilege. Second, steps 

19 to 23 state that   r: ( r ∈ DDA(k) : ( k ∈ A ∧  A ∈ D(I) ∧  r ∈ B ∧  B ∈  DD(A) ) )  r ∊ 

V(MG) ∧ {e(B, r), e(k, r)} ∊ E(MG). This proves the part of directly dependent attributes. 

Finally, steps 32 to 36 state that   z: ( z ∈ TDA(k) : ( k ∈ A ∧  A ∈ D(I) ∧  z ∈ T ∧  T ∈ TD(A))) 

 z ∊ V(MG) ) ∧ {e(T, z), e(k, z)} ∊ E(MG). This proves the third case.     
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( ) (Proof by Contradiction) Suppose that ∃k ∈ MG: (k ∉  DA(I) ∧  k ∉  DDA(s) ∧  k ∉ 

TDA(s)), where s ∈ DA (I). In this case, there are four cases:  

1) k ∈ A , where A ∈ D(I) but k ∉   DA(I). In this case, k is excluded (not added) using steps 5 

to 8. 

2) k ∈ B , where B ∈ DD(A) but k ∉  DDA(s) for some A ∈ D(I) and s ∈ DA (I). In this case, k 

is excluded using steps 19 to 23.  

3) k ∈ T , where T ∈ TD(A) but k ∉ TDA(s) for some A ∈ D(I) and s ∈ DA(I). In this case, k is 

excluded using steps 32 to 36.   

4) k ∈ A and A ∈ S(P), where S(P) is a Safe Cluster of a table P that the insider can modify. In 

this case, k is excluded using steps 11 to 13. 

Obviously, all mentioned cases contradict the assumption.□ 

 

5.5 Preventing Malicious Modifications 

Preventing malicious modifications can be handled in two ways. The first method is to hide the 

dependencies that may be used by insiders to launch unauthorized modifications. The second 

method is not to grant insiders write accesses to data items that may be used to make 

unauthorized modifications to sensitive data items.  

 

5.5.1 Hiding Dependencies 

As discussed earlier, the discovery of dependencies by insiders may pose a threat; it allows them 

to make changes to unauthorized data items. For instance, the insider who has access to the Rank 

attribute can change the Salary attribute of an academic staff. However, if the insider is not 

familiar with the dependency, s/he may not make unauthorized modifications. Actually, an 
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insider can still make changes but these changes will be random, and a random change will 

generate suspicion. Determining which dependencies should be hidden depends on the sensitivity 

of the data items. That is, some data items are not important enough for insiders to be interested 

in changing. The level of importance defines the sensitivity of data items. A Sensitive Data Item 

is defined as follows. 

 

 

Definition 28 (Sensitive Data Item). A Sensitive Data Item is a data item which insiders may be 

interested in changing due the importance and secrecy of the information that it contains. 

 

 

Determination of the sensitivity of a data item is performed by administrators who can assign 

values between 0% for insensitive data items and 100% for highly sensitive data items. 

Administrators should consider the importance of data items when assigning sensitivity values. 

To determine which dependencies should be hidden from an insider, the Sensitivity and 

Dependency Graph (SDG) is introduced, which shows the dependencies among attributes in 

different tables without revealing any further details about them, such as constraints. But 

purposely, it contains the sensitivity values of different attributes. This facilitates determining the 

Cut, which is defined as follows. 

 

 

Definition 29 (Cut). Given a set of dependencies S in a relational database, a Cut is a set of 

dependencies C ⊆ S that should be hidden from the insider under consideration. 
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Those edges (dependencies) have destination attributes with sensitivity values greater than a 

predefined threshold for the insider under consideration. Hence, when an insider has a write 

access to a Hot Attribute [White09b], many dependencies need to be hidden from him/her. 

 

Figure 5.3 shows an example of determining a Cut in SDG. The weights on edges indicate the 

sensitivity of the destination attributes. The Cut shows that the dependencies {XR, XQ, 

PZ} should be hidden from the insider who has a write access on X and not on Z, Q and R. In 

addition, the insider should be prevented from collaborating with insiders who have access to 

attributes Z, Q and R.  

 

 

 

 

 

 

 

 

 

 

5.5.1.1 The Algorithm  

Algorithm 5.2 shows how to determine which dependencies should be hidden from an insider. 

To determine a Cut, a threshold value should be set first. Then, a Breadth First Search is used, 

which starts from the attribute on which the insider has a write access to determine which edges 

belong to the Cut (step 7). Strictly speaking, all edges that have sensitivity values greater than the 

Figure 5.3. Determining a Cut in the Sensitivity and Dependency Graph. 
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threshold value are added to the Cut (steps 9-10). For instance, assume that the threshold value in 

the example (in Figure 5.3) is 50%.  Thus, all dependencies in the Cut have dependent attributes 

with sensitivity values greater than 50%.   

 

 

 

 

5.4.1.2 The Proof of Correctness of Algorithm 5.2 

The following theorem proves the correctness of the algorithm. 

Algorithm 5.2. The Cut Algorithm. 

Input: CDG, Set of attributes S, an insider I. 

Output:  A Cut C. 

1. Let X be the attribute to which the insider has a write access 

2. Initialize the Sensitivity and Dependency Graph using the CDG 

3. Initialize a cut C={} 

4. Initialize S = {X} 

5. While S ≠ {} 

6.    Pick an attribute Z from S 

7.    Run a breadth first search on Z 

8.    For each attribute Y ∊ adjacent(Z)  // the edge e(Z, Y) ∊  SDG  

9.       If sensitivity(e(Z,Y)) > threshold  

10.              C = C ∪ { e(Z,Y) } // add the edge to the SDG 

11.       Else  

12.              S=S ∪ {Y} 

13.       Endif 

14.    Endfor 

15. Endwhile 

16. Return C as the cut 
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Theorem 3. Let X be an attribute to which an insider has a write access, U and V are two other 

attributes, and C is a Cut.  Then: 

e(U,V)∊ C ⇔ (∃ P(X,U):( Z ∊ P(X,U):Sensitivity(Z) < Threshold(Z) ) ∧ (Sensitivity(V) > 

Threshold(V) ), where P(X,U) denotes a path from the attribute X to an attribute U. 

    

This theorem states that a Cut contains an edge e(U,V) if and only if there is a path  XU, such 

that all attributes along this path have a sensitivity value less than the threshold value and the 

sensitivity of V is greater than the threshold value. Hence, the threshold value of an attribute 

relative to the insider under consideration determines whether the attribute is sensitive or not for 

the insider. 

 

 

Proof:  

() Suppose that e(X,Y) ∊ P(X,U). In addition, assume that Sensitivity (Y) ≤ Threshold(Y). In 

this case, Y ∊ S by steps 11 - 12. Later, Y will be picked from S since steps 5 - 6 pick a vertex 

from S recursively until S is empty. Now, by steps 8 and 11 - 12,  K ∊ Adjacent(Y) ∧ Sensitivity 

(K) ≤ Threshold(K)  K ∊ S. Continuously, the algorithm picks vertices on the path XU as 

long as their sensitivity is less than or equal to the threshold value. However, it stops checking 

the adjacent vertices of any vertex, say L, if the sensitivity of L is greater than the threshold 

value, which is clear in steps 9-10. When reaching U,   R: R ∊ Adjacent(U) ∧ Sensitivity (R) > 

Threshold (R)  (U,R) ∊ C (by steps 9 - 10). Thus, since sensitivity(V) > Threshold(V), the 

edge e(U,V) is added to the Cut. This completes the first part of the proof. 



84 
 

 

() (Proof by Contradiction) Suppose that e(U, V) ∊ C ∧ (   P(X,U) : ( ∃ Y∊ P(X,U) : 

Sensitivity(Y) > Threshold(Y) ). Now, let Z be the predecessor of Y. In this case, e(Z, Y) ∊ C by 

steps 9 -10, and hence, Y will not be added to the set S as shown by steps 9-13. As a result, since 

Y ∊ P(X,U), U will not be reached. Thus, e(U,V) ∉ C, which is a contradiction. □ 

 

This proves the correctness of the algorithm. In summary, Theorem 3 proves that a Cut contains 

an edge, say e(U,V), if the following conditions are satisfied:  

1) Its endpoints are reachable from the vertex, say X, to which the insider has write access.  

2) There is a path from X to V, such that all of the vertices along that path (except V) have a 

sensitivity value less than or equal the threshold value. 

3) The sensitivity value of the destination of the edge (V in this case) is greater than the 

threshold value. 

 

 

5.5.2 Denying Write Access Requests 

It may not always be possible to hide dependencies. In these cases, the solution is not to grant 

insiders write accesses on data items in which a change may cause a change in sensitive data 

items. For instance, using the graph in Figure 5.3, granting an insider write access to the data 

item X enables the insider to make changes in data items P, Z, Q and R. Thus, if some of these 

data items are sensitive, and hiding dependencies is not possible, the insider should not get write 

access to X.  
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Insiders can make approximate or exact changes to unauthorized data items based on 

dependencies and/or constraints they can discover. For instance, consider the dependencies 

{Rank Base_Salary, (Base_Salary, Experience)  Salary}, where Salary = Base_Salary + 100 

* Experience. Suppose that the Salary attribute is a sensitive data item. Assume also that the 

insider under consideration is familiar with the corresponding dependencies and constraints. 

Now, if the insider has write access to Rank only, s/he can change the corresponding Salary to an 

amount close enough to what s/he wishes. Whereas by having a write access to Experience, s/he 

can make some minor changes to Salary. On the other hand, by having a write access to both the 

Rank and Experience, the insider can change Salary to any value s/he wants. Administrators 

should take this into account when granting write access to data items. However, denying write 

access to some data items may affect the tasks the insiders are able to perform. 

 

Modification Graphs MGs show how to predict an unauthorized modification threat. For 

example, using the CDG in Figure 5.1, suppose that an insider has write access to the attribute a1 

in table T1. In this case, the MG of the insider is shown in Figure 5.4, which shows that the 

insider can change attributes a2 and a6 in tables T1 and T2   respectively although s/he  may  not  

have write access to these attributes. Thus, if one of these attributes is sensitive, administrators 

may deny the insider’s write access to a1 in order to avoid the threat.  However, as discussed 

earlier, denying write access may hinder the performance of some insiders and also reduce the 

availability of data items. Thus, the preferable approach is to hide the dependencies, if possible, 

instead of denying write accesses. 
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5.6 An Example Scenario 

 This section introduces a simple real world example of using the Cut algorithm to prevent 

insider threat without limiting the availability of data items. Consider the example in Figure 5.1, 

suppose that the sensitivity values of the data items are as shown in Table 5.1. Sensitivity values 

indicate the importance and the secrecy of data items as discussed earlier. Figure 5.5 represents 

the SDG for the given database based on the dependencies and the sensitivity values of the data 

items. As discussed earlier, weights on edges represent the sensitivity of the destination data 

items. Notice that the starting data items (Rank and Number of dependents) do not have 

sensitivity values. This is because the SDG is used to show the hidden threat when granting write 

accesses to some data items (the starting data items). However, if a write access on those data 

items is requested by an insider who is not allowed to modify them, his/her request is denied 

without constructing the corresponding SDG. 

 

 

 

 

 

 

TABLE 5.1. SENSITIVITY VALUES ACCORDING TO THE INSIDER K 

Data item Sensitivity 

Rank 20% 

Base_Salary 90% 

Experience 10% 

Number of Dependents 30% 

HI_Premium 90% 

Salary 100% 

Net_Salary 100% 

Tax 10% 

Figure 5.4 A Modification Graph. 
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Assume that the threshold value of the insider (Bob) is 50%, which means that he is not allowed 

to modify data items with sensitivity values greater than 50%. Now, suppose that Bob requests a 

write access on Rank and Experience attributes and on the Dependents table. In this case, if he is 

given write access to those data items, he can indirectly modify the sensitive data items: 

Base_Salary, Salary, HI_Premium and Net_Salary, which is a threat. It happens if Bob is 

familiar with the dependencies. Thus, to prevent this threat, we should ensure that some 

dependencies are hidden from Bob before giving him the requested write accesses. To show 

which dependencies should be hidden to prevent the threat, the Cut algorithm is used. Using the 

algorithm, the set of dependencies that should be hidden from Bob is shown in Figure 5.5 by a 

dashed line. By hiding those dependencies, the requested accesses can be granted and the threat 

is minimized or prevented. However, if it is not possible to hide those dependencies, Bob’s 

access requests should be denied. This simple example shows the effect of hiding some 

dependencies to prevent insider threat. In addition, it shows how hiding dependencies increases 

the availability of data items so that insiders can perform their jobs without limiting their 

performance. 

Number of 

Dependents 
Net_Salary 

 

Experience 

Salary 

Figure 5.5.The SDG of the Academic Staff Database in Figure 5.1 
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5.7 How Insiders Discover Dependencies 

Insiders may discover dependencies in several ways. First, they may discover dependencies by 

accessing the metadata of a relational database directly, which is fairly straight forward. Second, 

they may discover dependencies by collaborating with other insiders in the same organization. 

For instance, suppose that Alice has a write access to a table T1 and Bob has a read access on 

table T2.  In addition, assume that neither of the two insiders is familiar with the dependencies 

between the two tables. Now, suppose that Alice needs to modify some value in T2. To do this, 

she can collaborate with Bob to check whether there is a dependency between the two tables; 

Alice makes changes in T1 until a change happens in T2. Then, Bob informs Alice about the 

change that happens in T2. As a result of this operation, the collaborative insiders can discover 

the dependencies as well as the constraints between the two tables. Figure 5.6 demonstrates this 

process. Discussions about the prevention of collaborative attacks are beyond the scope of the 

dissertation.   

 

 

 

 

 

 

 

 

Finally, an insider may discover dependencies by inferring relationships among data items that 

s/he retrieves. Moreover, s/he can infer the constraints on dependencies partially or totally. For 

instance, suppose that the relationship between the Rank of an academic staff and his/her 

Base_Salary is as shown in Figure 5.7. Assume that Alice has accessed tuples 1 and 3. In this 

Alice makes changes in T1   until a 

change happens in T2.              

Bob informs Alice about the 

change.  

 

T1 T2 

Figure 5.6.  Collaborative Attacks. 
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case, she may assume that there is a dependency between the Rank and the Base_Salary, and that 

assistant professors have a Base_Salary of 75K.  Moreover, she updates her knowledge about 

dependencies and constraints when she accesses more tuples. 

 

 

 

   

 

5.8   Hiding Dependencies: When and How? 

Hiding dependencies requires preventing the operations that may expose them. However, only 

sensitive dependencies need to be hidden, where a sensitive dependency is a dependency that 

may be used to make malicious modifications to sensitive data items.  Obviously, hiding 

dependencies may limit the availability of data items and insiders’ tasks as well. Thus, this 

process should be performed when the cost of allowing the discovery of a sensitive dependency 

is greater than the cost of hiding it. For instance, in Figure 5.5, if an insider has a write access to 

Rank only, having him/her discover the dependency between Rank and Base_Salary would be 

costly from security viewpoint. This is because modifying the Rank changes the value of 

Base_Salary, Salary, and Net Salary, which are unauthorized sensitive data items. To prevent the 

threat illustrated in this example, this dissertation proposes two solutions. The first one is to 

prevent the corresponding insider from discovering the dependency, which can be achieved by 

preventing him/her from getting a read access to the Base_Salary. In this case, the insider can get 

a write access to the Rank attribute only without posing a threat. The second solution is not to 

grant the insider a write access on the Rank attribute and to allow him/her to read the data item 

Name Rank  Base_Salary 

Jeff Mayor  Assistant Prof.  75K 

Nancy Bishop  Prof. 100K 

Dale Bush Assistant. Prof.  75K 

Gordon Thompson Prof. 100K 

 

Figure 5.7. Academic Staff’s Base_Salary 
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(Rank, Base_Salary). However, both solutions limit the availability of data items. That is, there 

is a cost in terms of availability; but not in terms of security. 

 

In light of the previous discussion, preventing the operations that may lead to exposure of 

sensitive dependencies or update of sensitive information has a cost on the availability of data 

items and also on the insiders’ job performance. On the other hand, allowing these operations 

may help insiders in making malicious modifications to unauthorized data items, which has a 

cost to the security of the system. Therefore, to help in decision making process, the cost of each 

possible solution must be computed and the one with the least cost should be chosen. The cost of 

a solution can be measured according to its effect on the availability and on the security of data 

items. Formula 1 computes the cost of a solution.   

 

Cost (S)=∑         
       + ∑                 

                                          (1) 

 

where S indicates the solution chosen, i represents the attribute that is limited (prevented) by 

applying S, Imp(i) indicates the importance of the data item i according to the insider under 

consideration, which represents the necessity of i in performing the insider’s tasks. For example, 

the data items that are used by the insider to perform a group of tasks are more important than 

data items that are used to perform a single task.  This value may be given either by the insider or 

assigned by the system based on the tasks that should be performed by the insider. The term j 

represents an unauthorized attribute that may be exposed by applying S, sensitivity(j) shows the 

sensitivity of the attribute j. Wa and Ws indicate the weights associated with the availability and 

sensitivity respectively. These values are used to determine which is preferable between limiting 
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the availability of attributes and exposing sensitive information. Hence, these values may differ 

according to attributes, and are assigned by the system.  Likewise, the sensitivity of an attribute 

is assigned by estimating the damage that may be caused by revealing or modifying the attribute.  

A value for sensitivity is assigned by the system as well.  

 

 

 

 

 

 

 

To clarify the concept, consider Figure 5.8, which represents the sensitivity and the importance 

values of the attributes shown in Figure 5.7 for the insider (Bob). Assume that Wa and Ws are 2 

and 3 respectively. Now, suppose that Bob has permissions to read all attributes of all records 

and modify the Rank attribute of all records, but he is not allowed to modify the Base_Salary 

attribute. Obviously, allowing the insider to access what he is allowed to access poses threat. 

Strictly speaking, Bob may infer the dependency [Rank Base_Salary] and associated 

constraints. In this case, Bob may use this knowledge and his write privilege on the Rank 

attribute to make the changes he desires to the Base_Salary attribute without having a write 

access to it, as discussed earlier.  Although this constitutes a threat, it may be acceptable in some 

situations. Thus, this is the first solution (S1) to the problem of having the insider discover the 

dependency and make malicious modifications. The second solution (S2) is to grant Bob a read 

access on data items Rank, and Base_Salary and revoke the write access that he has on Rank. In 
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Jeff Mayor  Assistant Prof.  5 1 75K 2 10 

Nancy Bishop  Prof. 5 1 100K 2 10 

Dale Bush Associate Prof.  5 1 80K 2 10 

Gordon Bush Prof. 5 1 100K 2 10 

 

Figure 5.8. Academic Staff Base_Salary 
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this case, Bob can discover the dependency, but he is not able to make malicious modifications. 

The third solution (S3) is to deny the read access that Bob has on the Base_Salary attribute and 

grant him a write access to Rank; this hides the dependency from him, and allows him to modify 

the Rank.  Thus, Bob cannot discover the dependency and he is not able to make malicious 

modifications to Base_Salary. To choose the best solution, the cost of each one is calculated 

using Formula 4 as follows, where the number 4 on the summation symbol indicates the number 

of records in the table.  

- Cost(S1) = 0 +  ∑        
  = 120. 

- Cost(S2) = ∑       
   + 0 = 40.  

- Cost(S3) =∑       
   + 0 = 16. 

 

Notice that the first solution is very costly. Obviously, the best solution is S3, which hides the 

dependency from Bob. That is, limiting the availability of some data items is better than allowing 

him to make malicious modifications according to the cost estimation.    

 

5.9 Experiments and Results 

To test the efficiency of the model, a simulation was performed using MS C#.net and SQL 

Server. A sample relational database of 10 tables was created manually. The dependencies and 

the NDIG of the database were created randomly. Similarly, the access permissions, the 

importance and the sensitivity of data items according to each insider were created randomly as 

well.  
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Figure 5.9. Number of Prevented Threat (risky transactions) vs. Number of 
Transactions and the Percentage of Write Operations 

The simulation was performed by choosing the number of insiders, the number of transactions, 

the range of attributes per transaction and the weights of availability (Wa) and sensitivity (Ws). 

The model was tested according to different parameters to show its effectiveness. The parameters 

used are the number of insiders in the system, the number of transactions, and the percentage of 

write operations in transactions. For the same set of parameters’ values, the simulation was 

executed several times and the average was taken as the result. We should mention here that all 

risky transactions were caught and prevented using the proposed approach (when preventing 

threat is less costly than allowing it). Figures 5.9 and Figure 5.10 show the results of the 

simulation. 

 

 

 

Figure 5.9 shows the number of prevented threats (risky transactions) according to the number of 

transactions and the percentage of write operations. The number of insiders used in the 

simulation is 20, and Wa and Ws are 2 and 4 respectively. Obviously, the figure shows that as the  

number  of transactions increases, the number prevented threats, which is a trivial result since the 

number of threats is directly proportional to the number of transactions increases. In addition, the 

figure shows that, for the same number of transactions, the number of prevented threats increases 
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as the percentage of write operations increases. This is an expected result since increasing the 

number of write operations in a transaction maximizes the probability of modifying sensitive 

data items, which in turn increases the possibility of threat (and the prevented threat using the 

approach). As discussed earlier, the system chooses the solution with the lowest cost to prevent a 

threat.  

 

Preventing a threat is not always the best solution. In some cases, allowing insiders to access 

unauthorized data is better than impeding the tasks of insiders. The solutions in these cases 

depend on the weights associated with availability and sensitivity, and on the sensitivity of data 

items as well. Figure 5.10 shows the ratio of the number of prevented threats to the number of 

allowed threats according to a variable ratio between Wa and Ws. For instance, when Wa : Ws is 

1:4, the number of prevented threats is about 49 times more than the number of allowed threats. 

The figure shows that the number of prevented threats is greater than that of allowed threats 

when Wa < Ws, and the value (Number of Prevented Threats / Number of Allowed Threats) 

increases as Wa gets smaller. Whereas, the number of allowed threats is greater than the number 

of prevented threats when Wa > Ws and the value (Number of Prevented Threats / Number of 

Allowed Threats) decreases as Ws gets smaller.  

 

Obviously, the simulation demonstrates that the proposed approaches prevent insider threat 

efficiently taking into account systems preferences, where systems have to choose between 

breaching the security and limiting the availability of data items. 
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6. Organizing Access Privileges: Preventing Insider Threat without Affecting the 

Availability of Data Items 

 

6.1 Introduction  

A task of an insider may consist of several operations and may need access to different data 

items. The operations on data items of a task form a partial order. That is, some operations on 

data items should be performed in some specific order, while other operations can be performed 

without any order among themselves. In some cases, the order of granting access to data items in 

order to execute a task determines the level of risk. In other words, different orders of accesses to 

data items imposes different levels of risks. This chapter discusses the importance of organizing 

operations in concurrent tasks. Moreover, it demonstrates how to organize accesses to data items 

such that insider threat is prevented without affecting the availability of data items.  

 

6.2 The Importance of Organizing Accesses to Data Items 

The history of data accesses by insiders, when combined with data access requests, may pose a 

serious threat. As discussed in previous chapters, insiders can use data items they have accessed 

in the past (in knowledgebases) to infer sensitive information. In concurrent tasks, not 

considering knowledgebases and random executing of tasks’ operations may pose threat or limit 

insiders’ tasks. However, the operations of tasks can be organized such that the threat of 

knowledgebases is eliminated without limiting insiders’ tasks. Figure 6.1 shows an instance of 

the task of an insider, which is represented by a task graph, and his/her knowledgebase. A task 

graph is defined as follows.  
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Definition 30 (Task Graph). A task graph TG(V,E) is a directed graph that is used to show the 

operations and their precedence constraints in a task, where: 

- V represents operations on data items, such that: 

o r indicates read access. 

o w indicates write access. 

- E represents edges, such that: 

o An edge e(O(x),O(y)) means that O(x) should be executed before O(y), where O is an 

operation, and x and y are data items. 

 

 

 

 

 

 

 

 

 

 

Obviously, a task graph represents the data items that should be accessed to perform a task as 

well as the required operations (read or write). In addition, it demonstrates the required 

sequences of accesses on those data items (precedence constraints). Moreover, tasks’ graphs 

show the different sequences of operations that can be followed to execute the same task. Strictly 

speaking, operations that have no precedence constraints can be executed in different orders to 

perform the task. In Figure 6.1, the task graph is enclosed by rectangles and the knowledgebase 

Figure 6.1.  A Sequence of Operations to Perform a Task. 
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is represented by a dashed oval. Solid arrows represent precedence constraints between 

operations. Whereas dashed arrows point to unauthorized inferred knowledge. For example, L 

and z can be used to get information (using dependencies) about S, which is unauthorized to the 

insider under consideration. Hence, the dashed square contains unauthorized data items. 

 

In order to execute the insider’s task, the insider needs to get access to data items X and Y to 

work on the data item A. Next, s/he needs an access to B to work on K and so on until s/he 

reaches Q. Notice, that the insider can get access to Z before getting access to X or Y. That is, 

s/he can work on M before working on A and vice versa because the two operations are 

independent. However, s/he must work on A before working on K since they are dependent.  

 

As discussed earlier, the dashed arrows indicate that the insider can use the data item L, which is 

in his/her knowledgebase, along with the data item Z to get unauthorized information about the 

data item S. If the system discovers this threat and denies the insider’s request to Z, the 

availability of data items will be limited, which degrades the performance of the system. On the 

other hand, if the system does not discover this threat, unauthorized information will be exposed, 

which breaches the security of the system. To prevent the threat without limiting the insider’s 

task, the insider should not get a read access to Z until the lifetime of L expires. However, 

delaying the insider’s job until the lifetime of L expires is not a good solution always, since the 

delay may be too long. To solve this problem, the insider is given access to other data items to 

work on an independent operation(s) until the lifetime of L expires. For instance, the insider may 

get access to X and Y to work on A first before s/he get access to Z. We can force the lifetime of 

L to expire by giving other insiders who want to modify L write access on it. Thus, the lifetime 
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of L expires after it is updated by those insiders. In this case, after the insider under consideration 

finishes his/her work on A, giving him/her access to Z does not pose threat. Obviously, this 

approach enables concurrent insiders to get the accesses they need on different data items 

without breaching the security of the system. This example shows the importance of organizing 

accesses to data items in preventing insider threat and preserving the availability of data items. 

 

The terms risky data item and risky request are used in the rest of the chapter to indicate data 

items that can be combined to get unauthorized information. Definitions 31 and 32 formally 

define these terms.  

 

Definition 31 (A Risky Data Item). Given the knowledgebase(KB) of an insider, where KB= {k1, 

…, kn}, ki is called a risky data item if it can be used with other data items, which can be 

requested by the insider, to acquire unauthorized information.  

 

Definition 32 (A Risky Request). A request Oij, which indicates the i
th

 request in the j
th

 task that 

belongs to insider j, is called a risky request if it can be combined with a risky data item in j’s 

knowledgebase to acquire unauthorized information. 

 

For instance, in the previous example, the data item Z, when it is requested by the insider, is 

called a risky request and the data item L in his/her knowledgebase is called a risky data item. 

Organizing accesses to data items is applied by considering all concurrent insiders and their 

tasks, the data items and operations required for each task, and the dependencies between 

operations. It must be noted that investigating the knowledgebase of each insider is a major part. 
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Obviously, the system should have a full knowledge about the tasks that concurrent insiders are 

planning to execute. However, insiders execute tasks in two ways: as a batch of operations or as 

one operation at a time. The tasks in the latter case are called undeclared tasks, which are 

defined formally as follows. 

 

Definition 33 (Undeclared Tasks). A task S = {O1,O2,…, On}, where O1,O2,…, On are operations 

on data items, is called an undeclared task if it is sent by an insider to be executed as one 

operation at a time. 

 

Clearly, the operations of an undeclared task are sent by insiders to be executed as one by one, 

where each operation is executed in a single transaction. However, when a task is sent as one 

transaction that contains all the operations needed by the task, the task is called a declared task. 

Section 6.3 discusses the methods of organizing accesses in declared tasks, while section 6.4 

discusses organizing accesses in undeclared tasks. 

 

6.3 Organizing Operations in Declared Tasks 
 

In this type of tasks, an insider sends a task’s operations in one transaction. Thus, the system has 

full knowledge about the task the insider is planning to do. This enables the system to organize 

the operations of concurrent tasks (before granting risky requests) in a good sequence, which 

preserves the availability and security of data items. 

 

To understand how to organize accesses, consider the relational database schema in Figure 6.2. 

The database has the dependency {Rank  Base_Salary}. Assume that the data items (Name, 
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Rank), (Rank, Base_Salary), and (Name, Experience) are insensitive information, while the data 

items (Name, Base_Salary) and (Name, Total_Salary) are sensitive information. In addition, 

 

suppose that the salary of an academic staff is computed using the formula: Total_Salary = 

Base_Salary + 200 *  Experience. Now, assume that there are two insiders who are concurrently 

working on their tasks. Both insiders are not allowed to get information about sensitive data 

items. The task of the first insider (Insider1) consists of the following queries. 

 

Query 1: “Retrieve the name and the rank of all computer science professors” 

      Select P.FName, P. LName, P.Rank 

      From Professor P, Department D 

     Where P.DeptID = D.DeptID and D.Dname = “Computer Science” 

 

Query 2: “Retrieve the experience of professor Sami Gibson” 

       Select P.Experience 

       From Professor P  

Professor Table 

ID FName LName Rank Experience DeptID 

20012 James White Assistant Prof 3 168 

20013 Bob Tailor Full Prof 2 597 

20014 Sami Gibson Associate Prof 5 168 

  

Rank_Salary Table Department Table 

Rank Base_Salary 

 

DeptID Name Location 

Assistant Prof 100K 168 Computer Science SSED 

Associate Prof 120K 597 Electrical Engineering LKEF 

Full Prof 140K 

    

 

Figure 6.2. A Part of Academic Staff Database 
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       Where P.ID = 20014 

 

Query 3:”Retrieve the Base_Salary of associate professors”  

        Select R.Rank, R.Base_Salary 

        From Rank_Salary R 

        Where R.Rank=”Associate Prof” 

 

Obviously, the result that is added to the knowledge of Insider1 if s/he is granted the privilege to 

execute Query1 is: (< James White, Assistant Prof >, < Sami Gibson, Associate Prof >). 

Similarly, if Insider1 is granted a privilege to execute Query2 and Query3, s/he will have the 

information (< Sami Gibson, 5 >) and (< Associate Prof, 120K >) respectively.  Now, suppose 

that the task of   the   second   insider (Insider2) consists of the following query. 

 

Query 4:”Promote Sami Gibson to a Full Prof” 

       Update table Professor 

       Set Rank = ‘Full Prof’ 

       Where ID=20014 

Assume that the queries Query1 and Query2 are executed successfully. Thus, Insider1 has the 

rank and the experience of “Sami Gibson” in his/her knowledge. Next, if Query3 is executed, 

Insider1 gets the knowledge < Associate Prof, 120K >. In this case, s/he can combine this 

insensitive knowledge with the insensitive knowledge < Sami Gibson, Associate Prof > and 

<Sami Gibson, 5> to get the unauthorized information <Sami Gibson, 120K> and <Sami Gibson, 

121K>, which indicates the Base_Salary and Total_Salary of “Sami Gibson”. Although 
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executing the task of Insider2 after that changes this information, Insider1 still knows that at the 

time s/he executed his/her query Sami’s total salary was 121K, which is correct and unauthorized 

information. On the other hand, if the system discovers this threat and prevents Insider1’s 

request, Insider1’s job will be rejected. Thus, both cases affect the system negatively.    

 

Let us consider another scenario for satisfying the requests of the two insiders. Suppose that 

Query4 is executed before Query3. This means that Insider2 promotes the rank of “Sami 

Gibson” from associate professor to full professor before Insider1 gets access to the Base_Salary 

of associate professors. In this case, if Insider1 uses the data item in his/her knowledgebase to 

infer information, his/her inference will be incorrect. Thus, Insider1’s task will be executed 

normally. Obviously, this scenario prevents insider threat without limiting the availability of data 

items. Notice that the data item <Name, Rank>, which has been acquired by Query1 is called a 

risky data item. Similarly, the request <Rank, Salary> that is requested by Query3 is called a 

risky request. The request in Query4 (updating the rank of “Sami Gibson”) is called an 

Effacement Request since it removes the threat of the risky request in Query3. An effacement 

request is defined as follows.  

 

Definition 34 (An Effacement Request). A request Oij, which indicates the i
th

 request in the j
th

 

task that belongs to insider j, is called an effacement request if it satisfies the following 

conditions: 

1- O=Write(R) ∧ ( Write(R)  (Expire(R) =True) ). 

2- ( R ∈ KB(h) ) ∧ (  j ≠ h ). 
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Definition 34 states that an effacement request by an insider j must be a write operation that 

updates a data item R and makes it expire, where R belongs to the knowledgebase of a different 

insider than j. That is, a write request by an insider j that updates a data item in his/her 

knowledgebase is not considered an effacement request. 

 

The example clarifies the importance of choosing the order of executing the requested operations 

in preventing insider threat without limiting insiders’ tasks. It shows that the sequence <Query1, 

Query2, Query3, Query4> pose a threat, while the sequence <Query1, Query2, Query4, Query3> 

does not pose any threat. The first sequence is called a safe sequence, which is introduced next in 

Definition 35. The next section discusses how to choose a safe sequence for executing the 

operations of concurrent tasks. 

 

Definition 35 (A Safe Sequence). Given a sequence of operations S = {O1,O2,…, On}, where 

O1,O2,…, On are operations on data items that belong to concurrent tasks. S is called a Safe 

Sequence if executing the operations in S’s order does not reveal unauthorized information and 

preserves the availability of data items. 

 

6.3.1 Choosing a Safe Sequence 

After considering concurrent insiders in a system and their tasks, the system organizes the 

accesses to data items to prevent any insider threat and preserve the availability. There are many 

possible sequences of data access to execute a task. Finding a safe sequence is the objective of 

this section.  However, choosing a safe sequence of operations is not always achievable. Thus, in 

these cases, an acceptable sequence should be chosen, which is defined as follows. 



105 
 

Definition 36 (Acceptable Sequence).  Given a sequence of operations S = {O1,O2,…, On}, 

where O1,O2,…, On are operations on data items that belong to concurrent tasks. S is called an 

Acceptable Sequence if executing the operations in S’s order reveals insignificant unauthorized 

information, which does not pose any intolerable threat to the system, and preserves the 

availability of data items.  

 

Security administrators decide whether the revealed information is insignificant or not, or 

whether it poses an intolerable threat. In order to choose either a safe or an acceptable sequence, 

the risk of granting each request is computed. The risk of a request is the maximum difference 

between the sensitivity of each data item that may be revealed by granting the request and the 

threshold value of the insider about that data item. The following formula shows how to compute 

the risk of requested operations, where Rj is a request by insider I, n is the number of data items 

in the database under consideration, Sensitivity(di)  is a the amount of information that may be 

revealed about the data item di by granting Rj, and Threshold (I, di) is the threshold value of I 

about di. 

 

Risk(Rj)=       
 (Sensitivity(di) - Threshold(I, di))                                          (1) 

 

 

Formula 1 measures the risk of a request independently. That is, it looks at the knowledgebase of 

the insider under consideration to see if the current request can be combined with some data 

items in his/her knowledgebase to get unauthorized information. The formula does not pay 

attention to other operations that are executed before it. However, the risk value of a sequence is 
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computed by considering the order of operation in the sequence. The risk of the each sequence is 

computed using Formula 2, where n indicates the number of requests in a sequence. 

 

Risk(Sj) = Σ
n

i=1 Risk(Ri|R1 … Ri-1)                                                 (2) 
 

 

Obviously, the value that is computed in Formula 2 is the sum of the risk values of requests in a 

sequence with taking into account the order of requests. To clarify this point, we should mention 

that the risk of a request that is computed independently (the value computed in Formula 1) 

differs when we consider previous requests. That is, as we discussed before, a request(s), say R, 

may update a risky data item(s), say K, that exist in the knowledgebase of an insider and make it 

expire. Thus, the insider who has K in his/her knowledgebase cannot use it with his/her risky 

requests to infer unauthorized information. This action may reduce the risk values of successor 

risky requests after R in the corresponding sequence that can be combined with K to infer 

unauthorized information, which may reduce the risk value of the corresponding sequence. 

 

Using this method, a safe or acceptable sequence is chosen, which poses the lowest risk among 

different sequences. We should mention here that choosing a good sequence may be limited by 

the fact that some operations are dependent on each other. That is, some operations must be 

executed before other operations. Moreover, when producing a safe sequence, operations that 

should be executed before effacement requests should be put before them in any sequence. 

6.3.2 Limitations and Possible Solutions 

Organizing accesses to data items either eliminates or significantly reduces the threat of a risky 

request demanded by an insider. As discussed earlier, this is performed by letting other insiders 
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modify risky data items so that they are expired before they can be used with risky requests to 

launch an attack. But what can be done if there is no insider who requests write accesses to risky 

data items? To solve this problem, the granting of a risky request may be delayed until an 

effacement request is made. However, this method would result in data unavailability and 

degrading systems performance. Moreover, if the insider must get access to the requested data 

item to perform his/her job on a timely manner, the mentioned solution is unacceptable.   

 

When delay is unacceptable, an incorrect value of the risky request can be granted to the insider. 

After that, the system corrects the results based on the correct value of that risky request. When 

incorrect values of data items are provided to insiders, they will not be able to infer correct 

values of dependent data items. We propose to do so when the inferable data is sensitive. 

However, this approach may affect insiders’ trust about the system. To mitigate this issue, 

incorrect but close enough values must be provided while making sure that the values still do not 

disclose any sensitive data. To know how much information one can infer, the Neural 

Dependency and Inference Graph (NDIG) is used. An example of NDIG is shown in Figure 6.3, 

where cyclic inference edges are omitted for simplicity.  
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For example, suppose that an insider K had accessed the data items L and P in this database. 

Later, s/he requested the data item Z. Figure 6.4 shows K’s task and knowledgebase. Assume 

that K’s threshold is 100% for all data items except for the sensitive data item S, which is 65%. 

In addition, assume that the value of S ranges between 0 and 100, and it is computed using the 

formula: S = 4*Z + L+ P. 

 

 

 

 

 

 

 

 

 

 

Obviously, using the proposed approach, the insider is given an access to the data items X, R, 

and Y to work on A first. S/he is not given access to risky request Z because he/she can combine 

it with the risky data items L and P, which are in his/her knowledgebase, to get information more 

than the allowed about the data item S. Suppose that at the time, there is no insider requesting a 

write access on either L or P. In addition, assume that due to the time sensitive nature of insider 

K’s task, the system has to grant him/her the access to data item Z. Clearly, granting the request 

poses a threat. Thus, to avoid this threat, the insider is given an incorrect value of Z. Notice that 

the given incorrect value does not mean that the value of Z is changed in the database. It means 
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Figure 6.4. Insider K’s Task and Knowledgebase 
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that the system provides an incorrect value to the insider. However, this incorrect value should 

satisfy two conditions, which are: 

a) It should not be very different from the correct value, otherwise this would affect the 

insider’s trust on the system if the insider has a guess on the range of the value.  

b) Using the value, the user should not be able to make a correct estimation of the sensitive 

data item. 

 

 

After giving the insider an incorrect value of Z, the system should track the subsequent 

modifications on the data items that the insider K makes using the incorrect value of Z and 

correct those using the right value of Z. This process applies to other insiders who access such 

damaged data items as well. Damage assessment and recovery are not the focus of the 

dissertation and, therefore, the methods will not be discussed here.  As a reference, interested 

readers may review the work presented in [Yalamanchili04]. Notice that giving incorrect values 

may pose work overhead to trace the changes and fix the affected data items. However, this 

could be much less costly than breaching system security or rejecting insiders’ tasks. Moreover, 

fixing affected data items can be performed when systems have less work overhead.  

 

6.3.3 An Example Scenario 

Let Table 6.1 represent the set of concurrent insiders in the system as demonstrated in Figure 6.2, 

their knowledgebases and their current requests of data items. The dependencies in the database 

are shown in Table 6.2. Table 6.3 shows the data items in the system and their sensitivity values. 

In addition, it shows the threshold values of data items according to the insiders. The amount of 

information an insider can get about a data item is computed depending on the NDIG of the 

corresponding database.  
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Obviously, all requests are independent. Notice that both requests R1 and R2 read and write the 

Base_Salary respectively. However, R1 read the Base_Salary of associate professors, which is 

different from R2 that updates the Base_Salary of full professors. Thus, they are independent. 

This offers flexibility in organizing them in a good manner to form the lowest risk sequence. 

Clearly, there are six possible sequences for granting the requests, which are: 

- S1= { U1.R(q1), U2.W(q2), U2.W(q3) } 

- S2= { U1.R(q1), U2.W (q3), U2.W(q2) }  

Table 6.1.  Insiders and their Knowledgebases and Requests 

Insiders Knowledgebase Requests 

U1 

K1 = < James White,  Assistant Prof > 

K2 = < Sami Gibson,  Associate Prof >   

K3 = < Sami Gibson,  Experience = 5 > 

R(q1) = Read(<Rank, Base_Salary>  of  Associate 

Prof)  

                   

U2 
_ 

 

W(q2) = Write(<Base_Salary> of Full Prof) 

W(q3) = Write(<Rank> of  Sami Gibson) 

Table 6.2. Dependencies 

No. Dependency 

1 <Name,Rank>,<Rank,Base_Salary>, <Name,Experience>  <Name, Total _Salary> 

2 <Name,Rank>,<Rank,Base_Salary>  <Name, Base_Salary> 

Table 6.3.  Sensitivity and Threshold Values of Data items 

Data Item Sensitivity Threshold U1 Threshold U2 

K1 20% 100% 50% 

K2 20% 100% 40% 

K3 10% 100% 100% 

q1 50% 70% 70% 

q2 70% 100% 100% 

q3 80% 100% 100% 

<Name, Total _Salary> 100% 10% 0% 

<Name, Base_Salary> 100% 20% 10% 
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- S3= { U2.W(q2), U1.R(q1),  U2.W(q3) } 

- S4= {U2 .W(q2), U2.W(q3), U1.R(q1) } 

- S5= {U2.W(q3), U2.W(q2), U1.R(q1) } 

- S6= {U2.W(q3), U1.R(q1),  U2.W(q2) } 

Notice that the data items requested by insiders are allowed to both insiders. However, the data 

item in request q1 can be combined with risky data items in U1’s knowledgebase to infer 

unauthorized information. The risk of each independent request is computed using Formula 1 as 

follows.  

- Risk (U1.R(q1)) = 100% -10% = 90%.  

- Risk (U2.W(q2)) = 0%. 

- Risk (U2.W(q3)) = 0%.  

 

Notice that negative Risk values are considered 0. The risk of each sequence is computed using 

formula 2 as follows.  

 

- Risk (S1) = Risk ( U1.R(q1) ) + Risk ( U2.W(q2) | U1.R(q1) ) + Risk ( U2.W(q3) | U2.W(q2), 

U1.R(q1)  ) = 90%+0%+0%=90%. 

- Risk (S2) = 90%. 

- Risk (S3) = 90%. 

- Risk (S4) = 0%. 

- Risk (S5) = 0% 

- Risk (S6) = 0%. 
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Notice that in sequences S4, S5 and S6, the second insider U2 updates the Rank of “Sami Gibson” 

to full professor before the first insider U1 gets access to the Base_Salary of associate professors. 

Thus, the inference that U1 makes about the salary of “Sami Gibson” is wrong, which means that 

these sequences are safe. However, the situation is different for the rest of sequences. In these 

sequences, U1 deduces correct information about the Base_Salary and Total_Salary of “Sami 

Gibson”. Obviously, the system can choose one of the sequences S4, S5 and S6  to grant accesses 

to the insiders. Hence, the system does not need to compute the risk values for all possible 

sequences when there a safe sequence exists, which can be produced directly by placing 

effacement requests before risky requests in the sequence. 

 

6.4 Organizing Operations in Undeclared Tasks 

The method that was proposed in the previous section is applicable when tasks are declared. 

Strictly speaking, that approach depends on the assumption that systems are familiar with all 

operations of concurrent insiders’ tasks. Thus, the approach can check all concurrent tasks’ 

operations and produce a safe sequence when threat is discovered. However, this approach fails 

when tasks are undeclared. In this case, systems are familiar with the operations that are 

launched before discovering threat, but not all operations. Thus, the proposed approach in the 

previous section cannot be used to produce a safe sequence in this case. 

 

This section develops methods that can predict and prevent insider threat without limiting the 

availability of data items in concurrent undeclared tasks. In order to achieve this goal, models are 

proposed to predict the complete operations of undeclared tasks when threat is discovered. Then, 

the predicted tasks are organized into a safe sequence.  
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6.4.1  Predicting the Complete Operations of Undeclared Tasks 

As discussed earlier, preventing insider threat without limiting the availability of data items is 

performed by organizing all operations of tasks into a safe sequence. Thus, the complete 

operations of undeclared tasks should be predicted in order to produce a safe sequence. 

 

Figure 6.5 shows the predicting process of the original tasks (complete operations) of undeclared 

tasks. The predicting is needed when a threat alert is raised while concurrent undeclared tasks are 

being executed. The alert occurs when an insider orders a risky request. At this point, the system 

has only the operations that have been executed before raising the alert. These operations are 

called partial tasks of the original tasks. Next, the partial tasks are compared to a set of training 

tasks, which are a set of daily tasks that are normally executed in the system. The training tasks 

set can be developed in two ways. First, it can be developed during the building of the system 

itself by addressing all possible tasks that will be executed in the system. Second, it can be 

developed using the tasks that exist in the log file. 

 

 

 

 

 

 

 

The purpose of comparing partial tasks to training tasks is to retrieve a set of candidate tasks to 

the partial tasks. The candidate tasks contain the correct (complete) tasks of the undeclared tasks 
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Figure 6.5. Predicting Undeclared Tasks 
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(partial tasks). Retrieving candidate tasks is performed as follows. For each partial task t, each 

task in the set of training tasks that starts with the same operations (from the left) of t is retrieved 

as a candidate task for t. For instance, the task S = { r(x), r(y), w(a), r(b), w(k)} is retrieved as a 

candidate task for the partial task Ps={r(x), r(y), w(a)}. 

 

Retrieving all candidate tasks needs considering all possible ways of executing tasks. A task can 

be executed in different ways. Insiders who have a specific role access the same data items to 

perform a specific task. However, the order of accesses to data items to perform the task may 

differ from one insider to another, which is due to the fact that a task can be executed using 

different orders of its operations. For instance, suppose that the “Salary” of an academic staff is 

computed as follows: Salary = Base_Salary + 200 * Experience. Now, to update the Salary of a 

professor who finishes another year of experience, the task would be as follows. 

{Read(Base_Salary), Write(Experience),  Write(Salary)}    or   {Write(Experience),   Read  

(Base_Salary),  Write(Salary)}. These two sequences of executing the task are called patterns of 

the task. Notice that the patterns show that there is a precedence constraint between 

{Read(Base_Salary) ,Write(Experience)} and Write(Salary), but there is no precedence 

constraint between Read(Base_Salary) and Write(Experience). Thus, the latter two operations 

can be executed in different orders. The following theorem states the conditions of considering 

two tasks as patterns for a task. 

 

Theorem 1. Given the two tasks: S = {Os1(ds1), Os2(ds2),…, Osn(dsn)} and X = {Ox1(dx1), 

Ox2(dx2),…, Oxm(dxm)}, where (Os, ds) and (Ox,dx) indicates operations (read or write) and data 
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items that belong to tasks S and X respectively. S and X are considered two patterns for the same 

task if the following conditions are satisfied. 

1- n = m. 

2-   d:d ∈ S⇔ d ∈ X. 

3-   d :O(d) ∈ S⇔ O(d) ∈ X. 

4-   (O=Write):  (Osi(dsi)Osj(dsj)) ⇔ ( Oxi(dxi) Oxj(dxj)). 

 

Theorem 1 states that two tasks are considered patterns for the same task if they have the same 

number of data items, the same operations on the same data items, and the same order of write 

operations. 

 

Retrieving all candidate tasks requires checking all patterns of tasks. For instance, the task 

{Read(Base_Salary), Write(Experience),  Write(Salary)} may not exist in the set of training 

tasks in this form. Instead, it may exist in the form:{Write(Experience),   Read  (Base_Salary),  

Write(Salary)}.  However, the task is still retrieved as a candidate task for the partial task 

{Read(Base_Salary), Write(Experience)}. Notice that retrieved original tasks should be 

confirmed by insiders to avoid executing incorrect tasks. The next section fully details this 

approach.  

 

6.4.2 Preventing Insider Threat and Preserving the Availability in Undeclared Tasks 

As discussed earlier, the purpose of constructing training tasks is to discover the tasks of 

undeclared tasks, and then, produce a safe sequence that prevent insider threat without limiting 

insiders’ tasks. The prediction is required when an insider sends a risky request. The prediction 
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method is run for all concurrent insiders’ tasks. When the process is finished, a safe sequence can 

be produced. The next section discusses this process in details. 

 

6.4.2.1 The Algorithm 

Algorithm 6.1 shows how to predict the full tasks of undeclared tasks and produce a safe 

sequence. The algorithm works as follows. When an insider, say K, sends a risky request, the 

algorithm starts predicting the candidate tasks of all undeclared tasks that are running 

concurrently. The prediction is based on the previous operations that are executed before 

discovering the risky request (steps1-2). For each insider, say Z, the prediction is performed by 

comparing the previous operations that are executed by Z to the training tasks (step 3). As 

discussed earlier, the training task(s) that starts (from the left) by the same operations, with 

taking into account the patterns of tasks, is retrieved as a candidate tasks(s) for Z’s undeclared 

task (step 4). After retrieving candidate tasks, their operations are organized in a safe sequence. 

To produce a safe sequence, the algorithm searches for an effacement request for the risky data 

item insider K’s knowledgebase (step 7 and step 13). Then, the algorithm organizes the 

operations of tasks by executing the effacement request (and its precedent operations) before 

executing the risky request to prevent the possible threat (steps 8-9 and steps 15 - 19). Notice 

that, in step 25, if no effacement request exists, the algorithm denies the risky request to prevent 

the threat. Hence, the precedent operations represent the operations that have to be executed 

before the effacement request due to operations dependencies.   
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Algorithm 6.1  Preventing Insider Threat 

Input: The set of concurrent insiders R={r1 … rn}, the set of concurrent tasks of insiders T={t1 … tn},  

knowledgebases, the set of training tasks TT={Tt1..Ttz}, Safe Sequence SS ={}, operations dependencies, 

Candidate Tasks set CT ={}, Risky Request (Rq), Risky Data Item  (RD). 

Assumptions: Training tasks that are stored in the system represent all tasks that are normally executed in the 

system. 

Output: A safe sequence for executing undeclared tasks’ operations. 

1. For each insider ri ∈ R // when a risky request Rq is discovered  

2.  Retrieve ri’s previous requests L ={qi1…  qix} //operations executed before the risky request 

3.  Let G = {Tt1… Tts} the set of training tasks that have L as starting operations // with  taking into account the 

                                                                                                                                                      patterns of tasks 

 

4.  CTi = G // retrieve G as a candidate task(s) for ri’s undeclared task 

5. If |CTk| =1 for all insiders rk ∈ R // one candidate task  for each undeclared task 

6.  Correct _Task = CTk // Retrieve CTk as the correct task for  rk’s undeclared task 

7.  Search for an effacement request (ER) //effacement request that updates the risky data item 

8.  If ER Exists 

9.     SS = {Oi=1, Oi=2, … , Oi=n}: index (ER)< index(RR) //organize the operations of tasks so that ER(and its 

                                                                                            precedent operations)  is executed before the Rq 

 

10.  Else go to step 25 

11. Else if |CTk| > 1 for an insider rk’s undeclared task// more than one candidate task? 

12. Assume that the risky request Rq∈ tp, where tp is the task of rp// risky request 

13. Search for an effacement request (ER) 

14. If ER Exists 

15.      Let ER ∈Ttcbe an effacement request, where Ttc∈ CTf ∧ f ≠ p //effacement request 

16.      Suggest ER and its precedent operations to insider rf //executing the  effacement  request  before the 

                                                                                                                                                risky request 

                                                                                       

17.      If rf accepts ER 

18.         Executes ER and its precedent operations //correct prediction of the f’s undeclared task 

19.         Execute Rq    //since the threat is eliminated 
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The following example demonstrates how the algorithm works. Suppose that there are three 

insiders R1, R2 and R3 who are executing their tasks concurrently. Assume that the 

knowledgebase of insider R1 (KB(R1)) contains the data item p, which can be combined with the 

data item d to infer the unauthorized information S1 using the dependency{(d, p)  S1}. Thus, the 

data item p is a risky data item. Now, assume that R1 requests the data item d, which is in this 

case a risky request. Using step 1, the algorithm looks back at the previous requests that have 

been executed by the insiders before discovering the risky request. Suppose that the previous 

requests are as follows: [R1:  r(a), r(b), w(c), r(d)], [R2: r(x),r(y),r(z)] and[R3: r(m), w(n)].Then, 

the algorithm searches for candidate tasks that start with these operations (steps 2-4). Suppose 

that the graphs of the retrieved candidate tasks are as shown in Figure 6.6. The double circle 

around a request indicates an effacement request, while a circle indicates a risky request. Since 

there are more than one candidate task that have been retrieved for an undeclared task, the 

algorithm moves to step 11.  Next, the algorithm checks which candidate task contains the 

effacement request (steps 12-15). In this example, the effacement request is w(p), which is in the 

first candidate task of insider R2’s undeclared task. The algorithm suggests this request (and its 

precedent operations) to insider R2 (step 16). 

20.         Allow insiders to continue performing their tasks normally //after eliminating the  threat                                                                                                        

21.         If another Rq is requested  //another threat shows up 

22.             Repeat the steps 1 to 20 

23.      Else 

24.         Search for another ER and repeat steps 13-22// incorrect candidate task  

25. Else if there is no ER exists  //no effacement operations exist 

26.      Deny Rq 
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If insider R2 accepts and executes this request (steps 17- 18), the algorithm grants insider R1 

his/her risky request r(d) to be executed after the effacement request (step 19). The executed 

sequence of operations until this point is called a partial sequence. Next, the execution of the 

operations of tasks is performed normally as they are requested by insiders until another risky 

request appears. If the proposed effacement request w(p) is rejected by insider R2, this means that 

the predicted task is incorrect. Thus, the algorithm searches for another effacement request (steps 

23-24). If no effacement request exists, R1’s task is rejected to prevent the threat. 

 

Notice that the algorithm completely organizes the operations of candidate tasks when one 

candidate task is retrieved for each undeclared task (steps 5-10). It assumes that the candidate 

tasks are the correct tasks. Whereas it produces a partial sequence (as in the example) when there 

is more than one candidate task retrieved for an undeclared task (steps 11-24). In the latter case, 

the algorithm does not organize all the operations of predicted tasks in a sequence. Instead, it 

stops after executing the effacement request and the risky request respectively. Then, it enables 

Figure 6.6.The Graphs of Candidate Tasks for the Undeclared Tasks of Insiders R1,R2 and R3 

(a) The Candidate Tasks Graphs for R1’s Task (b) The Candidate Tasks Graphs for R2’s Task 

(c) The Candidate Tasks Graphs for R3’s Task 
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insiders to continue executing their operations normally. This choice is to eliminate the possible 

overhead that may arise when predicting an incorrect task from the candidate tasks, which 

requires re-predicting and reorganizing tasks operations.  

 

In real scenarios, applying the algorithm could pose time overhead. However, not using the 

approach limits the availability of data items (insiders’ tasks) or degrades a system’s security. 

Strictly speaking, not discovering risky requests exposes systems’ sensitive information, which 

poses dangerous effects on critical systems such as military systems. Similarly, discovering risky 

requests and denying them to prevent insider threat limits the availability of data items and 

affects insiders’ tasks, which degrades systems performance especially in online systems. 

Contrarily, adopting the proposed approach prevents insider threat without affecting insiders’ 

tasks. The system may decide which is least costly according to its own requirements? Exposing 

system’s sensitive assets or limiting the availability of data items or accepting the delay of 

applying the proposed approaches. Section 6.5 demonstrates the conditions under which the 

proposed approach works with greatest performance and least delay. 

 

6.4.2.2 The Proof of Correctness 

The algorithm consists of two main parts, which are predicting correct candidate tasks and 

organizing the operations of predicted tasks in a safe sequence. The following theorems prove 

that the algorithm addresses the correct steps to perform these parts.  

 

Theorem 2. Given the training tasks Tt1,Tt2…Ttn , and a poset of operations S = {O1, O2… Ok}: S 

⊂UT, where UT represents an undeclared task, then: 



121 
 

      Tti∊ CT(UT) ⇔ S ⊂ Tti  ∧ Tti ∊ patterns(UT) ∧ (                  
 ) 

 

Where S represents the set of operations that are executed to perform UT before discovering a 

risky request, CT(UT) indicates the set of candidate tasks  for UT. 

 

The theorem addresses the conditions of considering a training task as a candidate task for an 

undeclared task.  

 

Proof:  

The proof of this algorithm is fairly straight forward. Since UT is an undeclared task and the only 

known part of it is S, any training task, say Tti, that starts with the operations of S could be the 

correct task of UT (steps 2-4). In other words, the insider who has executed the operations in S, is 

probably going to perform the training task Tti. Thus, Tti is considered a candidate task for UT. 

Notice that the comparison is performed with taking into account the precedence constraints and 

the patterns of tasks as discussed in 4.2 (step 3).□ 

 

Theorem 3. Given two sequences for executing the operations of concurrent tasks in a system, 

S(O1…, ER,…,RR,…, On) and S’(O1,…, RR,…,ER,..., On), where Oi is an  

operation, RR is a risky request and ER is an effacement request. Then: 

- Threat (S) < Threat(S’). 

- Availability (DI(S)) >Availability(DI(S’)), where DI(S) and DI(S’)  indicates the data items in 

S and S’ respectively. 
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The theorem states that executing an effacement request before a risky request prevents insider 

threat and preserves the availability of data items. Choosing a safe sequence is performed using 

steps 8-9 and 12-20.  

 

Proof: 

Suppose that RR, ER and RD are a risky request, an effacement request, and a risky data item 

respectively. As discussed earlier, based on definitions 31 and 32, combining RR and RD may 

expose unauthorized information, which is threat. On the contrary, if the system discovers this 

threat when an insider requests RR, the system may deny RR, which reduces the availability of 

the data items needed for the insider’s task. Thus, both possibilities are problematic. Next, the 

correctness of the algorithm is proved by contradiction as follows. 

 

(Proof by contradiction) Suppose that both sequences S and S’ are executed, but Threat(S) < 

Threat(S’) and Availability(DI(S)) <Availability(DI(S’)). Now, in sequence S, ER is executed 

before RR. This means that RD is expired before executing RR. Thus, the inference that is based 

on combining RD with RR is incorrect, which means that no threat exists. Moreover, RR is 

granted and executed, which means that the availability of data items is not limited. Meanwhile, 

in S’, RR is executed before ER. In this case, the inference that is based on combining RR and RD 

is correct since the value of RD is not expired yet, which is threat. Thus, Threat (S’) > Threat(S), 

which contradicts the assumption. Contrarily, suppose that the system discovers this possible 

threat and denies the insider access to RR to prevent the threat. This action limits the availability 

of RR, which is a data item in S’. As a result, Availability(DI(S)) >Availability(DI(S’)). 

Contradiction.□ 
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The theorems above prove the correctness of predicting tasks graphs using the algorithm. 

Moreover, they prove the correctness of organizing access privileges in preventing the threat and 

increasing the availability of data items.  

 

6.4.3 A Real World Example Scenario 

The following example clarifies how the algorithm works in real world scenarios. Suppose that 

the two insiders Amy and Ashley want to submit the following tasks to the corresponding 

system. Hence, the insiders submit their tasks as one operation at a time. Amy’s task is as 

follows. 

Query1:                                                       Query2: 

Select E.Address                                         Select E.Rank 

From Employee E                                      From Employee E 

Where E.Name=”Jif”                               Where E.Name=”Jif” 

Where Ashley’s task is as follows. 

Query3:          Query4:                                  Query5: 

Select S.BaseSalary           Update table Employee          Update table Employee  

From Employee S              Set Experience= 5                  Set Salary =BaseSalary + 

Where S.Name=”Jif”       Where Name= “Jif”                             100*Experience   

                   Where Name= “Jif” 

Suppose that the corresponding relational database has the following dependencies: {Rank 

BaseSalary}, {Salary  (BaseSalary, Experience)}, where Salary = BaseSalary + 100* 

Experience. In addition, assume that Amy’s knowledgebase contains the information (Jif, 4), 
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which indicates the experience of Jif, and the information (Jif, Salary) is unauthorized 

information to Amy. Now, suppose that Query1 and Query3 have been executed and Amy has 

just submitted Query2, which contains a risky request Read(Rank). This request invokes the 

algorithm. In this case, the algorithm starts predicting the candidate tasks for these undeclared 

tasks. Assume that the algorithm has retrieved one candidate task for each task (steps 1-4) as 

shown in Figure 6.7. In this case, the algorithm supposes that these are the correct candidate 

tasks for the undeclared tasks (Steps 5-6). Step 7 searches for an effacement request, which is 

w(Experience)(Query4) in this case, and step 8 organizes the operations in a safe sequence by 

placing w(Experience) before Read(Rank). At the end, the safe sequence would be as follows: 

{r(Address), w(Experience), r(Rank), r(BaseSalary), w(Salary)}.This sequence removes the 

possible threat that may arise if Amy’s task is executed before Ashley’s task. Moreover, the 

availability of data items is preserved and both tasks are executed.  

 

 

  

 

 

 

 

 

 

6.5 Experiments and Analysis 

The simulation was performed using SQL Server and MS C#.net to test the effectiveness of the 

proposed approaches. A sample relational database of 10 tables was created manually. The 

Figure 6.7. (a) Amy’s Task Graph (b) Ashley’s Task Graph 
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dependencies and access permissions were created randomly. Similarly, different sizes of 

training tasks were created randomly as well. 

 

The simulation consists of two parts. The first part demonstrates the percentage of prevented 

threat using a safe sequence under different conditions. It shows the effectiveness of the 

proposed approaches discussed in section 6.3 (declared tasks). The second part demonstrates the 

relationship between the positions of risky requests in risky transactions and the number of 

retrieved candidate tasks. Moreover, it shows the relationship between the size of training sets 

and the number of retrieved candidate tasks. This part shows demonstrates the effectiveness of 

using the proposed approaches discussed in section 6.4 (undeclared tasks).   

 

6.5.1 The Percentage of Safe Sequences 

In this part, the simulation parameters consist of the number of concurrent insiders and the 

percentage of write operations in transactions. For the same parameters’ values, the simulation 

was executed many times and the average was taken as the result. Similarly, the simulation was 

performed according to different sizes of training sets, and the average was taken as the final 

result. We should mention here that all risky transactions were caught and prevented using the 

proposed approaches.  As discussed earlier, the proposed approaches prevent threat by choosing 

a safe sequence, or denying insiders’ risky requests if finding a safe sequence (effacement 

request) is not possible. The simulation shows the percentage of prevented threat using a safe 

sequence in comparing to overall prevented threat. Producing a safe sequence prevents threat 

without limiting the availability of data items. However, denying access requests prevents threat 

but limits the availability of some data items. Hence, it is assumed that the system is able to find 
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a safe sequence when an effacement request exists. Figures 6.8 and 6.9 show the results of this 

part of simulation. 

 

Figure 6.8 shows the percentage of safe sequences using the proposed approach when the 

number of concurrent insiders is variable. The percentage of write operations in transactions is 

fixed at 50% in this simulation. As shown, the percentage of prevented threat is 0 at round 1. 

This is expected since at round 1 the insiders start executing transactions. Thus, their 

knowledgebases are empty, which means that there is no threat posed by their knowledgebase, 

and as a result, there is no prevented threat. As knowledgebases grow, the threat may increase, 

but the figure shows no trend such as increasing or decreasing in the percentage of safe 

sequences. The analysis of this result is as follows. When the knowledgebase of an insider gets 

larger, the probability of finding a risky data item and a risky request may increase. However, the 

number of risky data items or risky requests by an insider is limited by the maximum number of 

data items s/he can request to perform his/her task, which is set to be 6 for this simulation. 

Moreover, there are many insiders in the system that may order effacement requests. This makes 

the percentage (Safe Sequences/ Prevented Threats) stable in general as knowledgebases grow.   
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The figure shows that the probability of finding a safe sequence increases when the number of 

concurrent insiders increases. Clearly, increasing the number of concurrent insiders may increase 

the number of risky requests. But the number of risky requests that may be demanded by an 

insider is limited as discussed earlier. Whereas the number of effacement requests increases as 

the number of concurrent insiders increase. Thus, the probability of finding an effacement 

request (and a safe sequence) gets larger when the number of concurrent transactions increases.  

 

Figure 6.9 shows the percentage of prevented threat using a safe sequence according to different 

percentages of write operations. The number of concurrent insiders is fixed at 10 for this 

simulation. The figure shows that when the percentage of write operations increases, the 

percentage of finding a safe sequence increases. Obviously, increasing the write operations in the 

concurrent transactions increases the possibility of finding effacement requests, which increases 

the possibility of finding a safe sequence. Moreover, the figure shows that no increasing or 

decreasing trend exists as the knowledgebases of insiders grow, which is the same result that is 

shown in Figure 6.8. 
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Figure 6.9.  The percentage of the prevented threat using a safe sequence in comparing to 

different percentages of write operations 
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As discussed earlier, finding a safe sequence to run transactions is better than denying accesses 

according to both security and availability viewpoints. The simulation shows that the probability 

of finding a safe sequence gets larger as the number of concurrent insiders and the percentage of 

write operations in transactions increase; the percentage of safe sequences reaches about 65% 

when the number of insiders is 25 (with fixed write percentage = 50%), and it reaches about 40% 

when the percentage of write operations is 80% (with fixed number of concurrent insiders = 10). 

We should mention here that the number of posed threat depend also on the threshold values of 

insiders about data items. Hence, insiders are assumed to have direct access permission to 30% 

of data items in this simulation. 

 

6.5.2 Retrieved Candidate Tasks 

Predicting candidate tasks may pose delays in executing insiders’ tasks. The delay time depends 

on the number of candidate (similar) tasks that may be retrieved when a risky request is 

encountered. This part of simulation was performed to show how much delay is needed to 

retrieve the correct candidate task of an insider’s task when using the proposed approach in 

section 6.4 (undeclared tasks). The simulation was performed according to different sizes of 

training tasks. Figure 6.10 shows the relationship between the number of retrieved candidate 

tasks and the position of the risky request in a risky transaction. The figure shows that the 

number of candidate tasks increases when the position of the risky request (RR) gets smaller. 

This is a normal result since when a risky request is encountered in a transaction; the approach 

looks back into the operations that are executed before the risky request in the transaction. Then, 

it searches for tasks in the training set that start with the same set of data items, operations and 

the order of write operations. Thus, when the number of these data items increases, the number 
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The figure shows that the maximum number of retrieved candidate tasks for each insider is about 

0.28, which happens when the position of RR is 2.1. These values are average values since the 

simulation was performed for several rounds and the average was taken as the final result. This 

number of candidate tasks poses little cost on delay when executing transactions, especially, 

when this cost is compared to security or availability costs that would be paid in case of insider 

attacks. However, this simulation was performed with 15 concurrent insiders and 150 training 

tasks. The next figure reveals more details when these numbers get larger.  

 

Figure 6.10.The relationship between the number of retrieved candidate tasks 

and the position of a risky request (RR) in a risky transaction. 
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Figure 6.11 shows the relationship between the number of candidate tasks and the size of the 

training set according to different number of concurrent insiders. We should mention here that 

the number of candidate tasks represents the average number for each insider, which has been 

calculated according to several rounds. The figure shows that as the size of the training set 

increases, the number of candidate tasks increases, which is a fairly straight forword restult. 

Notice that, in y-axis, the number of candidate tasks is multplied by the postion of RR. This 

conversion is to measure the number of candidate tasks according to the same postion of RR. For 

instance, suppose that when the size of the training set is 300, the number of candidate tasks and 

the position of RR are 1 and 2 respectively. Similarly, assume that when the size of the training 

set is 500, those values are 0.5 and 3 respectively. To measure the number of candidate tasks 

when the position of RR is 1 in both sizes of training sets, 1 is multiplied by 2 and 0.5 is 

multiplied by 3. Notice that this conversion is performed by multiplication and not by division 

since the postion of RR and the number of candidate tasks is inversely correlated. 

Figure 6.11.  The relationship between the number of retrieved candidate tasks and the size 

of the training set. 
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As shown in the figure, the number of retrieved candidate tasks for each insider is about 0.3 

when the training set size is 100, but it reaches about 4 when the training set size is about 900. 

Thus, the proposed approach works better when the number of daily transactions in a system gets 

lower. The figure shows that there is no relationship between the number of concurrent insiders 

and the number of candidate tasks. This is a normal result since the number of retrieved 

candidate tasks in this simulation is the average for each insider.  Strictly speaking, the 

simulation  was performed in several rounds, and the total number of retrieved candidate tasks is 

divided by the number of rounds and the number of concurrent insiders in the system. Thus, as 

the number of insiders increases, the total number of candidate tasks increases, but the average 

stay the same in general.  
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7. Tackling Insider Threat in Cloud Relational Database Systems 

 

7.1 Introduction 

Using virtual machines to run applications is one of the main features of using the cloud, where 

cloud platforms host many applications (tenants). Adopting multi-tenancy reduces the operating 

cost by allowing powerful resources sharing among tenants. Managing virtual machines are 

required in order to achieve affective recourses utilization. Load balancing are performed using 

live migration [Das11], where virtual machines are migrated from overloaded nodes to idle (or 

low-loaded) nodes. However, live migration may pose a delay in delivering services since it 

limits the availability during migration process. Developing methodologies for efficient and low 

cost live migration has got significant attentions by researchers. A number of methods have been 

proposed for effective live migration such as Albatross [Das11] and Zehpyr [Elmore11].    

 

Security is one of the major concerns when moving to the cloud. Proving the security of data in 

the cloud is mandatory to achieve users’ trust of cloud providers. Multi-tenancy could be a 

vulnerability source. For instance, an insider may use shared resources to breach the security of 

other insiders’ tasks [Takabi10]. Moreover, the guarantee of protecting data that resides on the 

cloud from the threat of cloud providers’ employees is a major requirement by customers. 

Encryption is one of the methods suggested to protect data. For instance, CryptDB, 

Homomorphic Encryption (HOM) and Encryption Deterministic (DET) are encryption methods 

that can execute the operations of relational databases queries on encrypted data [Curino11]. 

These methods prevent the cloud providers’ employees from exposing users’ data even when 

customers’ queries are executed. Besides protecting data, authentication of users is another major 



133 
 

concern when moving to cloud. Thus, the development of digital identity management systems is 

crucial for cloud computing [Bertino09]. The agreements between cloud customers and cloud 

providers regarding the security and offered services are set using Service Level Agreements 

SLAs, which should be maintained by cloud providers. 

 

Insider threat is one of the problems that worry organizations and individuals about cloud 

computing. Moving data into the cloud increases the number of insiders, which increases insider 

threat. Moreover, preventing data in the cloud from insiders may require new methodologies 

different from those used to protect data stored locally. This chapter discusses insider threat at 

cloud relational databases (cloud RDBMS). To the best of our knowledge, this is the first work 

that tackles this problem at cloud RDBMS. As discussed earlier, knowledgebase is a serious 

source for insider threat. Insiders can combine the data items that they accessed (in their 

knowledgebases) with other data items that they can request to infer sensitive information. Cloud 

RDBMS has new vulnerabilities that may enable insiders to breach the existed solutions and 

launch attacks using their knowledgebases. One of these possible vulnerabilities is the migration 

(live migration) of insiders’ tasks across availability zones and data centers due to load 

balancing. This chapter shows how existing insider threat preventing methodologies, which 

prevent insiders from exploiting their knowledgebases to pose threat, can be breached by insiders 

in cloud RDBMS. Moreover, it proposes three models that can be used to prevent the threat of 

knowledgebases in this new environment. Furthermore, it addresses the conditions under which 

they can be used effectively. In addition, it discusses how to manage the effect of updating data 

items in knowledgebases using the proposed models.  
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7.2 Insider Threat in Cloud Relational Databases 

Cloud providers store data in multiple datacenters that are both geographically and logically 

separated. A datacenter consists of connected servers and storage systems. Storage systems are 

aggregated into storage pools to form logical storage, which can be accessed from different 

computer systems that share the storage pool. One of the key benefits of this feature is that data 

can be replicated or moved to other locations (storage locations) transparently to servers using it 

[Stryer12].   

 

Availability zones in each datacenter are connected via inexpensive and low latency network. To 

achieve greater performance and fault tolerance, an application’s traffic may be   distributed   

across multiple availability zones and data centers, which is called elastic load balancing 

[Amazon12a]. Figure 7.1 shows the structure of Amazon cloud services. The figure shows that 

Amazon has five data centers across the globe. Each datacenter has more than one availability 

zone (AZ) [Amazon12b]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1. Amazon’s Cloud Structure 
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Cloud relational databases are fragmented and replicated to increase availability and reliability. 

Replication of data across availability zones and datacenters should be consistent. Workloads on 

replicas’ nodes are balanced using live migration, where tenants (applications) are migrated from 

overloaded nodes to idle (or low-loaded) nodes to achieve load balancing. Users have no control 

on choosing the location or the instance that they prefer. Cloud systems choose the server, the 

location and the storage that are needed for executing a process depending on some criteria such 

as the amount of load on servers or availability zones. Thus, different user’s requests may be 

executed on different instances in the same availability zone or in different availability zones or 

data centers.  

 

Replication and load balancing increases the performance of cloud relational database systems. 

However, it may increase the probability of insider threat. Such a threat arises when a cloud 

relational database system fails to use the knowledgebase of insiders to detect threat. In other 

words, an insider may combine data items s/he gets from database instances in different 

availability zones to pose threat. Figure 7.2 shows the problem. The insider accesses the data 

item D1 in the availability zone 1(AZ1) (that may have the knowledgebase of the insider) and then 

accesses D2 in the availability zone n (AZn) (that may not have the insider’s knowledgebase). In 

this case, the system on the availability zone n fails to detect this threat and enables the insider to 

access D2. Thus, the insider combines the two data items and gets the sensitive information S1, 

which is a threat.  

 

In addition, insiders are allowed to access a cloud from any site on the globe, which is one of the 

features that the cloud offers. Cloud systems connect insiders to the closest availability zone (if it 
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is not overloaded) to execute their queries in order to achieve the best performance. This means 

that insiders may be connected to different availability zones when they travel and work from 

different sites.  In this case, insiders may be able to launch attacks using the same scenario 

described in Figure 7.2. We should mention here that to the best of our knowledge no research 

has discussed the threat of knowledgebase in cloud environment, and no research has addressed 

how to manage knowledgebases in this new environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

In light of the previous discussion, an up-to-date knowledgebase should be available to be 

checked at each insider’s access for all insiders to prevent insider threat.  Furthermore, the 

knowledgebase of an insider should be updated after each access an insider performs. Thus, 

cloud RDBMS needs new methodologies to build, store and synchronize knowledgebases in 

cloud environments since local knowledgebase are no longer suitable.    

 

 

Figure 7.2. Insider Threat in Cloud RDBMS 
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7.3 Mitigating the Threat of insiders’ knowledgebases 

Securing cloud RDBMS against insider threat needs a methodology that monitors the activities 

of insiders in different instances and locations of cloud relational databases. The knowledgebases 

of insiders should be checked and synchronized to achieve this purpose. In traditional RDBMS, 

building, maintaining, and checking knowledgebases are the responsibilities of organizations 

(owners). Nonetheless, when moving to the cloud, these operations are transferred to cloud 

providers (Cloud RDBMS). Keeping these responsibilities for local systems when moving to the 

cloud violates the concept of cloud computing. Moreover, keeping the knowledgebase of an 

insider in local storage needs transferring it with every access by the insider, which is an 

infeasible way due to the network overhead that it poses especially when knowledgebase gets 

large. This section introduces three frameworks to maintain knowledgebases in Cloud RDBMS, 

and demonstrates the features and limitations of each one.   

 

7.3.1 Peer-to-Peer  Model 

In this model, the knowledgebase of each insider is built and stored in all availability zones. At 

each access of an insider to a data item in an availability zone, the knowledgebase of the insider 

in the availability zone is updated. Next, the updates are sent to all other availability zones and 

data centers simultaneously to keep knowledgebases consistent. Transactions are monitored 

locally at each availability zone or database instance. Thus, insider threat monitoring is 

performed locally without a need to communicate with other nodes. Figure 7.3 shows the 

proposed framework, where AZ denotes an availability zone, LB denotes load balancing and 

U(KBs) denotes updating of  knowledgebases. As shown in the figure, an insider sends his/her 

query to a cloud RDBMS. The cloud system sends the query to the closest availability zone. If 
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the availability zone has a high load, the query is transferred to another availability zone. In both 

cases, the insider’s knowledgebase is checked to ensure that there is no threat. Once the query is 

executed, the knowledgebase of the insider is updated and all replicas of the knowledgebase in 

all other availability zones are updated as well.  

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

A key benefit of this model is that there is no single point of failure. Moreover, transactions and 

threat detection processes are executed fast since all processing are performed within a single 

availability zone and no communications are needed with other zones of the cloud system. 

Furthermore, the processing needed for manipulating knowledgebases are distributed among all 

availability zones, which balances the load on them. The challenge that arises when using this 

model is the profiling of activities (building knowledgebases) for each insider. Local profiling is 

faster in processing transactions, but it imposes synchronization problems. Knowledgebases in 

all database servers should be updated simultaneously. Otherwise, insiders may access different 

data items in different sites (due to load balancing) and combine them using dependencies to 

pose threat as discussed earlier. Keeping knowledgebases updated needs a lot of immediate 

Figure 7.3. Peer-to-Peer Model 
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processing, which is both time and resources consuming, and it causes delays in processing 

transactions. In summary, this model poses high network traffic and delays transaction 

processing especially in case of large number of replicas. Therefore, this approach is suitable 

when the number of instances is small.  

 

To enhance the performance of this model, updating knowledgebases in some availability zones 

can be postponed when the processing load or network traffic is high. In this case, new 

processing requests by insiders should be distributed between up-to-date availability zones only. 

Other availability zones can be updated when traffic is low. This helps in increasing the 

performance of processing transactions and in decreasing the delay that may be caused in case of 

high network traffic.  

 

7.3.2 Centralized Model 

This model uses a coordinator site that builds, stores, and manages the knowledgebases of all 

insiders. Moreover, each insider’s query is sent to the coordinator first. Then, the coordinator 

checks the query against insider threat using the insider’s knowledgebase that it has. If no threat 

exists, the coordinator sends the query to one of the cloud RDBMS nodes (in an availability 

zone) with taking into account the load balancing. After executing the query successfully, the 

cloud RDBMS sends back an acknowledgement to the coordinator so that it can update the 

knowledgebase of the insider. The model in this case has a bottleneck. That is, failure of the 

coordinator turns down the entire system of insider threat prediction and prevention. Figure 7.4 

shows the modified model. The modified model uses a secondary coordinator to mitigate the 

bottleneck problem, which is similar to the idea used in damage recovery in distributed systems 
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by Zue  and Panda [Zue04]. The secondary coordinator is used only in case of failure. However, 

the secondary knowledgebase should be updated to keep both knowledgebases consistent as 

shown in Figure 7.4, where U(KBs) indicates updating the knowledgebases, LB indicates load 

balancing, and “Ackn.” denotes an acknowledgement.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

The advantages of this model include relatively small amount of network traffic in compared to 

the previous model. Thus, this model is more scalable than Peer-to-Peer model. Moreover, the 

updates are synchronized between the instances of knowledgebases only (the primary and 

secondary sites). That is, no delay occurs because of the synchronizing process between 

knowledgebases instances. However, the delay may happen because all requests are inspected 
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Figure 7.4. Centralized Model 
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and filtered at the central unit. Therefore, the central unit should be equipped with high 

performance capabilities to carry out this job.  

 

7.3.3 Mobile-Knowledgebases Model 

This model has the advantages of Peer-to-Peer model, and mitigates its disadvantages. In this 

model, an availability zone in a data center stores knowledgebases of insiders who are 

geographically close to it, instead of storing knowledgebases of all insiders. For example, Figure 

7.5 shows how knowledgebases of insiders in the USA may be stored; where Arkansas insiders’ 

knowledgebases can be stored in availability zone 4, and Washington insiders’ knowledgebases 

can be stored in availability zone 1. Hence, availability zones may belong to different data 

centers. This model depends on the assumption that insiders are highly probably performing 

most of their work in one location (i.e. a company complex). However, an insider may perform 

his/her work from different (geographically) locations, which is a key advantage of 
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Figure 7.5. An Example of Mobile Knowledgebases Model 



142 
 

cloud computing. In this case, the cloud system should send a copy of the knowledgebase of the 

insider to the new location to check his/her queries against insider threat. In the figure, Send KBs 

stands for sending a copy of a knowledgebase of an insider, which may be needed when 

balancing a load or when an insider accesses an availability zone that does not have his/her 

knowledgebase.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To show how the model works, suppose that an insider, say Bob, works for a company in 

Arkansas, which belongs to availability zone 4 (AZ4). Assume that Bob travelled to Washington, 

which belongs to availability zone 1 (AZ1), and he wants to perform some work for his 

company. Figure 7.6 shows how the model works in this case. Bob sends his query to the cloud 

system, which forwards his request to AZ1. The cloud system in this availability zone checks 

whether Bob’s knowledgebase exits or not. Since the knowledgebase is not available, the cloud 

system in AZ1 contacts other availability zones asking for the knowledgebase of Bob. 

Figure 7.6. Executing Queries in a Mobile-Knowledgebases Model 
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Availability zone 4, which has the knowledgebase, sends a copy of Bob’s knowledgebase to 

AZ1. Then, the cloud system in AZ1 checks whether there is a threat posed by Bob. If there is no 

threat, AZ1 executes Bob’s request and sends the updates on Bob’s knowledgebase to AZ4. 

Algorithm 7.1 shows how this model works in details. 

 

 

Algorithm 7.1. Executing Transactions and Insider Threat Prevention in Mobile-
Knowledgebases Model 

Input.  Dependencies, Knowledgebases 
Output. Updated Knowledgebases, Insider Threat Prevention 
 
1. For each insider K 
2.   Store an instance of the knowledgebase of K (KB(K)) in the closest AZ 
3. For each transaction T submitted by an insider F to AZ J 
4.     Check the availability of KB(F) in J 
5.     If KB(F) exists in J 
6.         Retrieve KB(F) and the Dependencies graph DG  
7.         Use KB(F) and DG to detect insider threat 
8.       If an insider threat is detected   
9.           Deny T   
10.       Else 
11.           Execute T 
12.           Update KB(F) in the AZ J  
13.   Else 
14.        Send a “search request” for KB(F) to other availability zones 
15.        Retrieve KB(F) from its host AZ, say HAZ   
16.        Use KB(F) and DG to detect insider threat  
17.        If an insider threat is detected 
18.           Deny T 
19.        Else 
20.            Execute T 
21.            Sends the Updated  KB(F) to HAZ      

 

 

Mobile-Knowledgebases model eliminates the need to store knowledgebases of all insiders in 

every availability zone as in Peer-to-Peer model.  Moreover, it has less traffic than model since 

updates of knowledgebases are sent to host availability zones only in case of “moving” insiders. 

Thus, this model is more scalable than Peer-to-Peer model. Furthermore, a failure of an 

availability zone does not affect the tasks of other insiders in other availability zones, which 

means it does not have a bottleneck as in the Centralized model (more reliable). Furthermore, in 
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most cases, the model needs to process the transactions and manage the knowledgebases of some 

insiders only, which means it has less processing overhead than other models. 

 

This model can be optimized more in order to eliminate the need to send messages to all 

availability zones searching for the knowledgebase of a “moving insider”. This can be achieved 

by storing a directory for all insiders on an organization and their hosting availability zones. 

Thus, when an insider’s request is sent to an availability zone other than his/her hosting one, the 

cloud system at the new availability zone looks up the directory it has to retrieve the insider’s 

hosting availability zone. Then, a message is sent to the hosting availability zone only to retrieve 

the knowledgebase of the insider. Storing the directory of all insiders needs more storage, but it 

greatly reduces the traffic overhead, especially when the number of availability zones and data 

centers gets larger. 

 

7.4 Managing Dependency Graphs and Updates on Data items in Cloud RDBMS 

Knowledgebases and dependency graphs are major parts in insider threat prediction and 

prevention models as discussed earlier. We suggest using the proposed dependency graphs, 

which are NDIG and CDG, in insider threat mitigation models in cloud RDBMS. In traditional 

insider threat mitigation models (in traditinoal RDBMS), dependency graphs are stored locally as 

a part of the models. In cloud RDBMS, the location of NDIG and CDG depends on which model 

we would adopt to manage knowledgebases. In Peer-to-Peer and Mobile-Knowledgebases 

models,  dependecy graphs should be stored in each availability zone since insider threat 

prediction and prevention is performed at each one.  However, in Centeralized model, 

dependency graphs need to be stored at the coordinater’s sites only.  
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As discussed earlier, checking life times of data items in knowledgebases is crucial. 

Knowledgebase in cloud RDBMS should be managed by taking into account the lifetimes of data 

items such that expired data items are marked or deleted. Managing the lifetimes of data items in 

cloud RDBMS depends on the model used for managing knowledgebases. Two possible ways 

can be used to manage the lifetimes of data items in cloud relational databases (cloud RDB), 

which are Exhaustive-Updating and Updating-on-Use.  

 

7.4.1 Exhaustive-Updating Approach 

In this approach, on each write access of a data item by an insider, all knowledgebases of 

insiders are investigated searching for the data item. If the data item exists in one of to 

knowledgebases, the value of the data item is checked against expiration. If the value is expired, 

the data item is deleted or marked as expired. After completing this process, all instances of 

affected knowledgebases should be updated. Notice that in this approach a threat prediction 

model needs to investigate knowledgebase only to search for a risky data item and to check 

whether its lifetime is expired or not.  

 

Using this approach in Peer-to-Peer model is time consuming, and poses network traffic and 

processing overhead since the Peer-to-Peer model maintains knowledgebases at each availability 

zone. Once a knowledgebase is updated, the updates should be sent through networks to other 

cloud RDBMS nodes. Therefore, this approach can be used in small systems that have small 

number of insiders and data items and when the number of cloud RDB instances is small. In 

Centralized Model, updating knowledgebases when using Exhaustive-Updating approach is 

performed on the coordinators site only. Moreover, network traffic occurs between the primary 
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site and the secondary site only. Thus, less network traffic is posed in comparing to the previous 

model, which means that it is more scalable. However, since all the processing of threat 

prediction and prevention is performed at coordinators site, using this approach adds more load 

to the coordinator’s node, which may overload it. Therefore, powerful capabilities should be 

guaranteed and maintained at the node.  

 

The workload of using this approach in Mobile- Knowledgebases model is distributed among 

availability zones. Clearly, since the knowledgebases of a group of insiders are stored in the 

closest availability zone, updating a knowledgebase is performed locally, and no update is sent 

out through networks. That is, no network overhead is posed as in Peer-to-Peer model, and 

contrarily to the Centralized Model, the processing overhead of maintaining knowledgebases is 

distributed among all availability zones. Thus, the best performance of the Exhaustive-Updating 

approach is achieved when it used with Mobile-Knowledgebases model. 

 

7.4.2 Updating-on-Use Approach: 

Contrary to the Exhaustive-Updating approach, this method does not update knowledgebases 

immediately after each update. Instead, the lifetime of a data item is updated when it is checked 

against insider threat only, which is performed as follows. At each read access to a data item by 

an insider, if the data item can be used with a another data item, say F, in the insider’s 

knowledgebase to pose threat, the timestamp of  F  (in the insider’s knowledgebase) is compared 

to the write timestamp of F in the cloud RDB. If F was updated after the last access to it by the 

insider, F is called P-Expired, which indicates Possibly Expired. Next, the value of F is 

investigated to check whether F is expired or not. If it is expired, the data item is removed from 
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the knowledgebase of the insider or marked as expired. This two-phase checking process 

eliminates the need to check the value of F in case it was not overwritten after the last access by 

the insider. Obviously, this approach reduces the processing overhead needed to investigate the 

entire knowledgebase at each write access. However, it adds more processing time to 

transactions since it needs checking both knowledgebases and cloud RDBMS in order to check 

the lifetimes of data items during transactions processing.  

 

Adopting this approach in Peer-to-Peer model does not pose high network traffic overhead since 

updates to knowledgebases are sent gradually, which greatly less than the overhead that is posed 

when using Exhaustive-Updating approach. However, the processing time needed for 

transactions is greater than that needed in Exhaustive-Updating approach as mentioned earlier. 

Similarly, using this approach in Centralized Model reduces network traffic between the primary 

and secondary coordinators when compared to the Exhaustive-Updating approach, and adds 

more processing time to transactions. In Mobile-Knowledgebases model, no extra network traffic 

is posed as in Exhaustive-Updating approach. However, similar to the other models, more 

processing time is needed for transactions when adopting this approach.  
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8. CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

The dissertation has studied insider threat in relational database systems. It has analyzed the 

factors and capabilities that insiders have and use to launch attacks. These factors include the 

accumulative knowledge that insiders get about data items and the dependencies and constraints 

that they acquire through legal accesses to data items or through collaborating with other 

insiders. The dissertation has classified dependencies into different types, and determined the 

amount and type of knowledge that insiders get based on dependencies. 

 

Modeling the dependencies and constraints among data items facilitates understanding the 

structure of relational database systems. Furthermore, it enables defense systems to predict what 

knowledge an insider can get when accessing a data item. Therefore, we have developed two 

types of dependency graphs, which are Neural and Dependency Graph (NDIG) and Constraints 

and Dependencies Graph (CDG). NDIG demonstrates the dependencies among data items. 

Moreover, it shows the amount of information an insider can get about a data item when s/he 

accesses another data item or a group of data items. In comparison, CDG shows both the 

dependencies and constraints among data items. It tells what values of data items are stored in 

insiders’ knowledgebases. In addition to dependencies and constraints, the dissertation has 

shown how knowledgebases play a major role in posing insider threat. To represent 

knowledgebases, the dissertation developed new knowledge graphs (KGs) that show the data 

items that insiders have accessed as well as the amount of information they have about data 

items. In addition, knowledge graphs demonstrate the data items about which insiders can infer 
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information. We have used knowledge graphs and dependency graphs to predict what knowledge 

(authorized or unauthorized) an insider may get if s/he accesses a data item. We have used a new 

graph called Threat Prediction Graph (TPG) that uses NDIG, CDG and KG to predict and 

prevent unauthorized knowledge. A threat alert is raised when an insider gets more information 

than allowed (based on a threshold value) about a data item. The dissertation has stated 

algorithms, theorems, proofs and simulations to prove the effectiveness of the proposed models 

in preventing unauthorized knowledge acquisition by insiders. The simulations have shown the 

effectiveness of the proposed models in preventing unauthorized knowledge without affecting 

the availability of data items. As shown by simulations, the percentage of prevented threat 

(without denying read accesses) increases as the number of transactions and the percentage of 

write operations in transactions increase, and it reaches about 30% when the percentage of write 

operations in transactions is 0.80 (when the number of transactions is 250). 

 

Unauthorized modifications of sensitive data items are another aspect of insider threat. The 

dissertation has investigated this problem and addressed the paths insiders use to launch such 

attacks. It has developed new graphs called Modification Graphs and Dependency Graphs that 

show what data items an insider can change using legal write accesses or dependencies, and how 

to predict insider threat. Furthermore, we have proposed approaches to prevent such threats by 

hiding sensitive dependencies or denying some write access requests. In addition, we have stated 

the conditions under which those solutions are best used. That is, we have shown that in some 

cases allowing unauthorized modifications is better than hiding sensitive dependencies or 

denying write requests, especially when the cost of affecting availability is greater than the cost 

of exposing some sensitive information. Moreover, the dissertation has demonstrated when to 
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allow unauthorized modifications and when to prevent them based on the weight of sensitivity 

and availability values of data items. Algorithms, theorems, proofs and simulations have been 

provided to show the correctness and the effectiveness of the proposed approaches. The 

simulation has shown that the proposed approaches work better when the percentage of write 

operations in transactions gets larger.  

 

The dissertation has addressed the importance of organizing accesses to data items in concurrent 

tasks. It has shown how organizing accesses to data items can prevent insider threats without 

affecting the availability of data items. We have shown how to compute the risk value of each 

possible sequence of executing tasks operations. Based on the risk values, a safe sequence is 

chosen and the operations of tasks are executed in the selected order. The dissertation has shown 

how to select a safe sequence in both declared and undeclared tasks. However, if no safe 

sequences are found, risky transactions are rejected. The effectiveness of the proposed 

approaches was tested using simulations. In declared tasks, the simulations have shown the 

percentage of prevented threat using safe sequences in comparison to all prevented threats. As 

reported by simulations, the probability of finding a safe sequence increases as the number of 

concurrent insiders and the percentage of write operations in transactions gets larger. The 

simulations have addressed that the percentage of prevented threats using safe sequences reaches 

about 65% when the number of concurrent insiders is 25 and the percentage of write operations 

equals to 50%. Moreover, the percentage of prevented threats using safe sequences reaches about 

40% when the percentage of operations is 80% and the number of concurrent insiders is 10. 
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Security concerns are the major issues when moving data to the cloud. One of these concerns is 

the vulnerabilities that may be exploited by insiders to launch attacks. The dissertation has 

discussed insider threat in cloud relational databases. It has shown how balancing workload 

across availability zones and data centers may enable insiders to breach traditional insider threat 

prevention models. To prevent such threats, the dissertation has demonstrated new insider threat 

prediction and prevention models that are suitable for the cloud environment, which are Peer-to-

Peer model, Centralized model and Mobile-Knowledgebases model. It  has shown how 

knowledgebases, updates on data items and dependency graphs can be managed, synchronized 

and used effectively to defend cloud RDBMS against insider threat. Furthermore, it has 

addressed the conditions under which the models can work with highest performance, and has 

presented the advantages and disadvantages of each model on processing time, network traffic 

and overall cloud RDBMS performance.  

 

8.2 Future Work  

Defending cloud RDBMS against insider threat still needs more research. We plan to conduct 

research on organizing the operations of concurrent tasks in the cloud environment similar to 

what we have done for traditional relational databases. Moreover, we plan to conduct 

experiments to establish the effectiveness of the proposed models in managing knowledgebases 

in cloud RDBMS, and measure and compare the overhead (processing time and network traffic) 

that the models can add to the cloud RDBMS.   
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