
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2012

Mitigating Insider Threat in Relational Database
Systems
Qussai Yaseen
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Information Security Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Yaseen, Qussai, "Mitigating Insider Threat in Relational Database Systems" (2012). Theses and Dissertations. 370.
http://scholarworks.uark.edu/etd/370

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fetd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/370?utm_source=scholarworks.uark.edu%2Fetd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu

1

MITIGATING INSIDER THREAT IN RELATIONAL DATABASE SYSTEMS

2

MITIGATING INSIDER THREAT IN RELATIONAL DATABASE SYSTEMS

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Computer Science

By

Qussai Yaseen

Yarmouk University

Bachelor of Science in Computer Science, 2002

Jordan University of Science and Technology

Master of Science in Computer Science, 2006

May 2012

University of Arkansas

3

ABSTRACT

The dissertation concentrates on addressing the factors and capabilities that enable insiders to

violate systems security. It focuses on modeling the accumulative knowledge that insiders get

throughout legal accesses, and it concentrates on analyzing the dependencies and constraints

among data items and represents them using graph-based methods. The dissertation proposes

new types of Knowledge Graphs (KGs) to represent insiders’ knowledgebases. Furthermore, it

introduces the Neural Dependency and Inference Graph (NDIG) and Constraints and

Dependencies Graph (CDG) to demonstrate the dependencies and constraints among data items.

The dissertation discusses in detail how insiders use knowledgebases and dependencies and

constraints to get unauthorized knowledge. It suggests new approaches to predict and prevent the

aforementioned threat. The proposed models use KGs, NDIG and CDG in analyzing the threat

status, and leverage the effect of updates on the lifetimes of data items in insiders’

knowledgebases to prevent the threat without affecting the availability of data items.

Furthermore, the dissertation uses the aforementioned idea in ordering the operations of

concurrent tasks such that write operations that update risky data items in knowledgebases are

executed before the risky data items can be used in unauthorized inferences. In addition to

unauthorized knowledge, the dissertation discusses how insiders can make unauthorized

modifications in sensitive data items. It introduces new approaches to build Modification Graphs

that demonstrate the authorized and unauthorized data items which insiders are able to update.

To prevent this threat, the dissertation provides two methods, which are hiding sensitive

dependencies and denying risky write requests. In addition to traditional RDBMS, the

dissertation investigates insider threat in cloud relational database systems (cloud RDMS). It

discusses the vulnerabilities in the cloud computing structure that may enable insiders to launch

4

attacks. To prevent such threats, the dissertation suggests three models and addresses the

advantages and limitations of each one.

To prove the correctness and the effectiveness of the proposed approaches, the dissertation uses

well stated algorithms, theorems, proofs and simulations. The simulations have been executed

according to various parameters that represent the different conditions and environments of

executing tasks.

5

This dissertation is approved for recommendation

to the Graduate Council

Dissertation Director:

Dr. Brajendra Panda

Dissertation Committee:

__

Dr. Gordon Beavers

__

Dr. Dale R. Thompson

__

Dr. David Douglas

6

DISSERTATION DUPLICATION RELEASE

I hereby authorize the University of Arkansas Libraries to duplicate this dissertation when

needed for research and/or scholarship.

Agreed __

Qussai Yaseen

Refused __

Qussai Yaseen

7

ACKNOLEDGMENTS

I thank my advisor Professor Brajendra Panda for his support of my research, and for his great

guidance and help during pursuing my PhD program. I also would like to thank Professor

Gordon Beavers, Professor Dale Thompson and Professor David Douglas for serving on my

committee; it is a complete privilege having you on my dissertation committee. I also would like

to thank my brother Baderaddin Yassin for his great support before and during pursuing my PhD

program.

8

DEDICATION

To my late father… to his pure spirit and heart.

To my mother … to her big heart.

To my brothers and sisters … to this great family.

It is you … the motivation who made this possible.

9

TABLE OF CONTENTS

1. Introduction 1

 1.1 Database Security 2

 1.2 Insider Threat 5

 1.3 The Contribution of the Dissertation 8

2. Background and Related Work 10

 2.1 Dependencies and Inference Channels 10

 2.2 Insider Threat at System Level 13

 2.3 Insider Threat at Relational Databases Systems 15

 2.4 Cloud Computing 17

3. Dependencies and Constraints 20

 3.1 Introduction 20

 3.2 Types of Dependencies 21

 3.3 Constraints on Dependencies 24

 3.3.1 Using Petri Nets for Representing Constraints and Dependencies 24

 3.3.2 The Dependency Matrix 28

4. Insider Threat: Unauthorized Knowledge Acquisition 30

 4.1 Introduction 30

 4.2 Insiders’ Knowledge 31

 4.2.1 Inferred Knowledge 32

 4.2.2 Computed Knowledge 36

 4.2.3 Aggregated knowledge 38

 4.3 Neural Dependency and Inference Graph 40

10

 4.4 Insiders’ Knowledgebases 44

 4.4.1 Knowledgebase Algorithm 46

 4.4.2 Proof of Correctness of Algorithm 1 50

 4.5 Insider Threat Prediction and Prevention 53

 4.5.1 The Role of Knowledgebases and Lifetimes of Data Items in Insider Threat 53

 4.5.2 The Proposed Approach 56

 4.6 Experiments and Analysis 67

5. Insider Threat: Unauthorized Modifications Attacks 71

 5.1 Introduction 71

 5.2 Insiders’ Modification-Lists 71

 5.3 The Modification Algorithm 73

 5.4 The Proof of Correctness of Algorithm 1 76

 5.5 Preventing Malicious Modifications 79

 5.5.1 Hiding Dependencies 79

 5.5.2 Denying Write Access Requests 84

 5.6 An Example Scenario 86

 5.7 How Insiders Discover Dependencies 88

 5.8 Hiding Dependencies: When and How? 89

 5.9 Experiments and Analysis 92

6. Producing a Safe Sequence in Concurrent Tasks 96

 6.1 Introduction 96

 6.2 The Importance of Organizing Accesses to Data items 96

 6.3 Organizing Operations in Declared Tasks 100

11

 6.3.1 Choosing a Safe Sequence 104

 6.3.2 Limitations and Possible Solutions 106

 6.3.3 An Example Scenario 109

 6.4 Organizing Operations in Undeclared Tasks 112

 6.4.1 Predicting the Complete Operations of Undeclared Tasks 113

 6.4.2 Preventing Insider Threat and Preserving the Availability in Undeclared Tasks 115

 6.4.3 A Real World Example Scenario 123

 6.5 Experiments and Analysis 124

 6.5.1 The Percentage of Safe Sequences 125

 6.5.2 Retrieved Candidate Tasks 128

7. Tackling Insider Threat in Cloud Relational Database Systems 132

 7.1 Introduction 132

 7.2 Insider Threat in Cloud Relational Databases 134

 7.3 Mitigating the Threat of Insiders’ Knowledgebases 137

 7.3.1 Peer-to-Peer Model 137

 7.3.2 Centralized Model 139

 7.3.3 Mobile-Knowledgebases Model 140

 7.4 Managing Dependency Graphs and Updates on Data items in Cloud RDBMS 144

 7.4.1 Exhaustive-Updating Approach 145

 7.4.2 Updating-on-Use Approach 146

8. Conclusions and Future Work 148

 8.1 Conclusion 148

 8.2 Future Work 151

12

 References 152

13

LIST OF FIGURES

Figure 1.1 An Access Matrix 3

Figure 1.2 Security Violations by Insiders and Outsiders 7

Figure 3.1 A Part of a University Relational Database 21

Figure 3.2 Using Petri Nets to Represent a Formula 25

Figure 3.3 A Constraint and Dependency Graph CDG 27

Figure 3.4 A Dependency Matrix 29

Figure 3.5 Hot and safe clusters 30

Figure 4.1 Functional Dependency 33

Figure 4.2 Projects in a Company F 34

Figure 4.3 Multivalued Dependency 35

Figure 4.4 Rank Total_Salary Dependency 37

Figure 4.5 Aggregated Knowledge 39

Figure 4.6 Acquiring knowledge 40

Figure 4.7 Neural Dependency and Inference Graph (NDIG) 42

Figure 4.8 NDIG for the Academic Staff Database 43

Figure 4.9 The NDIG of the Database in Figure 3.3 49

Figure 4.10 The Knowledge Graph KG of an Insider 50

Figure 4.11 An Instance of TPG 58

Figure 4.12 An NDIG of a Relational Database 65

Figure 4.13 Predicting and Preventing Insider Threat Using the TPG 66

Figure 4.14 The Percentage of the Prevented Threat by Removing Expired Data Items

according to Different Percentages of Write Operations and Different

Number of Insiders

69

14

Figure 4.15 The Percentage of the Prevented Threat using the Proposed Approach

under Different Percentages of Write Operations and Different Number of

Transactions

70

Figure 5.1 A Constraint and Dependency Graph CDG 72

Figure 5.2 A Modification Graph of an Insider 76

Figure 5.3 Determining a Cut in the Sensitivity and Dependency 81

Figure 5.4 A Modification Graph 86

Figure 5.5 The SDG of the Academic Staff Database in Figure 5.1 87

Figure 5.6 Collaborative Attacks. 88

Figure 5.7 Academic Staff’s Base_Salary 89

Figure 5.8 Academic Staff Base_Salary 91

Figure 5.9 Number of Prevented Threat (risky transactions) vs. Number of

Transactions and the Percentage of Write Operations

93

Figure 5.10 The Number of Prevented Threat vs. the Number of Allowed Threat

according to Different Ratios of Wa:Ws

95

Figure 6.1 A Sequence of Operations to Perform a Task 97

Figure 6.2 A Part of Academic Staff Database 101

Figure 6.3 A Part of an NDIG of a Database 107

Figure 6.4 Insider K’s Task and Knowledgebase 108

Figure 6.5 Predicting Undeclared Tasks 113

Figure 6.6 The Graphs of Candidate Tasks for the Undeclared Tasks of Insiders

R1,R2 and R3

119

Figure 6.7 Amy’s Task Graph and Ashley’s Task Graph 124

15

Figure 6.8 The percentage of the prevented threat using a safe sequence in comparing

to different numbers of concurrent insiders.

126

Figure 6.9 The percentage of the prevented threat using a safe sequence in comparing

to different percentages of write operations

127

Figure 6.10 The relationship between the number of retrieved candidate tasks and the

position of a risky request (RR) in a risky transaction.

129

Figure 6.11 The relationship between the number of retrieved candidate tasks and the

size of the training set

130

Figure 7.1 Amazon’s Cloud Structure 134

Figure 7.2 Insider Threat in Cloud RDBMS 136

Figure 7.3 Peer-to-Peer Model 138

Figure 7.4 Centralized Model 140

Figure 7.5 An Example of Mobile Knowledgebases Model 141

Figure 7.6 Executing Queries in a Mobile-Knowledgebases Model 142

16

LIST OF TABLES

Table 1.1 Insider Attacks vs. Outsider Attacks 6

Table 5.1 Sensitivity Values According To The Insider K 86

Table 6.1 Insiders and their Knowledgebases and Requests 110

Table 6.2 Dependencies 110

Table 6.3 Sensitivity and Threshold Values of Data items 110

1

1. INTRODUCTION

Protecting information is as important as protecting other organizational sensitive assets such as

money. In this era of rapid revolution in computer technologies and communications, attacks on

this vital resource are getting more complicated and harmful. Thus, information security has

become a crucial goal to organizations and individuals. Information security means protecting

information and information systems from interception, interruption, modification, and

fabrication in order to preserve the confidentiality, availability and integrity of information

[LII][NIST95]. Confidentiality means hiding information or resources from unauthorized users

in order to protect the personnel information privacy, whereas availability means providing

timely access to information and information resources. Availability is an important part of

systems’ reliability and design since limited availability of a system is as bad as if the system

does not exist. Information integrity indicates protecting data against inappropriate or

unauthorized modifications. Moreover, it means ensuring the accuracy of sources of information,

which is called information authenticity [Bishop03] [LII].

Research in information security is generally focused on two fields, network security and

databases security. Network security deals with mechanisms that protect information during

transmission via networks, while database security represents the methods that protect stored

information in DBMS. The dissertation concentrates on database security and proposes methods

to protect relational database systems from insider threat.

2

1.1 Database Security

Database security is a major field in computer security. Databases are targeted by tremendous

types of attacks that aim to breach the security of the high value assets that databases store.

Threats to databases could be physical, such as theft and destroying physical storage, or could be

logical, which are categorized as follows [Baraani96].

a) Unauthorized modifications of information attacks: This type of threat can be launched

accidentally by authorized users or intentionally by legal or illegal users. Notice that this type

affects information integrity.

b) Exposure of information attacks: Information leaks can occur by direct access or indirect

access to information. Indirect exposure of information is performed by inferring the values

of unauthorized data items using authorized data items. Hence, information disclosure affects

the confidentiality of information.

c) Denial of service attacks: These attacks can be launched by controlling or dominating

resources such that other users in a system cannot access them. For example, attackers may

consume the computational resources, such as bandwidth, disk space, or processor time,

preventing any work from being done.

Significant research has been performed to secure databases against attacks by identifying proper

security policies and mechanisms. A security policy represents what is expected from a security

system, whereas a security mechanism demonstrates how to achieve security goals. Security

policies should have some features or properties that should be satisfied by security mechanisms.

The properties that a security policy in databases should have include access control, inference,

consistency, accountability, and user identification. Access control guarantees that direct

http://en.wikipedia.org/wiki/Central_processing_unit

3

accesses to objects are granted according to predefined privileges. In addition, a security policy

should protect sensitive information from exposure by unauthorized users using indirect access

or inference. Consistency preserves the integrity of databases, and accountability represents the

requirements to record all accesses to database objects by users. Accountability is an important

feature for preserving the consistency of databases. Finally, user authentication consists of

system requirements that lead to the correct identification of legal users in the system

[Baraani96][Bishop03].

Extensive research has been done to address mechanisms that achieve the goals of security

policies. The access matrix model is an example of access control mechanisms. It was introduced

by Lampson [Lampson71] and improved later by other researchers [Conway72] [Harrison76] to

manage accesses to resources. The access matrix model uses three components to organize

accesses, which are subjects, objects and privileges. Subjects indicate users, which are

represented by the rows of the matrix, objects indicate resources and are represented by the

columns of the matrix, and privileges indicate permissions of read, write, execute … etc.

Privileges are represented inside the cells of the matrix. Figure 1.1 shows an example of an

access matrix model, where Pr(Subi, Objj) represents the privileges that Subi have on the object

Objj.

 Objects

S
u

b
je

ct
s

 Obj1 Obj2 Obj3 …. Objn

Sub1 Pr(Sub1, Obj1) Pr(Sub1, Obj2) Pr(Sub1, Obj3) …. Pr(Sub1, Objn)

Sub2 Pr(Sub2, Obj1) Pr(Sub2, Obj2) Pr(Sub2, Obj3) …. Pr(Sub2, Objn)

. . . . …

Subm Pr(Subm, Obj1) Pr(Subm, Obj2) Pr(Subm, Obj3) …. Pr(Subm, Objn)

 Figure 1.1. An Access Matrix

4

Inference control has been discussed broadly, and many models have been addressed to prevent

unauthorized inference of information. Inference channels can be eliminated during database

design by building good and secure schema, or they can be removed by evaluating queries to

ensure that they do not lead to illegal inference. Biskup et. al [Biskup08] proposed mechanisms

and constraints that reduce inference problem in relational databases to access control, in which

inference can be controlled. Woodruff and Staddon [David04] introduced the private inference

control (PIC), which provides inference control on the server side without learning the

information that is retrieved. Hence, inference problem is discussed in detail in the related work

chapter. Integrity and authentication can be assured using different techniques such as

cryptographic techniques. For example, RSA [Rivest78] is used as a public key authentication.

Similarly, encryption methods such as Tripple-DES [DES] and AES [AES] are used to ensure

information integrity.

Databases have become increasingly vulnerable to attack due to the vast and continuous

revolution in communications and new technologies such as cloud computing. Cloud computing

refers to the use of the internet to host computer resources instead of keeping them on local

computers. It delivers services (applications) over the internet and the hardware and systems in

data centers [Armbrust09]. Applications are hosted and accessible through datacenters.

Resources on the cloud are sold (leased) on demand. The price of leasing resources depends on

the time duration and the amount and the type of resources needed. Users can have what they

want from resources at any time. Resources in the cloud are fully managed by the cloud

resources providers. The management of resources includes monitoring, provisioning, de-

provisioning, workload balancing, and changing requests [Boss]. The services provided by the

5

cloud include Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-

a-Service (SaaS). Moreover, the Amazon cloud enables insiders to create and manage a

relational database, which is called Amazon Relational Database Services (RDS) [RDS]. Cloud

databases induce new security challenges since sensitive data are migrated to the servers of the

cloud providers. Moreover, databases are managed and maintained by the employees of services

providers. This maximizes threat, especially insider threat, which is discussed in the next section.

1.2 Insider Threat

Insider threat is a critical security problem. The threat of insiders can be posed intentionally by

malicious insiders or unintentionally. Malicious insider threat is defined as the threat that is

caused by a person who has authorized access privileges and knowledge of the computer systems

of an organization, and is inspired to antagonistically influence the organization [Brackney04].

For the rest of the dissertation, we will use the term “insider threat” to indicate malicious insider

threat. We define insider threat according to relational database systems, which is the context of

the dissertation, as follows.

Definition 1 (Insider Threat). Insider threat is the threat that is posed by a person who has

authorized access and knowledge of the relational database system s/he uses, is familiar with the

dependencies and constraints among data items, and is motivated to violate the security policy of

the system throughout authorized access.

Insiders could be employees, contractors, or business partners. They have the capabilities, which

outsiders do not have, that enable them to launch attacks. In the context of relational database

6

systems, insiders are familiar with the structure of the relational database systems on which they

are working. That is, they are familiar with the dependencies and constraints among data items,

the sensitive information and the insensitive information, and the inference channels insiders can

exploit to infer unauthorized information. Insiders get knowledge during their work on

organizations’ systems. They can get a part of the knowledge through their activities and

transactions in systems, and they get other parts by collaborating with other insiders in the

systems. This accumulated knowledge enables insiders to discover the strengths and weaknesses

in the defense mechanisms and the systems’ structure. Nonetheless, outsiders have little

information (in comparison to insiders) about the structure of the systems they attack. Moreover,

insiders use legal paths to breach the systems’ security throughout legal access, whereas

outsiders rely on violating systems security using different methods such as bogus URLs in

phishing attacks, SQL injection, Man-in-the Middle attacks … etc. Table 1.1 shows some

examples of insiders’ attacks and outsiders’ attacks according to different criteria [Probst10].

Table 1.1 Insider Attacks vs. Outsider Attacks [Probst10].

Attribute Outsiders Insiders

Authentication Penetrations, attacks on authentication

Infrastructures.

Misuse of intended authority by over-

authorized users, illegal seizure of

super-user access and root keys.

Authorization Unauthorized exploitation of

inadequate controls.

Authorized manipulation of access

controls.

Confidentiality Unencrypted password capture or

expose of encrypted passwords.

National security leaks and other

disclosures; access to crypto keys.

Integrity Creating Trojan horses in untrusted

components, Word macro viruses,

untrustworthy Web code, Man-in-the-

Middle attacks.

Inserting Trojan horses or trapdoors

in trusted or untrusted components,

altering configurations, schedules,

and priorities.

Accountability Masquerading, DoS attacks on

accounting infrastructures.

Hacking beneath the audit trails,

altering audit logs, compromising

misuse detection.

7

According to different surveys [Gordon05][Cert11], insider threat is as risky as outsiders’ threat

(hackers) due to the extreme harm that it may pose. The 2005 FBI Computer Crime Survey

[Gordon05] reported that trusted insiders were responsible of about 33% of all security breaches

in 2005. Similarly, the 2011 Cyber Security Watch Survey [CERT11] showed that 58% of

attacks are caused by outsiders, whereas 21% of attacks are caused by insiders. Figure 1.2 shows

how the percentage of security breaches by insiders and outsiders have changed over the years,

according to the latter survey. Moreover, the survey shows that insider threat is as costly as

outsider threat. However, Forrester Research [Forrester11] showed that insider threat is the most

costly type of incident. In addition, after analyzing the security practices of more than 300

European, American, and Australian enterprises, Forrester estimated that insiders were

responsible for 75% of data security incidents in those enterprises in 2010. Similarly, Verizon

Business breach report [Cooper08][Subashini10] stated that outsiders exposed about 30,000

records, whereas insiders exposed about 375,000 records indicating that the cost of insider threat

is greatly more than the cost of outsider threat.

Obviously, many surveys have shown that insider threat is an immense and urgent security

problem. Yet, organizations are investing very little to defend their systems against insider threat.

Most organizations’ investments are focused on protecting their assets from outsiders’ threat.

0%

20%

40%

60%

80%

2004 2005 2006 2007 2008 2010

29%
22%

32% 31% 34%
27%

71%
80%

68% 69% 66%
73%

Insiders (Short bar)

Outsiders (Long bar)

Figure 1.2. Security Violations by Insiders and Outsiders

8

Organizations rely on insiders’ morals and ethics not to violate systems security. Nonetheless,

surveys show that this assumption is incorrect. Mechanisms that have been proposed for

protecting data from outside attacks are inappropriate to secure systems from authorized users

who may misuse their privileges. Thus, the development of mechanisms that protect sensitive

data from insiders has become a key demand due to the amount of harm that can be caused by

malicious insiders.

1.3 The Contribution of the Dissertation

The focus of this dissertation is on the insider as an object with properties and capabilities that

facilitate exposing systems’ unauthorized information or making unauthorized changes. The

knowledgebases of insiders and their privileges form their power. Therefore, insider threat

prediction and prevention mechanisms should identify those properties before going forward in

the prediction process. Discovering and representing the knowledgebases and privileges of

insiders have gotten a significant focus in this work through developing and using many graphs.

As mentioned earlier, the dissertation discusses insider threat in relational database systems in

detail. It describes the factors, resources, and features that facilitate insider threat such as

dependencies and constraints. In addition, the dissertation demonstrates the paths and approaches

that insiders may follow to acquire unauthorized information. Furthermore, it investigates the

approaches that insiders may use to make unauthorized modifications to data items. To protect

relational databases from these types of insider threat, the dissertation proposes effective

methods to detect, prevent, or mitigate those attacks.

9

In addition, the dissertation shows how different sequences of execution of the same operations

of concurrent tasks impose different levels of risk. In addition, it shows how some sequences

may lead to limiting the availability of data items or posing threat. For this case, the dissertation

shows how to order the operations of concurrent tasks in a safe sequence that prevents insider

threat without limiting insiders’ tasks. Furthermore, the dissertation investigates the problem in

the cloud computing environment and addresses new vulnerabilities that may be used by insiders

to launch attacks. It introduces different models to tackle insider threat in cloud relational

databases. Finally, the dissertation provides algorithms, theorems, proofs and simulations to

prove the efficiency of the proposed approaches in defending relational databases against insider

threat.

The rest of the dissertation is organized as follows. The next chapter introduces some related

work. Chapter 3 introduces the types of dependencies and constraints in relational database

systems. Chapters 4 and 5 discuss the paths and approaches that insiders may follow to acquire

unauthorized information or make unauthorized changes in sensitive data items respectively.

Moreover, the chapters propose methods to detect and prevent such attacks. Organizing accesses

to data items in concurrent tasks is discussed in chapter 6, while chapter 7 discusses insider

threat in cloud computing and suggests methods to mitigate insider threat in cloud relational

databases. Finally, chapter 8 presents the conclusions.

10

2. BACKGROUND AND RELATED WORK

Protecting information from insider threat is a very important and difficult research field. Little

research has been performed in this area. Moreover, most research in insider threat has been

focused at the system level. Very little research has been performed at the application level such

as database systems. In this chapter, we introduce some related work that has been accomplished

in this area. Furthermore, since dependencies are a major part of insider threat in relational

database systems, some work on dependencies and inference channels is introduced. In addition,

some work in cloud security is presented to understand the vulnerabilities that threaten cloud

relational databases and increase the possibility of insider threat.

2.1 Dependencies and Inference Channels

Dependencies play a major role in the insider threat problem. Dependencies and constraints can

be used by insiders to infer unauthorized information or make unauthorized modifications.

Dependencies as well as the inference problem have been discussed extensively by many

researchers. Most inferences in relational database systems are acquired by combining database

constraints with insensitive data items. Inference channels can be discovered during database

design [Dawson99, Marks96a, Su91, Yi98] or during queries processing [Marks96b, Stachour90,

Farkas07]. In the first approach, database design is modified or the classifications of some data

are elevated to remove inference channels. In the second approach, inference is detected during

the execution of queries. To remove inference channels in the latter case, malicious queries are

either rejected or modified.

11

Farkas and Jajodia [Farkas07] presented a survey of some research in data inference control in

different fields such as statistical and multilevel databases, data mining and web. They discussed

how users use insensitive data to get sensitive data to which they have no direct access. Brodsky

et al. [Brodsky00] discussed the inference channels that happen when database constraints are

used with insensitive data to get information about sensitive data items. They presented the

Disclosure Monitor (DiMon) model that detects and removes inference channels that are created

by database constraints. Moreover, they used the Disclosure Inference Engine (DiIE) that

retrieves all possible information that can be acquired based on users’ previous and current

queries and database constraints. Their work was well structured and supported by robust

algorithms and theorems that analyse the problem and prove the completeness and soundness of

the proposed approaches. However, their work considered the problem from a static point of

view. That is, they neither considered the updates on data items nor discussed the effects of

updates on data items’ lifetimes.

Farkas et al. [Farkas01] demonstrated how updates on data items can increase data availability.

They stated that updates make data outdated, and stated that the inference based on outdated data

does not pose any threat since it would be incorrect. They used this idea to extend the DiMon

model used by Brodsky et. al [Brodsky00], which is discussed in the previous paragraph, and

developed a new model called Dynamic Disclosure Monitor. The new model ensures that only

the inference based on up-to-date data is considered a threat. To facilitate implementing the idea,

they established a new mechanism, called the Update Consolidator, that uses a user’s history file,

updates on data items, and database constraints to generate a new history file for the user in

which outdated data are marked, and then, only valid inferences are considered. The authors

12

assumed that updates always make data expired. Nonetheless, in this dissertation, we show that

considering modified data as always expired data may lead to exposing sensitive information.

Moreover, we state the conditions that an update process should meet in order to consider an

updated data as expired.

Most researchers focus on functional dependencies when dealing with inference channels.

However, Yip and Levitt [Yip98] showed that detecting inference channels using functional

dependencies only is insufficient. They introduced new inference rules based on analayzing the

data stored in databases. The rules are constructed using the overlap between the results of

queries, uniqueness of some tuples in databases, and the complement of the results of queries.

For instance, as an example of unique tuples, if Bob is the only manager of an age between 30

and 50, then the query that retrieves the salaries of all managers of any age between 30 and 50

exposes Bob’s salary. The query itself could be allowed, but the results that it returns in this case

should not be allowed. Using the new rules, the authors built an inference detection system that

uses a rule based approach to detect inference channels. Morgenstern [Morgenstern87] defined

the INFER function that computes the amount of knowledge a user can get about data objects in

database systems using dependencies and constraints. The INFER function is used to define the

set of all information that can be inferred using a core, which is a set of data objects, such as

attributes, relationships and inference channels. Morgenstern employed classical information

theory, which was developed by Shannon [Shanon48], to measure inference in multilevel

databases. In information theory, entropy quantifies the uncertainty of information or the missing

information content when the value of a random variable is unknown. The more uncertain or

random an event the more entropy it has [Motahari09]. Conditional entropy is the uncertainty of

13

a random variable when some information is given. Morgenstern used this concept to compute

the amount of inference in databases. The idea is based on computing the uncertainty (the range

of values) of a data item when no other information is given, and computing the uncertainty of

the data item when another data item (or a group of data items) is given. By using these values,

the INFER function computes how much information a user can get about a data item by

knowing other data items.

2.2 Insider Threat at System Level

Different researchers have introduced different definitions for insiders at system level. Brackney

and Anderson [Brackney04] defined an insider as a person who has knowledge of or access

privileges to the information or services of a system, whereas they defined a malicious insider as

an insider who is motivated to breach a system’s security intentionally. Bishop and Gates

[Bishop08] defined an insider according to two primitive actions. The first one is to breach a

security policy using authorized access, and the second action is to break an access control policy

by obtaining unauthorized access. Obviously, the authors defined insiders based on attributes or

actions, instead of defining a person as either an insider or not. That is, an insider could be a

person or a system that has access privileges to a domain or a system. We should mention here

that in this dissertation we use the term “insider” to indicate a malicious insider.

Some researchers used existing methods of detecting external threat to detect insider threat,

while others introduced new methods. Spitzner [Spitzner03] used honeypot technologies for

insider threat detection. Althebyan and Panda [Althebyan08a][Althebyan08b] introduced new

methods to deal with this problem. The authors presented new graphs, which are knowledge

14

graphs and dependency graphs, that can be used in insider threat prediction and prevention. The

knowledge graph of an insider shows the objects about which the insider has information,

whereas, a dependency graph shows the dependencies among objects that can be used by insiders

to get new knowledge. Bardford and Hu [Bradford05] used intrusion detection mechanisms with

forensics tools to detect insider threat in a layered approach.

Park and Giordano [Park06] developed a role-based profile analysis method for preventing

insider misuse by focusing on the relationship between insiders and their systems to detect

anomalies. Their approach works by analyzing the behaviors of insiders based on their roles. If

an insider uses the associated methods in a task according to his/her role, the insider has no

malicious intention. However, if the patterns of methods are not appropriate to the task, a

malicious activity alert is raised. Hu et. al [Hu06] used the Role Based Access Control (RBAC)

and genetic algorithms to generate rules that can detect the differences between users roles and

the processes, where the existence of differences indicates insider threat. Chinchani et. al

[Chinchani05] proposed a methodology for insider threat assessment, which uses a new threat

model called Key Challenge Graph. The new graph relies on an insider’s knowledge, the location

of the targeted information (key), and the capabilities of the insider to assess the threat. They

addressed the conditions of successful attacks and stated formulas for computing the cost of

attacks.

Aleman-Meza et. al [Menza05] proposed an ontological approach using semantic associations to

detemine the relevance of a document to a domain. Their approach starts by determining the

context of investigation, which represents a set of entity classes, relationships, instances and

keywords values. The goal of specifying a context of investigation is to capture the types of

15

entities and relationships that are considered important. Next, documents are processed to

produce semantically annontated documents, which indicate documents with metadata that

describes them. After that, the relevance of a document to the context of investigation is

computed and classified according to a list of relevance levels. Based on the relevance level, the

proposed methodology helps in addressing illegal documents access, which in turn detects

insider threat.

The research work in this section dealt with insider threat at the system level without considering

relational databases. The next section introduces an overview of some research that has been

performed on insider threat in relational databases.

2.3 Insider Threat in Relational Database Systems

Very little research has been performed on insider threat at the database level. Chagarlamudi et.

al [Chagarlamudi09] used a Petri-Nets model to identify malicious insiders’ activities. They used

the model to prevent unauthorized modifications in data items. In their work, Petri-Nets are used

to model the normal tasks for each user in a system, where places in a Petri-Net represent the

transactions of the modeled task. That is, the Petri-Net model of a task represents the partial

order of executing the transactions of the task. Any execution of the transactions of a task that

does not follow the order in the associated Petri-Net is considered a malicious activity.

Jabbour and Menasce [Jabbour09a] showed a list of security breaches that insiders can launch in

systems. In addition, they described a preliminary model that can be integrated into systems for

self-protection from insider threat. In their other work [Jabbour09b], Jabbour and Menasce

16

proposed a self-protection mechanism that is fully integrated into the computing system, called

the Insider Threat Security Architecture (ITSA). The new framework forces privileged users,

even DBAs, to go through defense mechanisms before making changes to systems or security

policies. The authors presented a security scenario which shows that privileged users can expose

the system that the users protect, and showed how similar scenarios can be mitigated using the

ITSA framework. Other researchers [Hu03][Chung99] developed insider threat detection models

based on profiling data access patterns or profiling user access patterns using log files.

Mathew et. al [Mathew10] relied on the results of queries rather than the syntax to detect

malicious insiders’ activities using a data-centric approach. They claimed that queries with

similar syntax can retrieve different results, which enable insiders to launch malicious queries

similar (syntactically) to legitimate ones to pose a threat. In order to reduce the complexity of

retrieving and checking the possibly huge results of queries, they suggested an approach that

picks a small number of tuples that is representative and sufficient to detect insider threat.

Garfinkel et al. [Garfinkel02] suggested retrieving a range of results in malicious queries instead

of exact results. Using this idea, they provided algorithms for maintaining confidentiality in

databases. Their approach adds concealment vectors to database queries which return interval

results to protect the original database information from the disclosure of sensitive information.

White and Panda [White10] proposed approaches to identify critical data items, which are the

target of insiders in general. Addressing critical data items helps in focusing the monitoring

process on specific elements of databases which makes fighting insider threat more effective.

17

Since this dissertation discusses insider threat in cloud Relational Databases, the next section

introduces some related work in cloud computing, especially in cloud security.

2.4 Cloud Computing

Cloud computing is a promising technology that offers large-scale and on-demand computing

infrastructure. According to Kaufman [Kaufman09], the spending of the US government on

cloud computing projects will pass 15 billion dollars by 2015. Achieving low cost live migration

is one of the goals of the research on cloud computing. Das et. al [Das11] introduced Albatross,

an end-to-end technique for live migration in shared storage databases. Albatross maximizes the

availability during a migration process by migrating the cache and the state of active transactions

instead of stopping transactions at source nodes and restarting them at destination nodes. Zephyr

[Elmore11] minimizes service interruption and increases availability during live migration by

using a synchronized dual mode. The proposed dual mode enables both the source and

destination nodes to execute transactions simultaneously while the migration process is being

run. Zephyr transfers the tenant’s (migrated application) metadata to the destination to start

executing new transactions; meanwhile, the source node continues executing the transactions that

were active before starting the migration process.

Cloud security is one of the major problems in cloud computing. Arshad et. al [Arshad09]

presented models to quantify cloud security as a set of security metrics. Furthermore, they

discussed the problem of random migration of virtual machines. Live migration of a virtual

machine (VM) aims to balance the load among all VMs. However, a VM may be migrated to a

node without taking into account security requirements. In this case, a VM could be migrated to

18

a less secure node than the one that is migrated from. The authors called this problem the

“random migration problem”. They suggested using Service Level Agreements (SLA) by

allowing the owner of a VM to determine the security requirements for his/her VM using SLAs;

therefore, the resource manager can take into account these requirements before migrating the

VM. Wang et. al [Wang09] investigated the problem of data security in cloud data storage. They

utilized the homomorphic token with distributed verification of erasure coded data to achieve

storage correctness insurance. Hwang et. al [Hwang09] demonstrated a comparison between a

number of cloud providers regarding architecture, reliability and security. Furthermore, they

addressed outlines for an integrated architecture to guarantee security and privacy in cloud

applications. Chow et. al [Chow09] suggested extending control measures in the cloud by using

trusted computing and cryptography.

The research in cloud databases is still in its early stages. Few papers have been published in this

field. Hacigumus et. al [Hacigumus12] introduced CloudDB, a data management platform in the

cloud. CloudDB has several features that satisfy the cloud environment. It maintains three types

of data stores, which are row store, key-value store, and analytics store, to satisfy different

workload types. For instance, analytics store is a read-optimized and a throughput oriented to

efficiently handle OLAP workloads, while key-store is used to achieve higher levels of

scalability for read/write intensive workloads. Moreover, CloudDB uses both partitioning and

replication techniques to achieve availability and scalability. The cloud relational database

service has been introduced by some providers such as Amazon [RDS12] (Amazon RDS) and

Microsoft [Azure12] (Microsoft SQL Azure). Curino et. al [Curino11] introduced a new

comprehensive framework for relational databases on the cloud, called Relational Cloud. It

19

supports new models for efficient multi-tenancy to minimize the resources needed for a

workload, an elastic scale-out model to satisfy growing workloads, and models to preserve

database privacy. Furthermore, Relational Cloud involves techniques for efficient partitioning,

replication, and migration to achieve maximum availability and reliability. Unlike other multi-

tenant databases, Relational Cloud does not mix the data of different tenants into a shared

database or table. Instead, databases belonging to different tenants are run on the same database

server. We should mention here that, to the best of our knowledge, there is no concrete research

that has been performed on the problem of insider threat in cloud relational databases.

20

3. DEPENDENCIES AND CONSTRAINTS

3.1 Introduction

Dependencies and constraints play a crucial role in insider threat in relational database systems

(RDBMS). This chapter discusses the types of dependencies and constraints among data items in

RDBMS. To demonstrate the problem, let us introduce the following example. Suppose that

Figure 3.1 represents a part of the relational database developed by a university. Assume that the

database has the following dependencies.

- Rank Base_Salary.

- {Base_Salary, Experience} Total_Salary.

- Number of Dependents HI_Premium.

- {HI_Premium, Total_Salary, Tax} Net_Salary.

- Score Grade.

Suppose that Net_Salary and Total_Salary are calculated using the following formulas:

Total_Salary = Base_Salary + 500 * Experience.

Net_salary = Total_Salary – (Total_Salary * Tax + HI_Premium).

The next subsections define the types of dependencies and constraints using this example.

21

 Employee Table Student Table

EMP_ID FName LName Rank HI_Premium .. STD_ID FName LName …

Salary Table

 Course Table

EMP_ID Base_Salary Experience … CRS_NO Name Description …

Dependent Table

 Grade Table

EMP_ID Dependent_Name Relationship … … Score Grade …

Tax Table

Salary Tax …

<70K 6%

70K - 90K 8%

>=90K 10%

 .

 .

 .

Figure 3.1 A Part of a University Relational Database

3.2 Types of Dependencies

Two data items X and Y have a dependency relationship if at least one of them depends on the

other. The dependency between X and Y that is represented by the notation XY means that Y

depends on X. Dependencies are classified into three types: functional dependencies,

multivalued dependencies [Heping05], and fuzzy dependencies [Zuo04]. In addition to these

types, the dissertation classifies dependencies according to a number of categories, which are the

strength, the direction, and the transitivity. We classify the strength of a dependency into two

types: Strong and Weak, which are defined as follows.

Definition 11 (A Strong Dependency). Given a dependency XY, where X and Y are two data

items, the dependency is called a Strong Dependency if a change in X must make a change in Y.

This type is represented by XY.

22

Definition 12 (A Weak Dependency). Given the two data items X and Y, if a change in X may or

may not make a change in Y, then the two data items have a dependency called a Weak

Dependency and is represented by X Y.

For example, the dependency (Rank Base_Salary), in Figure 3.1, is an example of a Strong

Dependency, whereas the dependency (Score Grade) is an example of a Weak Dependency.

The direction indicates the source (left side) and the destination (right side) of a dependency. The

direction of a dependency is classified into One_Way and Two_Way (Cyclic) dependencies. The

following two definitions explain these types.

Definition 13 (A One_Way Dependency). Given a dependency XY, where X and Y are two

data items, if Y depends on X but X does not depend on Y, then this dependency is called a

One_Way Dependency and is represented by X Y.

Definition 14 (A Two_Way Dependency or A Cyclic Dependency). Given the two data items X

and Y and the dependency XY, X and Y have a Two_Way Dependency if both data items

depend on each other. This type of dependency is represented by X⇆ Y.

The dependency (Rank Base_Salary) is an example of a One_Way dependency. A Two_Way

Dependency contains two relationships between the two data items, which may be both Strong,

both are Weak, or one is Weak and the other is Strong. Two_Way Dependencies mostly exist

between tables, which may have more than one dependency.

23

Finally, based on the transitivity property, dependencies are classified into Direct and Transitive

dependencies as follows.

Definition 15 (A Direct Dependency). Given a dependency XY, where X and Y are two data

items, the dependency is called a Direct Dependency if a change in X directly affects (make a

change in) Y. Such type of dependency is represented by X Y.

Definition 16 (A Transitive Dependency). Consider the three data items X, Y, and Z that have

the dependencies {Y Z, X Y}. If a change in X makes a change in Y, and this change in Y

makes a change in Z, then Z depends transitively on X and the dependency is represented by X

Z.

For example, the Dependency (Rank Base_Salary) is an example of a Direct Dependency,

whereas the dependency (Rank Net_Salary) is an example of a Transitive Dependency.

Obviously, a change in the Rank changes the Base_Salary, which in turn changes the

Net_Salary.

Dependencies exist at different levels of granularities in relational database systems. These levels

are the Low Level (Attribute Level), the Intermediate Level (Record level) and the High Level

(Table Level). All types of dependencies, except the Cyclic (Two_Way) Dependency, are

usually found at the Low Level. Actually, some relational database systems may have a Cyclic

Dependency at the Low Level, but we have not found a good example of it. Likewise, all types

of dependencies exist at the High Level since a table inherits the dependencies that are present at

24

its Attribute Level. That is, a dependency between two tables is basically a dependency between

attributes that belong to the tables. However, two tables may have more than one type of

dependency. Similarly, records inherit dependencies from their attributes. This means that

various types of dependencies exist at Record Level.

3.3 Constraints on Dependencies

Dependencies may involve constraints. That is, a change on a dependent data item (the right side

of a dependency) occurs only when a specified constraint is met on the left side of the

dependency. Constraints are classified into two types: those that restrict change in an attribute’s

value, and those that monitor insertion or deletion of records. Section 3.3.1 discusses how to

represent the first type, whereas the second type is discussed section 3.3.2.

3.3.1 Using Petri Nets for Representing Constraints and Dependencies

Representing dependencies and constraints between data items facilitates understanding the

relationships between them and the overall structure of relational database systems. For example,

in order to change the Grade of a student to ‘A’, his/her Score should be changed to a value

above 90. This is an example about the first type of constraints on the dependency Score

Grade.

The modeling tool that is needed for representation should show the flow of information between

different data items at different granularities. Moreover, it should be able to represent various

forms of dependencies and constraints. Some constraints could be complex. In some cases, a

dependency can be represented using a formula, whereas in other cases it is difficult to represent

25

dependencies that way. For instance, consider the dependency constraints between the two

attributes t1 and t2 that says the value of t2 must equal c3 when t1 is in the range c1 and c2, and t2

must equal c4 when the value of t1 is less than c1; otherwise, the value of t2 is c5, where c1, c2, c3,

c4 and c5 are constants.

To meet these goals, the dissertation uses Petri Nets [Murata89] to construct dependency graphs

that represents dependencies as well as constraints. Petri Nets are a mathematical and graphical

modeling tool. Basically, they are used to represent information processing flow in systems that

are nondeterministic, parallel, distributed, asynchronous or concurrent. A Petri Net is a directed,

weighted and bipartite graph. It consists of two types of nodes: places and transitions. Places are

represented by circles, while transitions are represented by bars or boxes. Arcs are from input

places to transitions or from transitions to output places. A weight on an arc represents tokens,

which are represented by dots in the input place. A transition can fire if the number of tokens in

its input place is greater than or equal to the weight of the corresponding arc. The properties of

Petri Nets and other details are beyond the scope of this dissertation. Interested readers may refer

to [Murata 89]. Figure 3.2 shows an example of a Petri-Net representing the formula

X=2*a+3*b, where the tokens are represented by black spots. In the rest of this dissertation, the

conditions for firing are assumed to be met always, thus, the tokens will not be shown.

Figure 3.2.Using Petri Nets to Represent a Formula

+ 2

3

X

a

b

26

To show more examples of how Petri-Nets can be used to represent dependencies and

constraints, consider the two tables T1(t1,t2,t3) and T2(t4,t5,t6,t7) having the following

dependencies and constraints:

- c1 =< t1<= c2 t2 = c3

- c1> t1 t2 = c4

- t1> c2 t2 = c5

- t4=3*t3+1

- t6=2*t2+3*t5

The dependency graph that is constructed by using Perti-Nets is called the Constraint and

Dependency Graph (CDG). Figure 3.3 shows the CDG of the previous tables using Petri Nets. In

the figure, one of the three transitions connected to the attribute t1 can be fired. Actually, the

value of the attribute determines which transition is fired. Thus, the token transfers to one of the

constants c3, c4 or c5, which in turn follows its way to the attribute t2. This makes the attribute t2

equal the value of the constant from which the token comes. This mapping represents the

dependency and constraints between t1 and t2. Notice that each attribute name is preceded by the

name of the table to which it belongs. The dependency between the attributes {t2, t5}, on one

side, and the attribute t6, on the other side, is represented using the same way of representing the

formula in Figure 3.2. Similarly, the dependency between t3 and t4 is represented in the same

manner. The transition with no inputs is called a source transition. It is used in this graph to make

three copies of the attribute t1. This aims to explain that firing t6 does not always depend on

firing t1. That is, a change in t6 may be caused by a change in t1 or a change in t2.

27

Obviously, Figure 3.3 shows how Petri Nets can be used efficiently to construct CDGs.

Moreover, since each attribute name is preceded by the corresponding table name, both attribute

and table level dependencies and constraints can be represented. Dependencies and constraints

between records are shown implicitly. Strictly speaking, a dependency between two records that

belong to two different tables can be reduced to a dependency between attributes. For instance, if

an attribute k in a table B depends on an attribute j in a table A, then every record in B depends

on its related record in A.

CDGs are used to build the knowledge graphs of insiders. Strictly speaking, CDGs are used to

show how insiders can follow dependencies to infer knowledge about data items to which they

do not have access privileges. Constraints in CDGs show what values of data items are stored in

the knowledgebase of insiders exactly. The complete details are discussed later in chapter 4.

+

Figure 3.3. A Constraint and Dependency Graph CDG

+

2
3

 T2.t6

 T1.t2
T2.t5

c1 =< T1.t1 <= c2

T1.t1
T1.t1 < c1

T1.t1 > c2

c3

c4

c5

 T1.t2

+ 3

T2.t4

1

T1.t3

28

3.3.2 The Dependency Matrix

Petri Nets can be used to represent constraints on dependencies between attributes. However, it

cannot represent the second type of constraints, which is insertion or deletion of records. An

insertion/deletion of a record to/from a table may make a change in the dependent table. For

instance, consider the dependency between the Employee and the Dependents tables in Figure

3.1. Suppose that the table Employee contains the attribute Health_Insurance_Premium, which

depends on the number of dependents of the corresponding employee. In this case, a change in

the number of dependents (insertion or deletion of a record into/from the Dependents table) of

the employee changes the value of his/her health insurance. Strictly speaking, the insertion or

deletion of records changes the related record of the corresponding employee. This type of

constraint exists at both table and record levels.

To represent both types of constraints at the table level (and implicitly at the record level), the

Dependency Matrix is used. Figure 3.4 represents an example of a dependency matrix that shows

dependencies between different tables as well as the constraints on such dependencies. The first

column and the first row represent tables. Each cell contains a set of pairs (C, T), where C

denotes a constraint and T denotes the type of the dependency. The value 2 means a Strong

Dependency and 1 indicates a Weak Dependency. For instance, the cell (T1, T2) means that if the

constraint C1 is satisfied on T1, a change on T2 must happen since the dependency is strong. As

discussed earlier, two tables may have different dependencies, which are represented in the

Dependency Matrix by multiple pairs in the given cell. Using the Dependency Matrix, Hot and

Safe clusters are constructed. A Safe Cluster is defined as follows.

29

Definition 17 (Safe Cluster). Given the Dependency Matrix of a relational database, a Safe

Cluster SC ={T1, … ,Tn} is a group of tables in which each table Ti is independent, directly and

transitively, from all other tables that belong to the same cluster.

Whereas, a Hot Cluster is defined as follows.

Definition 18 (Hot Cluster). Given the dependency matrix of a relational database, a Hot

Cluster HC = {T1,… ,Tn} is a set of tables in which each table Ti is directly dependent on all

other tables that belong to the same cluster.

Based on Figure 3.4, Figure 3.5 shows examples of Hot and Safe Clusters, where Hot Clusters

are represented by dashed ovals and Safe Clusters are represented by solid ones. For instance,

clusters C3 to C7 are Safe Clusters, whereas clusters C1 and C2 are Hot Clusters. As shown in

Figure 3.5, Hot Clusters and/or Safe Clusters may overlap. Notice that tables that belong to

different clusters may still have a dependency relationship, but not a Cyclic Dependency. For

instance, tables T1 and T2 still have a One_Way dependency.

 T1 T2 T3 T4 T5 T6

T1 - {(C1,2), (C8,2)} {(C2,2)} 0 0 0

T2 0 - 0 {(C3,2)} 0 0

T3 0 0 - 0 {(C4,2) 0

T4 0 {(C5,1)} 0 - 0 0

T5 0 0 {(C6,2)} 0 - 0

T6 0 0 0 0 0 -

Figure 3.4. A Dependency Matrix

30

Figure 3.5. Hot and safe clusters

T1

C1

C2

C3

C4

 T6

C5

C6 C7

T5

T3

T4

 T2

31

4. INSIDER THREAT: UNAUTHORIZED KNOWLEDGE AQUISTION

4.1 Introduction

Insiders may be able to predict the values of data items, which they may not be authorized to

access, by investigating dependencies and constraints. For instance, in Figure 3.3 in Chapter 3,

assume that an insider has a read access to t1 and has no authorized access to t2. In this case, s/he

can infer the value of t2 using the associated dependencies and constraints. Similarly, assume that

the insider has a read access to t2 and has no access to t1. Then, if the value of t2 is changed to c3,

the insider would realize that the value of t1 has been changed to c1. The latter case is called

Cyclic Inference. Likewise, the insider can deduce the correct value of t1 if the value of t2 is

changed to either c4 or c5. Thus, insiders may use their knowledge about data dependencies and

constraints to acquire knowledge about some data items to which s/he has no authorized read

access. This chapter demonstrates how insiders can get unauthorized information and broaden

their knowledgebases using dependencies and constraints.

4.2 Insiders’ Knowledge

Understanding the various types of dependencies and constraints in relational databases enables

us to discover the knowledge that insiders can get. As discussed earlier, insiders may use

dependencies and constraints to acquire unauthorized knowledge, which are classified into three

types: inferred knowledge, computed knowledge, and aggregated knowledge. The next

subsections address how insiders can acquire these different types of knowledge.

32

4.2.1 Inferred Knowledge

The type of knowledge that insiders can get using inference is called inferred knowledge, which

is defined formally as follows:

Definition 19 (Inferred Knowledge). Given a dependency A B in a relational database,

where A and B are data items, the knowledge that an insider deduces about B by accessing A is

called inferred knowledge.

The knowledge that an insider infers can be partial or exact. To measure the amount of

knowledge an insider can get, the INFER function [Morgenstern87] is used, which is as follows:

INFER (x y) = (H(y) – Hx(y)) /H(y) (1)

INFER (xy) represents the amount of information about a data item y that can be inferred using

a data item x. H(y) represents the uncertainty of y and Hx(y) represents the uncertainty of y given

x. The amount of inferred knowledge ranges between 0 for no knowledge to 1 for exact

knowledge.

An insider may use functional dependencies to infer knowledge. For instance, let us consider the

trivial example of the functional dependency between the attribute “Score” and the attribute

“Grade” (Score Grade). Figure 4.1 shows the dependency and constraints. Hence, the

dependency is a Weak and a Direct dependency.

33

An insider can infer information if he/she has access to any side of the dependency, but the

amount of information s/he can get differs. For instance, the uncertainty of the Grade is 5 since

we assume that grades range from A to F. However, the uncertainty of the Grade given the Score

is 0 since if the insider is given a Score, he/she can directly and exactly infer the Grade value.

The amount of information the insider can get about the Grade is calculated as follows:

INFER(Score Grade) = (H(Grade)-HScore(Grade)) / H(Grade) = (5-0)/5 = 100%.

This means that the insider can get exact knowledge about the Grade if he/she has an access to

the Score. On the other hand, if the insider has an access to the Grade attribute only, the

knowledge that s/he can get is partial since the dependency is Weak. Moreover, the amount of

information s/he can get using this dependency is either 90% or 40% since the Score intervals are

not equally likely. Notice that the insider can infer information using Cyclic Inference. Hence, if

the dependency is a Strong, the insider can get exact knowledge.

The amount of information that can be inferred when the Score interval is 10 is computed as

follows:

INFER(Grade Score) = (Score-HGrade(Score)) / H(Score) = (101-10)/101 = 90%.

Score Grade

>=90 and <=100 A

>=80 and <90 B

>=70 and <80 C

>=60 and <70 D

<60 F

Figure 4.1 A Functional Dependency

34

While the amount of information that can be inferred when the Score interval is less than 60 is

computed as follows:

INFER(Grade Score) = H(Score)-HGrade(Score)) / H(Score) = (101 – 60)/101 = 40%.

An insider can also gain knowledge using fuzzy dependencies. For example, consider the fuzzy

dependency between the “Project type” attribute and the “Project name” attribute as shown in

Figure 2. Suppose that James is working at the company F as a programmer, then the uncertainty

about which projects he/she is working on is 4 since there are 4 projects at the company.

However, if the insider is given that James is working on an accounting project (given access to

project type), then the amount of knowledge the insider can get about the projects on which

James is working is computed as follows:

INFER(project type project name) = (project name) - Hproject type(project name))/H(project

name)= (4-2)/4 = 50%.

Multivalued dependencies [Su87] do not enable insiders to infer information. To clarify this

point, consider Figure 4.3 that shows an example of a trivial multivalued dependency between

the attribute Emp and the attribute Project. Suppose that an insider has an access to the records of

employee B, and the insider has no access to the records of employee A. Using the records of B,

Project type Project name Due date

Accounting A Jan,1

Accounting B Feb,1

Marketing C Jan,1

Marketing D Feb,1

Figure 4.2 Projects in a Company F

35

the insider can get the values of the “Project” attribute of employee A, which are M and N in the

example.

However, the following observations need to be taken into consideration in the case of

multivalued dependencies. If the insider is familiar with the multivalued dependencies as well as

the constraints, accessing some records in a table that has a multivalued dependency does not

provide any new information to the insider. Meanwhile, if the insider is not familiar with the

constraints of the multivalued dependency, the access of the insider to some records gives

him/her exact knowledge about other records in that table. For instance, if an insider knows that

every employee is working on the projects M and N, as shown in Figure 4.3, accessing the

records of an employee does not reveal any new information about other employees. Since we

assume that insiders are familiar with the dependencies as well as the related constraints, we will

not consider this case as an inference problem.

An insider can also use a combination of accessed attributes to infer information. That is, the

variable X in the INFER function could be a set of attributes. In this case, the insider can use all

attributes in X together to infer information about Y. The modified version of the INFER function

[Morgenstern87] is:

INFER ({x1,..,xn}y)=(H(y)-Hx1,..,xn(y))/H(y) (2)

 Emp Project

t1 A M

t2 A N

t3 B M

t4 B N

 Figure 4.3 Multivalued Dependency

36

For instance, in the example of Figure 4.3, suppose that an insider has access to the “Due date”

attribute in addition to the “Project type” attribute. Then the amount of information that can be

inferred is computed as following:

INFER ({project type, due date} project name) = (H(project_name)-Hproject-type,due-

date(project_name) /H(project_ name) =100%.

The inference that has been discussed so far is direct inference. However, insiders can infer

knowledge transitively using transitive dependencies (Definition 7), which is called transitive

inference and is defined as follows:

Definition 20 (Transitive Inference). Given a transitive dependency A B C in a relational

database D, where A, B, and C are data items in D, the knowledge an insider infers about C by

accessing A is called transitive inference.

4.2.2 Computed Knowledge

Computed knowledge is similar to inferred knowledge except that it is acquired through

computation. Formally, the computed knowledge is defined as follows:

Definition 21 (Computed Knowledge). Given a dependency A B in a relational database,

where A and B are data items, the knowledge an insider gets about B through computation by

using A is called computed knowledge.

For example, consider the dependency between the Rank attribute and the Total_Salary attribute

in Figure 4.4. Suppose that the range of total salaries of academic staff is between 65k and 130k,

37

and there are three ranks for academic staff, which are known to insiders. In addition, suppose

that the Total_Salary of an academic staff is computed as follows: Total_Salary = Base_Salary +

500 * experience, where Base_Salary is the left side of the ranges of Total_Salary. If an insider

has an access to the Rank attribute, the amount of information he/she can infer about the

Total_Salary of any academic staff is either 80 % or 61.5% because Total_Salary intervals are

not equally likely. If the insider has an access to the Rank attribute and the Experience of an

academic staff, the information he/she can acquire about the Total_Salary attribute is 100%

(exact knowledge), which is computed as shown.

INFER({Rank, Experience}Total_Salary) = (H (Total_Salary)- Hrank,experience(Total_ Salary)) /

H(Total_Salary) =100%.

The above computation is based on the assumption that the left side of a Total_Salary interval is

the Base_Salary of an academic staff without any experience, and the right side is the maximum

total salary an academic staff (with respect to the corresponding Rank) can get.

Rank Total_Salary

Assistant Prof 65k-90k

Associate Prof 91k-116k

Full Prof 117k-130k

Figure 4.4. Rank Total_Salary Dependency

38

4.2.3 Aggregated knowledge

Aggregated knowledge is the knowledge that results from combining two or more data items. It

may be called composite knowledge or combined knowledge as well. Formally, the aggregated

knowledge is defined as follows:

Definition 22 (Aggregated Knowledge). Given two related data items A and B in a relational

database, the knowledge achieved by combing A and B together is called aggregated knowledge.

An insider may have direct access to basic knowledge units (attributes or virtual knowledge

units) or aggregated knowledge units. To show how aggregated knowledge could be a threat,

consider the following example. Suppose that the relation R(Name, Rank, Salary) is a relational

schema and the knowledge units Name, Rank and Salary can be accessed separately by an

insider. Similarly, the aggregated knowledge [Name, Rank] or [Rank, Salary] can be accessed

separately by the insider, but the insider should not get access to the aggregated knowledge

[Name, Salary], which is unauthorized information to the insider. Obviously, using the two

aggregated knowledge [Name, Rank] and [Rank, Salary] and the dependency between the two

attributes Rank and Salary, the insider obtains the aggregated knowledge [Name, Salary], which

is considered a threat [Brodsky00].

Figure 4.5 shows an example of how aggregated knowledge is constructed, where KU indicates a

knowledge unit and AK indicates an aggregated knowledge unit. Aggregated knowledge can be

gained using dependencies and the transitivity property. Therefore, in case of the dependency

39

ABC, if an insider has access to data item A, he/she can get the aggregated knowledge

[A,B], [B,C] and [A,C]. Formally, an insider R can aggregate knowledge as follows.

(ABC) ∧ Access(R,A) Access(R,[A,B]) ∧ Access(R,[B,C]) ∧ Access(R,[A,C])

Where Access (R, [A,B]) means that an insider R has access to the aggregated knowledge [A,B].

The knowledge that can be acquired by an insider, but not stored in the database, is called virtual

knowledge [Morgenstern87]. Thus, an insider can have two types of knowledge: stored

knowledge, which is stored in the database, and virtual knowledge.

The term “data item” may represent an attribute, a record, or a table. Dependencies between

tables or records occur due to dependencies between attributes in those tables or records. Thus,

in this work, the discussion about knowledge or a dependency relationship at a lower level of

granularity (attribute level) is applicable for other levels to granularity. However, in the next

sections, we use the term “data item” to indicate a basic knowledge unit (a stored basic

knowledge unit, which is an attribute, or a virtual basic knowledge unit).

KU11

AK3

KU12 KU21

Data Item 1 Data Item 2

AK1

AK2

 Figure 4.5 Aggregated Knowledge

40

Based on the concepts of knowledge acquisition and Figure 3.1, Figure 4.6 demonstrates how an

insider broadens his/her knowledge using his/her access privileges, and dependencies and

constraints.

4.3 Neural Dependency and Inference Graph

A dependency graph can be used to show dependencies among different data items in a relational

database system [Althebyan07]. In addition to CDG, this dissertation introduces another type of

dependency graphs called the Neural Dependency and Inference Graph (NDIG). An NDIG

represents dependencies among data items in relational databases, the amount of knowledge that

can be acquired from/by accessing a single data item about other data items, and the amount of

Insider

Rank Experience # of dependents

HI_Premium

Direct Access
Direct Access

Infer

Compute

Infer

Direct Access

[Name,

Dependents,

Rank,

Experience]

Direct Access

Name

Direct Access

Base_Salary

Total_Salary

Compute

Tax

Direct Access

Net_Salary
Compute

Compute
Compute

[Name, Rank, Dependents, Experience, Base_Salary, Net_Salary,Total_Salary,

Health_ Insurance]

Aggregate

Aggregate
Aggregate

Aggregate

Aggregate

Figure 4.6 Acquiring knowledge

41

knowledge that can be deduced from/by accessing a group of data items about other data items.

The NDIG is defined formally as follows:

Definition 23 (NDIG). The Neural Dependency and Inference Graph NDIG (O,N,W,E) is a

graph that shows dependencies among data items and the amount of information that can be

acquired about data items using dependencies, where:

1. O represents data items, which are demonstrated by rectangles.

2. N indicates neurons, which are represented by ellipses.

3. W indicates weights on edges.

4. E indicates edges, which represent dependencies among data items such that:

a. The edges E(Oi, Nk) and E(Nk, Oj) indicate that the data item Oj depends on the data item

Oi.

b. The weight on the edge E(Oi, Nk) represents the amount of information that can be

acquired about the data item Oj using the data item Oi.

c. The weight on the edge E(Nk, Oj) represents the amount of information that can be

acquired about the data item Oj using all data items {O1…Ox} together, such that

E(Os, Nk) ∈ E.

 An example of NDIG is shown in Figure 4.7. NDIG uses some ideas from artificial neural

networks, where rectangles represent data items (input or output data items), elliptical nodes

represent neurons, and weights on edges represent inputs to neurons or output from neurons.

Each neuron consists of the function INFER and a weight. The weight, which is the output,

represents the amount of information that can be inferred about the output data items using the

input data items. Obviously, the INFER function is used to compute weights in neurons. Solid

42

lines show that there is a dependency between input and output data items, which indicates that

output data items depend on input data items. Dashed lines represent cyclic inference, which was

discussed earlier. For instance, as shown in Figure 4.7, O5 depends on O1 and O2. The weight

11% on the edge e(O1, n3) means that an insider who accesses O1 can acquire about 11% of

knowledge about O5. Furthermore, the weight 78% on the edge e(n3 ,O5) means that an insider

who accesses both O1 and O2 can infer about 78% of knowledge about O5.

Figure 4.8 demonstrates the NDIG of the academic staff database that is shown in Figure 3.1. As

shown, the amount of knowledge that can be acquired about the Net_Salary using the Tax table

only is 0%. As assumed, some insiders may already know dependencies and constraints. Thus,

accessing the Tax table does not reduce the uncertainty of the Net_ Salary for them. Similarly,

using the HI_Premium (Health_Insurance_Premium) value only provides negligible information

Figure 4.7 Neural Dependency and Inference Graph (NDIG)

 O1

 O2

 O3

n3 O5
11%

87%

 9%

 n6

 O4

78%

78%

n7

22%

22%

n4

 O6

n5

822%

100%

n2

n1

21%

12%

7%

5%

19%

6%

100%

100%

43

since it does not reduce the uncertainty of the Net_Salary. To clarify this point, suppose that

possible minimum and maximum values of Total_Salary based on Figure 4.4 are $65000 and

$130000 respectively. The range of Net_Salary without knowing HI_Premium is [65000 - Tax,

130000 - Tax]. The range of values of Net_Salary given HI_Premium is [65000 - HI_Premium -

Tax, 13000 – HI_Premium - Tax], which does not reduce the uncertainty of Net_Salary. Thus,

the edge that connects both knowledge units is labeled with 0% as shown in Figure 4.8.

However, the insider who accesses the Total_Salary of an employee gets a huge amount of

information about the Net_Salary of the employee. Obviously, the insider can use Total_Salary

in conjunction with his/her knowledge about Tax table to get information about the Net_Salary

of the employee. Strictly speaking, he/she can get a reduced range of the Net_Salary of the

employee. Using these criteria, the amount of information the insider can acquire about the

Net_Salary ranges between 98% and 99%, which is based on the assumption that the maximum

Figure 4.8 NDIG for the Academic Staff Database

n1

100% 100%

100% 0%

0%

100% 100%

100% 100%

100%

0%

61.5% or 80%

 100% 100%
 Rank

 Experience

n3

n4

 HI_Premium n6

 Total_Salary Base_Salary n2

 Tax Table

98% to 99%

n5

 # of dependents
 Net_Salary

44

HI_Premium is 1000. However, the insider can acquire the exact knowledge about the

Net_Salary of an employee if he/she knows exactly the HI_Premium and the Total_Salary

values. To make the NDIG in Figure 4.7 simpler, we have omitted most cyclic inference lines.

4.4 Insiders' Knowledgebases

A knowledgebase determines which data items the corresponding insider has read. That is, it is a

profile of insider accesses to data items. This section demonstrates how to build up the

knowledgebases of insiders at different levels of granularities. The dissertation defines

knowledgebase as follows.

Definition 24 (Knowledgebase). Given an insider R and a relational database RDB, the

knowledgebase of R, written as KB(R), is the set of data items in RDB that R has accessed using

his/her privileges, and the data items about which R can acquire information using dependencies

and constraints.

Based on the concepts of Hot and Safe Clusters in section 3.2, the following observations are

made. First, if an insider gets read access to a table that belongs to a Hot Cluster, s/he can acquire

information about all other tables in that cluster. Secondly, if an insider gets read access to a

table in a Safe Cluster, s/he cannot infer any information about any other table that belongs to the

same cluster (without accessing them directly). Finally, if an insider gets read access to a table in

some cluster, s/he still may infer information about other dependent tables that belong to

different clusters. The latter case would occur when the dependency between them is One-Way

dependency.

In addition to the above conclusions, an insider can acquire information transitively about other

45

tables using the transitive dependencies among attributes as follows. Suppose that a relational

database has the following dependency: T1 T2 … Tn-1 Tn, where T1 to Tn are tables in the

database. The insider who has a read access to Tk (1 ≤ k ≤ n-2) can infer information about Tj

transitively (transitive inference), where j ranges from k+2 to n, if the dependencies between the

tables Tk to Tj are between attributes in the form Ck Ck+1 Ck+2 … Cn-2 Cn-1 Cn such

that
 Cx ∈ Tx. Obviously, a transitive dependency is formed by a sequence of connected

direct dependencies. Notice that the condition imposes the continuity of the dependencies

between tables. Strictly speaking, the destination attribute (right side) in a direct dependency is

the source attribute (left side) for the next direct dependency. Hence, the insider who has access

to Tn can infer information about predecessors in the chain in the same way (cyclic inference).

The existence of inferable tables in the knowledgebase of an insider does not necessarily mean

that the insider can infer all information about those tables. To reveal more details, dependencies

and constraints between attributes in those tables should be investigated. To perform this, the

dependency graph CDG is used. For instance, in Figure 3.3, suppose that an insider has full read

and write access on table T1. Then, both tables T1 and T2 are added to the knowledgebase of the

insider since they have a dependency relationship. The insider knows all information about T1,

whereas his/her information about T2 is limited by the dependency between the two tables. To

clarify what information the insider can infer about T2, dependencies between attributes in both

tables should be investigated. Clearly, s/he infers information about a4 and a6, and acquires

information about a5 by cyclic inference. However, s/he does not have information about other

attributes in T2. To compute how much information the insider has about specific attributes, the

corresponding NDIG is used.

46

A similar scenario is used at the records level. If the insider has read a record, then the record is

added to his/her knowledgebase. In addition, other records that depend on this record are added

to. But this does not mean that s/he has full information about the latter records. To determine

what information the insider has about those records, the dependencies among attributes should

be investigated.

4.4.1 Knowledgebase Algorithm

Algorithm 4.1 shows how to build a knowledge graph, which represents knowledgebases at

different levels of granularity. It uses the NDIG and the CDG of the corresponding relational

database as well as the Dependency Matrix. In addition, it uses Hot and Safe clusters to facilitate

construction of the knowledge graph.

The algorithm starts by adding the insider as the root of a knowledge graph. The second level of

the graph contains the tables about which the insider has information (by direct access or by

inference). For each table at the second level, the algorithm determines which attributes the

insider has information of (by direct access or by inference). The NDIG is used to label edges by

the amount of information the insider can have about each data item (attribute or table). Either

the NDIG or the CDG is used to show dependencies between knowledge units (attributes), where

dependencies are represented by an edge (arrow) from the source attribute (left side of a

dependency) to the destination (dependent) attribute. Moreover, the CDG is used to show what

values of attributes are stored in the insider’s knowledgebase, which is used in insider threat

prediction and prevention later in section 4.5. Notice that the amount of information the insider

47

has about a table is the average of all information s/he has about all attributes that belong to the

table.

Algorithm 4.1. Knowledgebase Algorithm

Input: An insider I, Dependency Matrix, CDG, NDIG, Hot and Safe clusters, S: Set of tables to which

 the insider has direct read access.

Output: The knowledge graph of the insider I.

1. Initialize the KG = (V,E), where V = {I}, E={}.

2. For each table Tk in S //add directly accessed tables

3. V=V ∪ Tk // add the node Tk to KG

4. E=E ∪ {e(I, Tk)} // add the edge e(I, Tk) to the KG

5. For each t ∈ attributes(Tk) and the insider has a read access to it // add directly accessed attributes

6. V=V ∪ {t} // add the attribute t to KG

7. E=E ∪ {e(Tk, t)} // add edge e(Tk, t) to the KG

8. Endfor

9. Endfor

10. For each Tk in S do // consider dependencies

11. For each Safe Cluster R to which Tk belongs

12. X ∈ R ∧ X ∉ D X ∉ KB(I) //exclude X from KG

13. Endfor

14. For each Hot Cluster H to which Tk belongs

15. For Tm ∈ H ∧ Tm ≠ Tk

16. V = V ∪ {Tm}// add the node Tm to KG

17. E = E ∪ {e(I, Tm)} // add edge e(I, Tm) to the KG

18. For each tm ∈ attributes(Tm) ∧ tk tm, where tk ∈ attributes(Tk) // add directly inferred attribute(s)

 to the KG

48

19. V = V ∪ { tm } // add the attribute tm to KG

20. E = E ∪ { e(Tm, tm)} // add e(Tm, tm) to KG

21. E = E ∪ { e(tk, tm) } // add e(tk, tm) to KG

22. Endfor

23. Endfor

24. Endfor

25. For each other table Ts that has dependency (one_way) with Tk // add tables from other clusters

26. Repeat steps 16 to 22 for the table Ts

27. Endfor

28. For each table Tj that depends transitively on Tk (Definition 20) // transitive inference

29. V=V ∪ { Tj } //add the node Ts to KG

30. E=E ∪ {e(I, Tj)} // add edge e(I, Tj) to the KG

31. For each tj ∈ attributes(Tj) ∧ tk tj (transitive inference), where tk ∈ attributes(Tk) //add the transitively

inferred attribute(s) to the KG

32. V=V ∪ { tj } // add the attribute t j to KG

33. E=E ∪ {e(Tj, t j)} // add edge e(Tj, t j) to the KG

34. E= E ∪ {e(tk, t j)} // add edge e(tk, t j) to the KG

35. Endfor

36. Endfor

37. Endfor

38. For each edge e(T,t) // T is a table and t is an Attribute

39. Weight (e(T,t)) = the amount of information the insider has about t // using NDIG

40. Endfor

41. For each edge e(I,T) // weight of tables

42. Weight(e(I,T)) = ∑

 , where n is the number of attributes in Tz.

43. Endfor

49

To clarify how this algorithm works, suppose that the corresponding NDIG for the CDG in

Figure 3.3 is as shown in Figure 4.9.

Let the insider have read T1. In this case, Figure 4.10 shows the KG of the insider based on the

algorithm. Solid arrows point to data items to which the insider has direct access, whereas dotted

arrows point to data items about which the insider can infer information. Dashed arrows

represent the paths the insider follows to infer information. For instance, the insider acquires

information about the attribute a2 using direct access, whereas s/he gets information about a6 by

inference using the attribute a2. Weights on edges show the amount of information the insider

can have about the destination data items. The weight on edges between the root and a table is

the average value of weights on the edges between the table and its corresponding attributes.

Notice that these values are based on the assumption that the tables do not have any other

attributes other than what are shown.

Figure 4.9. The NDIG of the Database in Figure 3.3

 n1

100%

 a1 a2

 a5

 a6

 a3
 a4

 n3

 n4

 n6

 n5

 n2

100%

60%

100%

100%
40%

30%

30%

100%

100%

100% 100%

100%

50

4.4.2 Proof of Correctness of Algorithm 4.1

Insiders can get knowledge in different ways. First, they can get knowledge directly using their

privileges. Second, they can infer knowledge directly (using direct dependencies). Finally, they

can acquire knowledge transitively (using transitive dependencies). The following theorems

prove that the algorithm considers all these ways when building knowledge graphs.

Theorem 1. Given a table B in a relational database DB, and the knowledge graph KG of an

insider I,

B ∈ KG ⇔ B ∈ D (I) ∨ B ∈ DD(A) ∨ B ∈ TD(A)

where D(I) is the set of tables to which the insider has direct access, DD(A) and TD(A) are the

set of tables that depend directly or transitively on a table A respectively, and A ∈ D(I).

The theorem lists the three ways which insiders follow to get knowledge. The following proof

proves that the algorithm adds every table about which the insider may get knowledge using

those ways.

100%

Figure 4.10. The Knowledge Graph KG of an Insider

100%

I

T2

a2 a3 a4 a5 a6

60%
20% 100%

60%

100%

T1

a1

100%

51

Proof:

() Suppose that A ∈ D (I), and DB has the following dependencies:

- AB (direct dependency).

- A C (transitive dependency).

It is obvious that A ∈ KG by steps 2 to 4, which add every directly accessed table to the

knowledge graph. This proves the part of directly accessed tables. In the case of table B, let H(A)

be a Hot Cluster that contains A. Now, since A B, then either B ∈ H(A) (A and B have a

cyclic dependency), or B ∉ H(A). In the first case, B ∈ KG by steps 14 to 17. In the second case,

B ∈ KG by steps 25 to 27, which proves the part of directly dependent tables. In the case of C,

where C depends transitively on A, C ∈ KG by steps 28 to 30, which proves the part of

transitively dependent tables. In summary, all tables about which the insider can get knowledge

are added to the knowledge graph.

() (Proof by Contradiction) This part proves that no other table is added to the knowledge

graph of the insider. Suppose that ∃B ∈ KG: (B ∉ D(I) ∧ B ∉ DD(A) ∧ B ∉ TD(A)), where A

∈ D(I). In this case, B should exist in a Safe Cluster. Thus, B ∉ KG by steps 11 to 13, which is a

contradiction.

As discussed earlier, the existence of a table in the knowledge graph of an insider does not mean

that the insider has knowledge about every attribute in that table. The following theorem clarifies

this point.

52

Theorem 2. Given an attribute k, where k ∈ B for some table B in a relational database DB, and

the knowledge graph KG of an insider I:

k ∈ KG ⇔ (k ∈ DA(I) ∨ k ∈ DDA(s) ∨ k ∈ TDA(s))

where DA(I) is the set of attributes to which the insider has direct access, DDA(s) and TDA(s)

are the set of attributes that depends directly or transitively on an attribute s respectively, and s

∈ DA(I).

The theorem states that an attribute belongs to the KG of an insider if and only if it is accessed

directly, inferred directly or inferred transitively by the insider. The following proof proves the

correctness of Theorem 2.

Proof:

() Suppose that the DB has the following dependencies:

- A B ... T, where A, B and T, etc. are tables in DB.

- k r ... z, where k, r and z etc. are attributes such that k ∈ A, r ∈ B and z ∈ T , and k ∈

DA(I) and A ∈ D(I).

First, steps 5 to 8 state that k: (k ∈ DA(I) : (k ∈ A ∧ A ∈ D(I))) k ∈ KG. This proves the

part of directly accessed attributes. Second, steps 18 to 22 state that r: (r ∈ DDA(k) : (k ∈ A ∧

A ∈ D(I) ∧ r ∈ B ∧ B ∈ DD(A))) r ∈ KG. This proves the part of directly dependent

attributes. Finally, steps 31 to 35 state that z: (z ∈ TDA(k) : (k ∈ A ∧ A ∈ D(I) ∧ z ∈ T ∧ T

∈ TD(A))) z ∈ KG. This proves the third case.

53

() (Proof by Contradiction) Suppose that ∃k ∈ KG: (k ∉ DA(I) ∧ k ∉ DDA(s) ∧ k ∉

TDA(s)), where s ∈ DA (I). In this case, there are four cases:

1. k ∈ A , where A ∈ D(I) but k ∉ DA(I). In this case, k is excluded (not added) using steps 5

to 8.

2. k ∈ B , where B ∈ DD(A) but k ∉ DDA(s) for some A ∈ D(I) and s ∈ DA (I). In this case, k

is excluded using steps 18 to 22.

3. k ∈ T , where T ∈ TD(A) but k ∉ TDA(s) for some A ∈ D(I) and s ∈ DA(I). In this case, k is

excluded using steps 31 to 35.

4. k ∈ A and A ∈ S(P), where S(P) is a Safe Cluster of a table P about which the insider has

knowledge. In this case, k is excluded using steps 11 to 13.

Obviously, all mentioned cases contradict the assumption.

4.5 Insider Threat Prediction and Prevention

As discussed earlier in previous sections, insiders can use their read access privileges,

dependencies and constraints to acquire information about unauthorized data items. In addition,

data items in a knowledgebase could be risky. This section introduces the role of a

knowledgebase and the life times of data items in insider threat situation. Moreover, it introduces

the proposed models for insider threat prediction and prevention.

4.5.1 The Role of Knowledgebase and Lifetimes of Data items in Insider Threat

The values of data items in the knowledgebase of an insider may be combined with some

54

insensitive data items that the insider may request to infer sensitive information, which poses a

threat [Yaseen09][Yaseen10b]. Revoking read accesses from previously accessed data items

does not eliminate the threat since the values still exist in the insider’s knowledgebase. For

instance, consider the dependency ({Rank, Experience} Total_Salary). If the insider has

accessed the Rank attribute (which is added to his/her knowledgebase) and then he/she is given a

read access to the Experience attribute, he/she can combine both data items to infer the value of

the Total_Salary attribute, which could be sensitive information.

Clearly, an insider’s knowledgebase could pose a serious threat, but not if the data items in the

knowledgebase are expired. That is, if other insiders modify the data items, the lifetimes of those

data items (old values) may expire. Thus, using them to infer sensitive information would not

pose a threat. In light of this, considering the lifetime of data items in an insider’s knowledgebase

is important. However, merely updating values of data items does not always make their

lifetimes expire. Changing the value of an attribute that belongs to a Strong Dependency makes it

expire. However, it may or may not expire if the attribute belongs to a Weak Dependency. To

clarify this point, consider the Strong Dependency (Rank Base_Salary). In addition, assume

that an insider, say K, has the information (Jiff, Assistant Professor) in his/her knowledgebase

about the professor Jiff. In this case, K can infer exact information about the Base_Salary of Jiff.

However, changing the Rank attribute of Jiff by other insiders must change the Base_Salary of

Jiff. In this case, the Rank value in K’s knowledgebase is expired. That is, if K uses it to infer the

Base_Salary of Jiff, K’s inference will be incorrect.

On the other hand, consider the Weak Dependency (Score Grade) in a student table. A change

55

in the Score attribute does not always make a change in the Grade attribute. That is, changing

Score does not always make the old value of Score expire. To clarify this point, suppose that the

insider has read a student’s score, say 85, which enables him/her to infer the student’s grade (B

in this case) . However, suppose that the student’s score has been updated to 88 and the insider is

prevented from accessing the student’s score again. In this case, the insider still infers the correct

value of the student’s grade based on the old value of the student’s score. We say in this case that

the old value of the student’s score in the insider’s knowledgebase has not expired although it

has been updated. However, if the Score value is changed to 91, which will change the Grade to

A, the old value of Score will expire since the inference based on it is incorrect. The concept

“Expired data item” is defined as follows.

Definition 25 (Expired Data Items). Given the data items A and B in a relational database DB

and the dependency A B, A is called an expired data item if its value is updated to a new value

such that the inferred information about B based on A’s old value is incorrect.

Checking the lifetimes of data items has a great impact on insider threat prevention and on the

performance of systems. For example, suppose that a security protocol denied the request of an

insider to access a data item (X) because s/he may combine it with a data item R in his/her

knowledgebase to infer some unauthorized information. However, if the value of data item R has

expired, the system unnecessarily denied the access to X since providing the value of X would

not create a problem; rather by denying access to X, stops the user from performing his/her job

on a timely basis. Similarly, ignoring the knowledgebase and granting access irrespective of the

history of previous accesses and data item’s lifetime may pose a threat. Thus, both these issues

56

should be considered when an insider requests accesses to data items.

The work by Farkas et. al [Farkas01] attempted to increase the availability of data items by

checking the updates history. In their work, each insider has a history file that stores all data

items, which the insider either has previously received or can disclose from the received data

items. When an insider launches a query, all data items that can be received from this query are

stored in the file. The data items that a user can infer are discovered by considering the current

request, the history file, and the dependencies among data items. Based on the inferred data

items, the system decides whether to grant or deny the requested data items. However, some data

items that were accessed in the past may have been updated by others as explained before.

Therefore, the inferred data items based on those expired data items would be incorrect. We

should mention here that the researchers in [Farkas01] consider that a knowledge unit is expired

if it is updated after the last access to it by the user. However, this dissertation states that

updating the value of a knowledge unit does not always mean that its lifetime is expired.

Actually, its lifetime is not expired as long as its old value can still make correct inference.

Hence, their assumption may lead to the disclosure of sensitive data and failure to detect and

prevent insider threat.

4.5.2 The Proposed Approach

Constructing the knowledge graph of an insider, which shows his/her knowledgebase, helps in

predicting and preventing insider threat (disclosure of unauthorized information). This

dissertation introduces the Threat Prediction Graph (TPG), which is built based on the

knowledge graph, to predict and prevent this type of insider threat. Before defining the TPG

57

formally, let us introduce the Threat Prediction Value (TPV). A TPV is a value stored in each

attribute that belongs to the TPG of the insider, and it is used to predict insider threat. A TPG is

computed as follows.

TPV(k) = F(k) / T(k) (3)

where k is an attribute, F(k) is the amount of information the insider has about k, and T(k) is the

threshold value of k according to the insider. T(k) represents the amount of information that the

insider is allowed to get about k. TPG uses TPV to detect and prevent insider threat. An attribute

is considered a threat if its TPV is greater than 1, which means that the insider can get more

information than allowed about the attribute. TPG is defined as follows.

Definition 26 (TPG). The Threat Prediction Graph (V, E, L) is a graph that is used to predict

and prevent insider threat, where:

1. V indicates nodes such that:

- The insider node represents the corresponding insider.

- The second level of nodes (with labels Ti inside) represents the tables about which the

insider has knowledge (tables' nodes).

- The third level of nodes (with labels ai inside) is the attributes about which the insider

has knowledge (attributes' nodes).

2. E indicates the edges such that:

- Dashed edges (arrows) represent the paths the insider follows to get knowledge about

destination data items (tables or attributes).

58

- Solid edges (arrows) point to destination objects (tables or insider nodes) to which

source data items (tables or attributes) belong.

3. L represents the TPV values of attributes’ nodes.

 Figure 4.10 shows an instance of a TPG. The following points should be taken into account

when analyzing a TPG:

a) A solid arrow from a table node to the insider node (e(Ti, Insider)) indicates that the insider

has information about the table.

b) A solid arrow from an attribute node to a table node (e(ai, Ti)) indicates that the attribute

belongs to the table.

c) A dashed arrow from the insider node to a table node (e(Insider, Ti)) or from a table node to

an attribute node (e(Ti, ai)) indicates that the insider has direct read access to those data

items.

d) A dashed arrow from an attribute node to another attribute node (e(ai, aj)) indicates that the

first attribute (ai) is used to infer information about the second one (aj).

For instance, in Figure 4.11, the insider has information about the tables T1 (by direct access) and

T2 (by inference). Similarly, s/he can get information about the attribute a1 by direct access,

 I

a1

Figure 4.11. An Instance of TPG

T1

T2

0.22 0.63

a5

1
a2

59

however, s/he infers information about a5 and a2 using a1, where a2 belong to T2 and the other

two attributes belong to T1. The values inside the attributes nodes represent the TPV for those

attributes. To construct a TPG, NDIG, the KG and the set of threshold values according to the

underlying insider are used. The threshold value of an attribute according to an insider represents

the percentage amount of information that the insider is allowed to get about the data item, where

100% indicates that the insider can get full information about the corresponding data item, and a

value less than 100% indicates that the insider can get partial information. As discussed earlier,

the amount of information that an insider gets about a data item is retrieved using NDIG.

4.5.2.1 The Algorithm for Insider Threat Prediction and Prevention

Algorithm 2 shows how to detect and prevent insider threat using TPG. The algorithm uses

NDIG and KG to build the TPG. Moreover, it uses the threshold values for data items according

to the corresponding insider to compute TPVs.

Algorithm 4.2. Insider Threat Prediction and Prevention

Input: An insider I, the set of threshold values according to the insider, NDIG, the knowledge

 graph KG of the insider.

Output: The Threat Prediction Graph TPG of the insider I.

1. Initialize the set of pairs T ={(KU,TKU)}, where TKU is the threshold value about a knowledge unit KU

according to the insider I, an empty set S={}

2. Recall the KG of the insider and the NDIG, initialize the TPG as TPG = KG, but without labels

3. For each KU ∈ V // knowledge unit

4. TPV(KU) = F(KU) / T(KU) //compute the TPV of KU

5. KU.TPV = TPV(KU) //store the TPV inside the node

6. Endfor

7. For each requested knowledge unit RKU by the insider

60

8. If TPV(RKU) > 1 //threat predicted

9. Deny this request

10. Else //add RKU temporarily for further inspection

11. V = V ∪ {Tk}, where RKU ∈ Tk // add table Tk, where Tk ∉ TPG

12. E = E ∪ {e(I, Tk)} //add an edge if e(I, Tk) ∉ E

13. V = V ∪ {RKU} // add a node for RKU

14. E = E ∪ {Tk, RKU} //add an edge to the TPG

15. RKU.TPV = TPV(RKU) // Store the TPV(RKU) inside its node

16. For each knowledge unit KUx that has a dependency with RKU //add inferred attributes

17. If TPV(KUx) > 1 // threat predicted

18. Deny RKU and remove it from TPG

19. Else // no threat so far, still needs further inspection

20. If KUx ∉ V // not in the TPG

21. If KUx and RKU are not in the same table

22. Repeat steps 11 to 15 for KUx //add inferred attributes

23. Add KUx to the set S // for further inspection (step 37)

24. Else

25. V = V ∪ {KUx} // Add a node for KUx

26. E=E ∪ {e(RKU, KUx)} // add an edge

27. KUx.TPV = TPV(KUx) // Store the TPV(KUx) inside its node

28. Add KUx to the set S // for further inspection step37

29. Endif

30. Else // KUx ∈ V, already in the TPG

31. Add KUx to the set S // for further inspection step37

32. E=E ∪ {e(RKU, KUx)} // add an edge

33. Update the TPV of KUx // re-calculate its TPV

34. Endif

35. Endif

61

36. Endfor

37. For each KU in S

38. If TPV(KU) > 1 // threat predicted

 Two solutions: // threat prevention

39. First: Allow RKU but revoke insiders’ accesses to a knowledge unit(s), say KUz, that has

 the following properties:

(a). KUz already exists in the knowledgebase of the insider.

(b). KUz can be used in conjunction with RKU to compromise the unauthorized

 information about KU.

(c). The lifetime of KUz is expired.

(d) Revoking access to KUz preserves the security of all attributes.

 OR: //If the first solution is not possible

40. Second: Deny the insider’s request to RKU and recover the TPG as it was before step 7.

41. Endif

42. Endfor

43. Endif

44.Endfor

The algorithm works as follows. First, it initializes the TPG to the KG of the corresponding

insider (step 2). Next, it computes the TPV for each attribute in TPG and stores the value in the

attribute’s node (steps 3-6). When an insider requests an access to a data item, say RKU, the

algorithm checks whether the TPV of RKU is greater than 1. If TPV(RKU) > 1, the request is

denied (steps 8-9). Similarly, the request is denied if RKU can be used alone to infer

unauthorized information (steps 17-18). Otherwise, RKU and all data items dependent on RKU

are added temporarily to the TPG (19-34). These data items are inspected further by the

algorithm later in the following steps.

62

Before going further, we should mention here that the TPV of all data items in the TPG are

recalculated after adding RKU. This is because RKU and some data items in the knowledgebase

(in the TPG) of the insider may be combined to get more information about other data items.

Thus, the algorithm checks if RKU can be combined with a data item(s) in the insider's

knowledgebase to make the TPV of other data item(s), say KUj , greater than 1, which indicates

a threat. To prevent this threat, the algorithm introduces two solutions to solve this problem. The

first solution is to deny the insider’s request (RKU). The second one is to grant the insider an

access to RKU, but to revoke access(es) to a data item(s), say KUz, that can be combined with

RKU to pose the threat (unauthorized information about KUj). KUz should have the following

properties. First, it already exists in the knowledgebase of the insider. Second, it can be used in

conjunction with RKU to compromise unauthorized information about KUj. Third, its life time is

expired. Finally, revoking access to it preserves the security of all attributes. Both solutions

prevent insider threat; however, the second solution preserves the availability of the data items

needed to execute the insiders' tasks. Thus, the second solution should be considered first, if it is

possible. Otherwise, the second solution is used.

The second solution states that when a data item (KUz) is expired, the inference based on it is

incorrect. In this case, if the insider uses the old (expired) value of KUz, which exists in his

knowledgebase, and combines it with RKU to infer unauthorized information, his/her inference

would be incorrect. Moreover, if the insider tries to re-read the new value of KUz to use it in

inference, his/her attempt is denied since s/he does not have permission anymore to access KUz.

63

4.5.2.2 The Proof of Correctness of Algorithm 4.2

The following lemmas and theorem prove that the algorithm predicts and prevents insider threat.

Lemma 1. Consider RKU, T(RKU) and F(RKU) as stated in the algorithm, then:

 RKU: (T(RKU) < F(RKU)) Deny(RKU)

where Deny (RKU) means that access request for RKU is not granted.

Proof:

The proof of this lemma is fairly straight forward. Obviously, steps 8-9 states that a requested

attribute is not granted if the insider can get more information than allowed about it (greater than

the threshold value).

Lemma 2. Consider KU, TPG, KG and insider I as stated in the algorithm, then:

KU ∈ KG(I) KU ∈ TPG(I).

Proof:

The lemma states that every attribute about which the insider has knowledge is added to the

TPG. This is obvious in step 2, which states that the TPG is initialized to the knowledge graph of

the insider. Thus, since the knowledge graph contains all attributes about which the insider has

knowledge, as proved in Theorem 1, the initialized TPG contains all those attributes.

Theorem 3. Consider RKU and TPV as stated in the algorithm, then:

 RKU: Grant(RKU) t ∈ TPG: TPV(t) ≤ 1,

64

where Grant(RKU) means that RKU is granted.

The theorem states that a requested attribute is granted if the granting preserves the safety of all

attributes.

Proof:

Initially, assume that no threat exists. That is, all attributes are safe. Let x represent the requested

attribute. By lemma 1, if TPV(x) > 1, the request is denied, which prevents the threat and keeps

all attributes secure. Otherwise, x is granted if for all attributes t in TPG, TPV(t) ≤ 1, which is

proved as follows. First, x is added to the TPG by steps 11 to 15. Then, the algorithm checks

what new knowledge the insider can infer using x. This is performed by investigating

dependencies between x and all other attributes that are already in the knowledgebase of the

insider. This is easy to accomplish since these attributes are added to the TPG (by lemma 2).

Next, the algorithm updates the TPVs of the attributes about which the insider may get new (or

more) knowledge. This is performed by steps 20-33. Then, steps 37-38 check whether any of the

TPVs is greater than 1 (threat). If a threat is discovered, steps 39-40 suggest two solutions. First,

deny the insider’s request to access x and recover the state of the TPG to step 7, which is a safe

state as assumed earlier. Second, allow the insider to access x, but revoke his/her access to other

attribute(s), such that revoking the access moves the TPG to a new safe state. This proves that

accessing a data item is allowed if granting it to the corresponding insider preserves the security

of all data items in the TPG.

65

4.5.2.3 An Example Scenario

Suppose that Figure 4.12 represents the NDIG of a relational database, where the table T1

contains the attributes {a1, a5}, the table T2 contains {a2}, and the table T3 contains {a3, a4, a6}.

Also, assume that the set of attributes to which the corresponding insider has direct access is

{a1}. Obviously, the knowledgebase of the insider is {(a1, 100%), (a5, 11%), (a2, 5%)}. The

percentages of values represent the amount of information that the insider has about data items;

100% indicates exact knowledge and less than 100% means partial knowledge. Notice that the

amount of knowledge about a2 is acquired by cyclic inference. We should mention here that the

weights on edges in the graph are the amount of information the insider gets if s/he has exact

knowledge about source data items (left side of a dependency). Now, assume that T = {(a1,

100%), (a2, 19%), (a3, 100%), (a4, 100%), (a5, 50%), (a6, 65%)}, where T is the set of threshold

values for data items according to the given insider. These values indicate the maximum amount

of information that the corresponding insider is allowed to get about each data item. The

initialized TPG for this insider is shown in Figure 4.13 (a).

n5

n6

a3

a4

a6

31%

23% 11%

13%
81%

9%

17%

35%

 n1
n4

Figure 4.12. An NDIG of a Relational Database

n2

n3 a1

a2

a5

7%
12%

7%

9%

11% 78%

21%

5%

66

Now, assume that the insider has requested access to a3. Obviously, granting an access to a3 does

not form any threat as shown in Figure 4.13 (b) since the TPV will be less than or equal to 1 for

all attributes when granting a3. Bold dashed arrows demonstrate how the graph would look if the

requested attribute (a3 in this case) is granted. Notice that the TPV of a4 is 0.35 if the insider has

exact knowledge about a6 and a4. But since the insider has partial knowledge about a6, the

assumed value of the TPV is 0.15. Next, suppose that the insider has requested access to a4.

Obviously, the TPV of a4 is 1, which is legal. However, granting it makes the TPG as shown in

Figure 4.13 (c). In this TPG, the TPV of a6 is greater than 1, which indicates a threat. In this case,

the system has two choices. First, the system grants the insider an access to

Figure 4.13. Predicting and Preventing Insider Threat Using the TPG

(a) (b)

 I

a1

T1

T2

0.22 0.26

a2

a2

a5

1

T3

 I

a1

T1

T2

0.22 0.26

a2 a5

1

 a3

 1

0.15 0.2

 a4 a6

T3

 I

a1

T1

T2

0.22 0.26

a2 a5

1

 a3

 1 1 1.25

 a4 a6

T3

 I

a1

T1

T2

0.22 0.26

a2 a5

1 0.15 0.17

 a4 a6

(c) (d)

67

a4, but revokes his/her access to a3 (if its lifetime is expired). Second, the system denies the

insider’s request to read a4. If the system chooses the first choice, the TPG of the insider will

look as shown in Figure 4.13 (d). This option allows the insider to perform his/her task without

limiting the availability of data items or revealing sensitive information.

4.6 Simulation

The simulation was performed using MS C#.net and SQL Server. A sample relational database

of 10 tables was created manually. The dependencies and the NDIG of the database were created

randomly. Similarly, the threshold values of insiders about data items were created randomly as

well. The simulation was performed by choosing the number of insiders, the number of

transactions, and the number of attributes in transactions at each round. The timestamps of

reading or writing data items was stored to show whether data items are expired in the

knowledgebases of insiders. Moreover, the amount of information that insiders get about each

data item was computed and stored using the NDIG of the database. The approach was tested

according to different parameters to show its effectiveness. The parameters used were the

number of insiders in the system, the number of transactions, and the percentage of write

operations in transactions. For the same values of parameters, the simulation was executed 100

times and the average was taken as the result. We should mention here that all threats were

prevented either by finding and removing expired data items from knowledgebases or by

denying read accesses. However, the percentage of prevented threats shown in the figures below

indicates the number of threats that was prevented by finding and removing expired data items

68

over the total number of threat, which shows the effectiveness of using the proposed approach in

preventing threat without limiting the availability of data items.

Figure 4.14 shows the results of the simulation with different number of insiders. The number of

transactions is fixed at 250 at each round. The results show that when the number of transactions

and the number of insiders are fixed, the performance of the proposed approach improves as the

percentage of write operations increases. This is due to the fact that when the number of write

operations increases, the number of expired data items increases as well. Thus, the probability of

finding an expired data item to prevent a threat using the proposed approach gets higher.

Contrarily, the figure shows that there is no trend when the number of insiders increases. The

analysis of this result is as follows. When insiders execute a small number of transactions, the

data items in their knowledgebases will be few. Fewer data items in an insider's knowledgebase

leads to two conclusions. First, it means a smaller number of threats is possible by the insider.

That is, the probability of using data items in knowledgebase to pose a security violation gets

smaller. Second, it means that there is less probability of finding an expired data item when a

threat arises since few updates are executed when the number of transactions is small. These two

opposite effects keep the percentage of prevented threats almost stable in general as the number

of insiders increases or decreases.

69

Figure 4.15 shows the results of the simulation according to different number of transactions and

different percentage of write operations, whereas the number of insiders is fixed at 20. The figure

shows that for the same number of transactions and insiders, the percentage of prevented threat

by removing risky expired data items increases as the percentage of write operations increases.

The analysis of this result is similar to that of Figure 4.14. In addition, Figure 4.15 shows that the

number of prevented threats increases as the number of transactions increases. At first glance,

this result seems strange since an increase in the number of transactions causes both the number

of write and read operations to increase. Thus, data items are expired and refreshed quicker when

executing the transactions. That is, no general trend of the prevented threats should be detected.

However, this assumption is incorrect as shown in the figure and the reason is as follows. Since

there are 20 insiders in the system, when an insider refreshes an expired data item in his/her

knowledgebase by executing read operations, there are 19 other insiders available to update the

expired data item and make it expire. Thus, the probability of preventing threat by finding and

0

0.05

0.1

0.15

0.2

0.25

0.3

30 60 90 120 150

P
er

ce
n

ta
g
e

o
f

P
re

v
en

te
d

 T
h

re
at

 b
y

R
em

o
v
in

g

R
is

k
y
 E

x
p

ir
ed

 D
at

a
It

em
s

Number of Insiders

0.2

0.4

0.6

0.8

Percentage

of write

operations

Figure 4.14. The Percentage of the Prevented Threat by Removing Expired Data

Items according to Different Percentages of Write Operations and Different Number

of Insiders

70

removing expired data items increases. In summary, increasing the number of transactions

increment the probability of re-reading a data item by an insider, but it greatly increases the

probability of updating and expiring the data item by other insiders.

The simulation shows that the proposed approach prevents all detected insider threats. Moreover,

it shows the effectiveness of the proposed approach in preventing insider threats without limiting

the availability of data items (without denying read access requests). As shown in the figures, the

percentage of the prevented threats ranges from 8% to 30% depending on the number of

transactions and the percentage of write operations in transactions.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

100 200 400 600 800

T
h

e
P

er
ce

n
t

o
f

P
re

v
en

te
d

 T
h

re
at

 b
y

R
em

o
v
in

g
 R

is
k
y
 E

x
p

ir
ed

 D
at

a
It

em
s

Number of Transactions

0.2

0.4

0.6

0.8

Percentage of
write
operations

Figure 4.15. The Percentage of the Prevented Threat using the Proposed

Approach under Different Percentages of Write Operations and Different

Number of Transactions

71

5. INSIDER THREAT: UNAUTHORIZED MODIFICATIONS ATTACKS

5.1 Introduction

By discovering constraints on dependencies, an insider may be able to modify a dependent data

item, to which s/he has no write access, to a desired value by updating the pre-cursor data

item(s). For instance, consider the dependency {Rank, Experience} Total_Salary as discussed

earlier. Assume that an insider has a write access on Rank and Experience, but s/he has no write

access on Total_Salary. In addition, assume that the insider is familiar with the dependency and

constraints. In this case, the insider can modify the value of Total_Salary for an academic staff to

the value s/he prefers, which can be performed by choosing the appropriate values of Rank and

Experience for the academic staff. This section discusses this problem and suggests possible

solutions.

5.2 Insiders’ Modification-Lists

A modification-list determines which data items an insider can modify. It is constructed based

on the different levels of granularity of relational databases. Based on the concepts of Hot and

Safe clusters, the followings are concluded. First, if an insider is granted write access to a table

that belongs to a Hot Cluster, s/he can make changes in all other tables in that cluster. Second, if

an insider is given a write access to a table in a Safe Cluster, s/he cannot modify any other table

(without having direct write access to it) that belongs to the same cluster. Finally, if an insider

gets write access to a table in some cluster, s/he still can modify other dependent tables that

belong to different clusters. This case occurs when the dependency between tables is a One_Way

72

dependency. In addition to the above conclusions, an insider can make changes in other tables

transitively. The modification-list of an insider does not necessarily mean that the insider can

make arbitrary changes to the associated tables. To know what changes are possible,

dependencies among attributes in those tables and associated constraints should be investigated.

To do this, the dependency graph CDG is used. For instance, suppose that an insider has full

write access on table T1 as shown in Figure 5.1. Both tables T1 and T2 are added to the

modification-list of the insider since they have a dependency relationship. The insider can

change data in T1 as and when s/he wishes, whereas his/her write access to T2 is limited by the

dependency between the two tables. To determine what changes the insider can make in T2,

dependencies between attributes in both tables should be investigated. Clearly, s/he can modify

attributes t4 and t6 only in T2.

Figure 5.1. A Constraint and Dependency Graph CDG

+

5
9

 T2.t6

 T1.t2 T2.t5

c1 =< T1.t1 <= c2

T1.t1 T1.t1 < c1

T1.t1 > c2

c3

c4

c5

 T1.t2

- 5

T2.t4

7

T1.t3

 T3.t7 <= c1

T3.t7 T3.t7 > c1

c7

c8

 T4.t8

73

A similar scenario is used for items at the records level. If the insider has write access to a

record, then this record must be in his/her modification-list. In addition, other records that

depend on this record must be there as well. Nonetheless, this does not mean that the insider can

change data in all fields in those records. To investigate what information the insider can change,

dependencies among attributes should be investigated.

5.3 The Modification Algorithm

Algorithm 5.1 shows how to construct Modification Graphs, which represent modification-lists

at different levels of granularity. The algorithm uses the CDG and Dependency Matrix to

construct the modification graphs of insiders. In addition, it uses Hot and Safe clusters to

facilitate the construction process. A Modification Graph is defined formally as follows.

Definition 27 (MG). The Modification Graph MG (V, E) is a graph that demonstrates the data

items (tables and attributes) that an insider can modify directly or indirectly in a relational

database system, where:

6. V indicates nodes such that:

- The insider node represents the corresponding insider.

- The second level of nodes (labeled Ti) represents the tables which the insider can modify

(Tables’ nodes).

- The third level of nodes (labeled ai) shows the attributes which the insider can change

(attributes' nodes).

7. E indicates the edges such that:

74

- Dashed edges (arrows) represent the paths the insider follows to modify destination data

items (tables or attributes).

- Solid edges (arrows) point to destination objects (tables or insider nodes) to which

source data items (attributes) belong or which the insider can change.

The modification algorithm starts by adding the insider as the root of the modification graph.

Next, it adds the tables which the insider can change directly or indirectly (using dependencies),

at the second level. For each table at the second level, the algorithm determines to which

attributes the insider has a write access (direct or indirect) and inserts them at the third level.

Consider the CDG as shown in Figure 5.1 and assume that the insider has a write access to T1.

Figure 5.2 shows the modification graph of the insider. Dashed arrows represent the paths that

the insider follows to make changes. For instance, the insider can modify attribute t2 directly,

whereas s/he can modify t6 indirectly through t2.

Algorithm 5.1. The Modification Algorithm

Input: An insider I, Dependency Matrix, CDG, Hot and Safe clusters, Set of tables to which the insider has write

access S.

Output: The Modification graph MG of the insider I.

1. Initialize the MG = (V,E) , where V={I} and E={}.

2. For each table Tk in S //add direct write accessed tables to the graph

3. V = V ∪ { Tk } //add the node Tk to MG

4. E = E ∪ {e(I, Tk)} // add edge e(I, Tk) to the MG

5. For each attribute t ∊ Tk that the insider has a write access to it // add directly accessed attributes to the MG

6. V=V ∪ { t } //add the node t to MG

75

7. E=E ∪ {e(Tk, t)}// add edge e(Tk, t) to the MG

8. Endfor

9. Endfor

10. For each Tk in S do // tables in S

11. For each Safe Cluster R to which Tk belongs

12. Exclude all tables in R (that does not belong to S) from the MG of the insider

13. Endfor

14. For each Hot Cluster H to which Tk belongs

15. For each table Tm ∈ H

16. V = V ∪ { Tm } //add the node Tm to the MG

17. E = E ∪ {e(I, Tm)} // add the edge e(I, Tm) to the MG

18. Endfor

19. For each attribute t ∊ Tm that the insider can change depending on direct dependencies//add t to the MG

20. V= V ∪ { t } //add the node t to MG

21. E= E ∪ {e(Tm, t)} //add the edge e(Tm, t) to the MG

22. E= E ∪ {e(d, t)}, where d is an attribute that belongs to Tk and on which t depends

23. Endfor

24. Endfor

25. For each other table Ts that depends (one-way) on Tk//add tables from other clusters

26. Repeat steps 15 to 23 for the table Ts

27. Endfor

28. For each table Tj that depends transitively on Tk (transitive dependency) // transitive change

29. V=V ∪ {Tj} //add the node T j to MG

30. E=E ∪ {e(I, Tj)}// add edge e(I, Tj) to the MG

31. Endfor

32. For each t ∊ attributes(Tj) that the insider can change it transitively (transitive dependency) //add t

 to the MG

76

5.4 The Proof of Correctness of Algorithm 5.1

Insiders can modify data items in different ways. First, they can modify data items using their

privileges. Second, they can modify data items indirectly using direct dependencies. Finally, they

can modify data items transitively using transitive dependencies. The following theorems prove

that Algorithm 5.1 considers all these ways when building modification graphs. We should

mention here that the proofs are similar to the proofs in Algorithm 4.1. However, Algorithm 5.1

deals with modification graphs instead of knowledge graphs.

Theorem 1. Given a table B in a relational database DB, and the modification graph MG of an

insider, then:

B ∊ MG ⇔ B ∊ D(I) ∨ B ∊ DD(A) ∨ B ∊ TD(A)

33. V = V ∪ {t} //add the node t to MG

34. E = E ∪ {e(Tj, t)}//add edge e(Tj, t) to the MG

35. E = E ∪ {e(f, t)}, where f is an attribute that belongs to a table in MG and on which t depends directly

36. Endfor

37. Endfor

Figure 5.2 A Modification Graph of an Insider.

a2

T2
T1

 I

a1 a3 a4 a6

77

where D(I) is the set of tables to which the insider has direct write access, the table A ∊ D(I), and

DD(A) and TD(A) are the set of tables that depend directly and transitively respectively on A.

The theorem lists the three ways which insiders follow to modify data items. The following

proof verifies that the algorithm adds all tables which the insider may modify using those ways.

Proof:

() Suppose that A ∊ D (I) and DB has the following dependencies:

1) AB, which means that B depends directly on A.

2) A C, which means that C depends transitively on A.

It is obvious that A∊ MG by steps 2 to 4, which add every directly accessed table (write

access) to the modification graph. This proves the part of directly accessed tables with a write

privilege. In the case of table B, let H(A) be a Hot Cluster that contains A. Now, since A B,

then either B∊ H(A) (A and B have cyclic dependency), or B ∉ H(A). In the first case, B ∊ MG

by steps 14 to 18. In the second case, B ∊ MG by steps 25 to 27. This proves the part of directly

dependent tables. In the case of C, where C depends transitively on A, C ∊ MG by steps 28 to 31.

This proves the part of transitively dependent tables. In summary, all tables which the insider can

modify are added to the modification graph. □

() (Proof by Contradiction) This part proves that there is no table added to the modification

graph of the insider but those added in the previous part. Suppose that ∃B ∊ MG: (B ∉ D(I) ∧ B

∉ DD(A) ∧ B ∉ TD(A)),where A ∊ D(I). In this case, B should exist in a Safe Cluster (Definition

8). Thus, B ∉ MG by steps 11 to 13, contradiction.□

78

As discussed earlier, if a table exists in the modification graph of an insider, this does not mean

that the insider can modify every attribute in that table. The following theorem clarifies this

claim.

Theorem 2. Given an attribute k, where k ∊ B for some table B in a relational database DB, and

the modification graph MG of an insider I, we have,

k ∊ MG ⇔ k ϵ DA(I) ∨ k ∊ DDA(s) ∨ k ∊ TDA(s)

where DA(I) is the set of attributes to which the insider has direct write access, the attribute s ∊

DA(I), DDA(s) and TDA(s) are the set of attributes that depend directly and transitively on s

respectively.

Proof:

() Suppose that DB has the following dependencies:

1) AB ... T, where A, B and T are tables in DB, and A ∊ D(I).

2) k r ... z, where k, r and z are attributes, and k ∊ A, k ∊ DA(I), r ∊ B and z ∊ T.

First, steps 5 to 8 state that k: (k ∈ DA(I) : (k ∈ A ∧ A ∈ D(I))) k ∈ V(MG) ∧ e(A, k) ∊

E(MG). This proves the part of directly accessed attributes with a write privilege. Second, steps

19 to 23 state that r: (r ∈ DDA(k) : (k ∈ A ∧ A ∈ D(I) ∧ r ∈ B ∧ B ∈ DD(A))) r ∊

V(MG) ∧ {e(B, r), e(k, r)} ∊ E(MG). This proves the part of directly dependent attributes.

Finally, steps 32 to 36 state that z: (z ∈ TDA(k) : (k ∈ A ∧ A ∈ D(I) ∧ z ∈ T ∧ T ∈ TD(A)))

 z ∊ V(MG)) ∧ {e(T, z), e(k, z)} ∊ E(MG). This proves the third case.

79

() (Proof by Contradiction) Suppose that ∃k ∈ MG: (k ∉ DA(I) ∧ k ∉ DDA(s) ∧ k ∉

TDA(s)), where s ∈ DA (I). In this case, there are four cases:

1) k ∈ A , where A ∈ D(I) but k ∉ DA(I). In this case, k is excluded (not added) using steps 5

to 8.

2) k ∈ B , where B ∈ DD(A) but k ∉ DDA(s) for some A ∈ D(I) and s ∈ DA (I). In this case, k

is excluded using steps 19 to 23.

3) k ∈ T , where T ∈ TD(A) but k ∉ TDA(s) for some A ∈ D(I) and s ∈ DA(I). In this case, k is

excluded using steps 32 to 36.

4) k ∈ A and A ∈ S(P), where S(P) is a Safe Cluster of a table P that the insider can modify. In

this case, k is excluded using steps 11 to 13.

Obviously, all mentioned cases contradict the assumption.□

5.5 Preventing Malicious Modifications

Preventing malicious modifications can be handled in two ways. The first method is to hide the

dependencies that may be used by insiders to launch unauthorized modifications. The second

method is not to grant insiders write accesses to data items that may be used to make

unauthorized modifications to sensitive data items.

5.5.1 Hiding Dependencies

As discussed earlier, the discovery of dependencies by insiders may pose a threat; it allows them

to make changes to unauthorized data items. For instance, the insider who has access to the Rank

attribute can change the Salary attribute of an academic staff. However, if the insider is not

familiar with the dependency, s/he may not make unauthorized modifications. Actually, an

80

insider can still make changes but these changes will be random, and a random change will

generate suspicion. Determining which dependencies should be hidden depends on the sensitivity

of the data items. That is, some data items are not important enough for insiders to be interested

in changing. The level of importance defines the sensitivity of data items. A Sensitive Data Item

is defined as follows.

Definition 28 (Sensitive Data Item). A Sensitive Data Item is a data item which insiders may be

interested in changing due the importance and secrecy of the information that it contains.

Determination of the sensitivity of a data item is performed by administrators who can assign

values between 0% for insensitive data items and 100% for highly sensitive data items.

Administrators should consider the importance of data items when assigning sensitivity values.

To determine which dependencies should be hidden from an insider, the Sensitivity and

Dependency Graph (SDG) is introduced, which shows the dependencies among attributes in

different tables without revealing any further details about them, such as constraints. But

purposely, it contains the sensitivity values of different attributes. This facilitates determining the

Cut, which is defined as follows.

Definition 29 (Cut). Given a set of dependencies S in a relational database, a Cut is a set of

dependencies C ⊆ S that should be hidden from the insider under consideration.

81

Those edges (dependencies) have destination attributes with sensitivity values greater than a

predefined threshold for the insider under consideration. Hence, when an insider has a write

access to a Hot Attribute [White09b], many dependencies need to be hidden from him/her.

Figure 5.3 shows an example of determining a Cut in SDG. The weights on edges indicate the

sensitivity of the destination attributes. The Cut shows that the dependencies {XR, XQ,

PZ} should be hidden from the insider who has a write access on X and not on Z, Q and R. In

addition, the insider should be prevented from collaborating with insiders who have access to

attributes Z, Q and R.

5.5.1.1 The Algorithm

Algorithm 5.2 shows how to determine which dependencies should be hidden from an insider.

To determine a Cut, a threshold value should be set first. Then, a Breadth First Search is used,

which starts from the attribute on which the insider has a write access to determine which edges

belong to the Cut (step 7). Strictly speaking, all edges that have sensitivity values greater than the

Figure 5.3. Determining a Cut in the Sensitivity and Dependency Graph.

X

P

R

Y

9%

56%

75%

91%

10% Q

 Z

82

threshold value are added to the Cut (steps 9-10). For instance, assume that the threshold value in

the example (in Figure 5.3) is 50%. Thus, all dependencies in the Cut have dependent attributes

with sensitivity values greater than 50%.

5.4.1.2 The Proof of Correctness of Algorithm 5.2

The following theorem proves the correctness of the algorithm.

Algorithm 5.2. The Cut Algorithm.

Input: CDG, Set of attributes S, an insider I.

Output: A Cut C.

1. Let X be the attribute to which the insider has a write access

2. Initialize the Sensitivity and Dependency Graph using the CDG

3. Initialize a cut C={}

4. Initialize S = {X}

5. While S ≠ {}

6. Pick an attribute Z from S

7. Run a breadth first search on Z

8. For each attribute Y ∊ adjacent(Z) // the edge e(Z, Y) ∊ SDG

9. If sensitivity(e(Z,Y)) > threshold

10. C = C ∪ { e(Z,Y) } // add the edge to the SDG

11. Else

12. S=S ∪ {Y}

13. Endif

14. Endfor

15. Endwhile

16. Return C as the cut

83

Theorem 3. Let X be an attribute to which an insider has a write access, U and V are two other

attributes, and C is a Cut. Then:

e(U,V)∊ C ⇔ (∃ P(X,U):(Z ∊ P(X,U):Sensitivity(Z) < Threshold(Z)) ∧ (Sensitivity(V) >

Threshold(V)), where P(X,U) denotes a path from the attribute X to an attribute U.

This theorem states that a Cut contains an edge e(U,V) if and only if there is a path XU, such

that all attributes along this path have a sensitivity value less than the threshold value and the

sensitivity of V is greater than the threshold value. Hence, the threshold value of an attribute

relative to the insider under consideration determines whether the attribute is sensitive or not for

the insider.

Proof:

() Suppose that e(X,Y) ∊ P(X,U). In addition, assume that Sensitivity (Y) ≤ Threshold(Y). In

this case, Y ∊ S by steps 11 - 12. Later, Y will be picked from S since steps 5 - 6 pick a vertex

from S recursively until S is empty. Now, by steps 8 and 11 - 12, K ∊ Adjacent(Y) ∧ Sensitivity

(K) ≤ Threshold(K) K ∊ S. Continuously, the algorithm picks vertices on the path XU as

long as their sensitivity is less than or equal to the threshold value. However, it stops checking

the adjacent vertices of any vertex, say L, if the sensitivity of L is greater than the threshold

value, which is clear in steps 9-10. When reaching U, R: R ∊ Adjacent(U) ∧ Sensitivity (R) >

Threshold (R) (U,R) ∊ C (by steps 9 - 10). Thus, since sensitivity(V) > Threshold(V), the

edge e(U,V) is added to the Cut. This completes the first part of the proof.

84

() (Proof by Contradiction) Suppose that e(U, V) ∊ C ∧ (P(X,U) : (∃ Y∊ P(X,U) :

Sensitivity(Y) > Threshold(Y)). Now, let Z be the predecessor of Y. In this case, e(Z, Y) ∊ C by

steps 9 -10, and hence, Y will not be added to the set S as shown by steps 9-13. As a result, since

Y ∊ P(X,U), U will not be reached. Thus, e(U,V) ∉ C, which is a contradiction. □

This proves the correctness of the algorithm. In summary, Theorem 3 proves that a Cut contains

an edge, say e(U,V), if the following conditions are satisfied:

1) Its endpoints are reachable from the vertex, say X, to which the insider has write access.

2) There is a path from X to V, such that all of the vertices along that path (except V) have a

sensitivity value less than or equal the threshold value.

3) The sensitivity value of the destination of the edge (V in this case) is greater than the

threshold value.

5.5.2 Denying Write Access Requests

It may not always be possible to hide dependencies. In these cases, the solution is not to grant

insiders write accesses on data items in which a change may cause a change in sensitive data

items. For instance, using the graph in Figure 5.3, granting an insider write access to the data

item X enables the insider to make changes in data items P, Z, Q and R. Thus, if some of these

data items are sensitive, and hiding dependencies is not possible, the insider should not get write

access to X.

85

Insiders can make approximate or exact changes to unauthorized data items based on

dependencies and/or constraints they can discover. For instance, consider the dependencies

{Rank Base_Salary, (Base_Salary, Experience) Salary}, where Salary = Base_Salary + 100

* Experience. Suppose that the Salary attribute is a sensitive data item. Assume also that the

insider under consideration is familiar with the corresponding dependencies and constraints.

Now, if the insider has write access to Rank only, s/he can change the corresponding Salary to an

amount close enough to what s/he wishes. Whereas by having a write access to Experience, s/he

can make some minor changes to Salary. On the other hand, by having a write access to both the

Rank and Experience, the insider can change Salary to any value s/he wants. Administrators

should take this into account when granting write access to data items. However, denying write

access to some data items may affect the tasks the insiders are able to perform.

Modification Graphs MGs show how to predict an unauthorized modification threat. For

example, using the CDG in Figure 5.1, suppose that an insider has write access to the attribute a1

in table T1. In this case, the MG of the insider is shown in Figure 5.4, which shows that the

insider can change attributes a2 and a6 in tables T1 and T2 respectively although s/he may not

have write access to these attributes. Thus, if one of these attributes is sensitive, administrators

may deny the insider’s write access to a1 in order to avoid the threat. However, as discussed

earlier, denying write access may hinder the performance of some insiders and also reduce the

availability of data items. Thus, the preferable approach is to hide the dependencies, if possible,

instead of denying write accesses.

86

5.6 An Example Scenario

 This section introduces a simple real world example of using the Cut algorithm to prevent

insider threat without limiting the availability of data items. Consider the example in Figure 5.1,

suppose that the sensitivity values of the data items are as shown in Table 5.1. Sensitivity values

indicate the importance and the secrecy of data items as discussed earlier. Figure 5.5 represents

the SDG for the given database based on the dependencies and the sensitivity values of the data

items. As discussed earlier, weights on edges represent the sensitivity of the destination data

items. Notice that the starting data items (Rank and Number of dependents) do not have

sensitivity values. This is because the SDG is used to show the hidden threat when granting write

accesses to some data items (the starting data items). However, if a write access on those data

items is requested by an insider who is not allowed to modify them, his/her request is denied

without constructing the corresponding SDG.

TABLE 5.1. SENSITIVITY VALUES ACCORDING TO THE INSIDER K

Data item Sensitivity

Rank 20%

Base_Salary 90%

Experience 10%

Number of Dependents 30%

HI_Premium 90%

Salary 100%

Net_Salary 100%

Tax 10%

Figure 5.4 A Modification Graph.

a2

T2 T1

 I

a1 a6

87

Assume that the threshold value of the insider (Bob) is 50%, which means that he is not allowed

to modify data items with sensitivity values greater than 50%. Now, suppose that Bob requests a

write access on Rank and Experience attributes and on the Dependents table. In this case, if he is

given write access to those data items, he can indirectly modify the sensitive data items:

Base_Salary, Salary, HI_Premium and Net_Salary, which is a threat. It happens if Bob is

familiar with the dependencies. Thus, to prevent this threat, we should ensure that some

dependencies are hidden from Bob before giving him the requested write accesses. To show

which dependencies should be hidden to prevent the threat, the Cut algorithm is used. Using the

algorithm, the set of dependencies that should be hidden from Bob is shown in Figure 5.5 by a

dashed line. By hiding those dependencies, the requested accesses can be granted and the threat

is minimized or prevented. However, if it is not possible to hide those dependencies, Bob’s

access requests should be denied. This simple example shows the effect of hiding some

dependencies to prevent insider threat. In addition, it shows how hiding dependencies increases

the availability of data items so that insiders can perform their jobs without limiting their

performance.

Number of

Dependents
Net_Salary

Experience

Salary

Figure 5.5.The SDG of the Academic Staff Database in Figure 5.1

100%

100%

90%

HI_Premium 90%

Base_Salary

Tax

100%

100%

100%

The Cut

Rank

88

5.7 How Insiders Discover Dependencies

Insiders may discover dependencies in several ways. First, they may discover dependencies by

accessing the metadata of a relational database directly, which is fairly straight forward. Second,

they may discover dependencies by collaborating with other insiders in the same organization.

For instance, suppose that Alice has a write access to a table T1 and Bob has a read access on

table T2. In addition, assume that neither of the two insiders is familiar with the dependencies

between the two tables. Now, suppose that Alice needs to modify some value in T2. To do this,

she can collaborate with Bob to check whether there is a dependency between the two tables;

Alice makes changes in T1 until a change happens in T2. Then, Bob informs Alice about the

change that happens in T2. As a result of this operation, the collaborative insiders can discover

the dependencies as well as the constraints between the two tables. Figure 5.6 demonstrates this

process. Discussions about the prevention of collaborative attacks are beyond the scope of the

dissertation.

Finally, an insider may discover dependencies by inferring relationships among data items that

s/he retrieves. Moreover, s/he can infer the constraints on dependencies partially or totally. For

instance, suppose that the relationship between the Rank of an academic staff and his/her

Base_Salary is as shown in Figure 5.7. Assume that Alice has accessed tuples 1 and 3. In this

Alice makes changes in T1 until a

change happens in T2.

Bob informs Alice about the

change.

T1 T2

Figure 5.6. Collaborative Attacks.

89

case, she may assume that there is a dependency between the Rank and the Base_Salary, and that

assistant professors have a Base_Salary of 75K. Moreover, she updates her knowledge about

dependencies and constraints when she accesses more tuples.

5.8 Hiding Dependencies: When and How?

Hiding dependencies requires preventing the operations that may expose them. However, only

sensitive dependencies need to be hidden, where a sensitive dependency is a dependency that

may be used to make malicious modifications to sensitive data items. Obviously, hiding

dependencies may limit the availability of data items and insiders’ tasks as well. Thus, this

process should be performed when the cost of allowing the discovery of a sensitive dependency

is greater than the cost of hiding it. For instance, in Figure 5.5, if an insider has a write access to

Rank only, having him/her discover the dependency between Rank and Base_Salary would be

costly from security viewpoint. This is because modifying the Rank changes the value of

Base_Salary, Salary, and Net Salary, which are unauthorized sensitive data items. To prevent the

threat illustrated in this example, this dissertation proposes two solutions. The first one is to

prevent the corresponding insider from discovering the dependency, which can be achieved by

preventing him/her from getting a read access to the Base_Salary. In this case, the insider can get

a write access to the Rank attribute only without posing a threat. The second solution is not to

grant the insider a write access on the Rank attribute and to allow him/her to read the data item

Name Rank Base_Salary

Jeff Mayor Assistant Prof. 75K

Nancy Bishop Prof. 100K

Dale Bush Assistant. Prof. 75K

Gordon Thompson Prof. 100K

Figure 5.7. Academic Staff’s Base_Salary

90

(Rank, Base_Salary). However, both solutions limit the availability of data items. That is, there

is a cost in terms of availability; but not in terms of security.

In light of the previous discussion, preventing the operations that may lead to exposure of

sensitive dependencies or update of sensitive information has a cost on the availability of data

items and also on the insiders’ job performance. On the other hand, allowing these operations

may help insiders in making malicious modifications to unauthorized data items, which has a

cost to the security of the system. Therefore, to help in decision making process, the cost of each

possible solution must be computed and the one with the least cost should be chosen. The cost of

a solution can be measured according to its effect on the availability and on the security of data

items. Formula 1 computes the cost of a solution.

Cost (S)=∑
 + ∑

 (1)

where S indicates the solution chosen, i represents the attribute that is limited (prevented) by

applying S, Imp(i) indicates the importance of the data item i according to the insider under

consideration, which represents the necessity of i in performing the insider’s tasks. For example,

the data items that are used by the insider to perform a group of tasks are more important than

data items that are used to perform a single task. This value may be given either by the insider or

assigned by the system based on the tasks that should be performed by the insider. The term j

represents an unauthorized attribute that may be exposed by applying S, sensitivity(j) shows the

sensitivity of the attribute j. Wa and Ws indicate the weights associated with the availability and

sensitivity respectively. These values are used to determine which is preferable between limiting

91

the availability of attributes and exposing sensitive information. Hence, these values may differ

according to attributes, and are assigned by the system. Likewise, the sensitivity of an attribute

is assigned by estimating the damage that may be caused by revealing or modifying the attribute.

A value for sensitivity is assigned by the system as well.

To clarify the concept, consider Figure 5.8, which represents the sensitivity and the importance

values of the attributes shown in Figure 5.7 for the insider (Bob). Assume that Wa and Ws are 2

and 3 respectively. Now, suppose that Bob has permissions to read all attributes of all records

and modify the Rank attribute of all records, but he is not allowed to modify the Base_Salary

attribute. Obviously, allowing the insider to access what he is allowed to access poses threat.

Strictly speaking, Bob may infer the dependency [Rank Base_Salary] and associated

constraints. In this case, Bob may use this knowledge and his write privilege on the Rank

attribute to make the changes he desires to the Base_Salary attribute without having a write

access to it, as discussed earlier. Although this constitutes a threat, it may be acceptable in some

situations. Thus, this is the first solution (S1) to the problem of having the insider discover the

dependency and make malicious modifications. The second solution (S2) is to grant Bob a read

access on data items Rank, and Base_Salary and revoke the write access that he has on Rank. In

N
a

m
e

R
a

n
k

Im
p

o
rt

a
n

ce

/1
0

S
en

si
ti

v
it

y

/1
0

B
a

se
_

S
a

la
ry

Im
p

o
rt

a
n

ce

/1
0

S
en

si
ti

v
it

y

/1

0

Jeff Mayor Assistant Prof. 5 1 75K 2 10

Nancy Bishop Prof. 5 1 100K 2 10

Dale Bush Associate Prof. 5 1 80K 2 10

Gordon Bush Prof. 5 1 100K 2 10

Figure 5.8. Academic Staff Base_Salary

92

this case, Bob can discover the dependency, but he is not able to make malicious modifications.

The third solution (S3) is to deny the read access that Bob has on the Base_Salary attribute and

grant him a write access to Rank; this hides the dependency from him, and allows him to modify

the Rank. Thus, Bob cannot discover the dependency and he is not able to make malicious

modifications to Base_Salary. To choose the best solution, the cost of each one is calculated

using Formula 4 as follows, where the number 4 on the summation symbol indicates the number

of records in the table.

- Cost(S1) = 0 + ∑
 = 120.

- Cost(S2) = ∑
 + 0 = 40.

- Cost(S3) =∑
 + 0 = 16.

Notice that the first solution is very costly. Obviously, the best solution is S3, which hides the

dependency from Bob. That is, limiting the availability of some data items is better than allowing

him to make malicious modifications according to the cost estimation.

5.9 Experiments and Results

To test the efficiency of the model, a simulation was performed using MS C#.net and SQL

Server. A sample relational database of 10 tables was created manually. The dependencies and

the NDIG of the database were created randomly. Similarly, the access permissions, the

importance and the sensitivity of data items according to each insider were created randomly as

well.

93

0

10

20

30

40

50

60

70

80

100 200 300 400 500 600 700N
u
m

b
er

o

f
P

re
v
en

te
d

 T
h
re

at
s

(T
ra

n
sa

ct
io

n
s)

Number of Transactions

 0.2

0.4

0.6

0.8

Percentage

of Write

Operations

Figure 5.9. Number of Prevented Threat (risky transactions) vs. Number of
Transactions and the Percentage of Write Operations

The simulation was performed by choosing the number of insiders, the number of transactions,

the range of attributes per transaction and the weights of availability (Wa) and sensitivity (Ws).

The model was tested according to different parameters to show its effectiveness. The parameters

used are the number of insiders in the system, the number of transactions, and the percentage of

write operations in transactions. For the same set of parameters’ values, the simulation was

executed several times and the average was taken as the result. We should mention here that all

risky transactions were caught and prevented using the proposed approach (when preventing

threat is less costly than allowing it). Figures 5.9 and Figure 5.10 show the results of the

simulation.

Figure 5.9 shows the number of prevented threats (risky transactions) according to the number of

transactions and the percentage of write operations. The number of insiders used in the

simulation is 20, and Wa and Ws are 2 and 4 respectively. Obviously, the figure shows that as the

number of transactions increases, the number prevented threats, which is a trivial result since the

number of threats is directly proportional to the number of transactions increases. In addition, the

figure shows that, for the same number of transactions, the number of prevented threats increases

94

as the percentage of write operations increases. This is an expected result since increasing the

number of write operations in a transaction maximizes the probability of modifying sensitive

data items, which in turn increases the possibility of threat (and the prevented threat using the

approach). As discussed earlier, the system chooses the solution with the lowest cost to prevent a

threat.

Preventing a threat is not always the best solution. In some cases, allowing insiders to access

unauthorized data is better than impeding the tasks of insiders. The solutions in these cases

depend on the weights associated with availability and sensitivity, and on the sensitivity of data

items as well. Figure 5.10 shows the ratio of the number of prevented threats to the number of

allowed threats according to a variable ratio between Wa and Ws. For instance, when Wa : Ws is

1:4, the number of prevented threats is about 49 times more than the number of allowed threats.

The figure shows that the number of prevented threats is greater than that of allowed threats

when Wa < Ws, and the value (Number of Prevented Threats / Number of Allowed Threats)

increases as Wa gets smaller. Whereas, the number of allowed threats is greater than the number

of prevented threats when Wa > Ws and the value (Number of Prevented Threats / Number of

Allowed Threats) decreases as Ws gets smaller.

Obviously, the simulation demonstrates that the proposed approaches prevent insider threat

efficiently taking into account systems preferences, where systems have to choose between

breaching the security and limiting the availability of data items.

95

49.33

32.33

11.18

1.83 0.35 0.28 0.03

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1:4 2:4 3:4 4:4 4:3 4:2 4:1

#
P

re
v
en

te
d

 T
h
re

at
 /

#
A

ll
o

w
ed

 T
h
re

at

Wa: Ws

Figure 5.10. The Number of Prevented Threat / the Number of Allowed Threat
according to Different Ratios of Wa:Ws

96

6. Organizing Access Privileges: Preventing Insider Threat without Affecting the

Availability of Data Items

6.1 Introduction

A task of an insider may consist of several operations and may need access to different data

items. The operations on data items of a task form a partial order. That is, some operations on

data items should be performed in some specific order, while other operations can be performed

without any order among themselves. In some cases, the order of granting access to data items in

order to execute a task determines the level of risk. In other words, different orders of accesses to

data items imposes different levels of risks. This chapter discusses the importance of organizing

operations in concurrent tasks. Moreover, it demonstrates how to organize accesses to data items

such that insider threat is prevented without affecting the availability of data items.

6.2 The Importance of Organizing Accesses to Data Items

The history of data accesses by insiders, when combined with data access requests, may pose a

serious threat. As discussed in previous chapters, insiders can use data items they have accessed

in the past (in knowledgebases) to infer sensitive information. In concurrent tasks, not

considering knowledgebases and random executing of tasks’ operations may pose threat or limit

insiders’ tasks. However, the operations of tasks can be organized such that the threat of

knowledgebases is eliminated without limiting insiders’ tasks. Figure 6.1 shows an instance of

the task of an insider, which is represented by a task graph, and his/her knowledgebase. A task

graph is defined as follows.

97

Definition 30 (Task Graph). A task graph TG(V,E) is a directed graph that is used to show the

operations and their precedence constraints in a task, where:

- V represents operations on data items, such that:

o r indicates read access.

o w indicates write access.

- E represents edges, such that:

o An edge e(O(x),O(y)) means that O(x) should be executed before O(y), where O is an

operation, and x and y are data items.

Obviously, a task graph represents the data items that should be accessed to perform a task as

well as the required operations (read or write). In addition, it demonstrates the required

sequences of accesses on those data items (precedence constraints). Moreover, tasks’ graphs

show the different sequences of operations that can be followed to execute the same task. Strictly

speaking, operations that have no precedence constraints can be executed in different orders to

perform the task. In Figure 6.1, the task graph is enclosed by rectangles and the knowledgebase

Figure 6.1. A Sequence of Operations to Perform a Task.

 r(X)

w(A) r(B)

 r(Y)

w(K)

w(D)

w(Q)

w(M)

r(Z)

S

The Insider’s L

Knowledgebase

T
h

e
R

eq
u

es
ts

 P
la

n

98

is represented by a dashed oval. Solid arrows represent precedence constraints between

operations. Whereas dashed arrows point to unauthorized inferred knowledge. For example, L

and z can be used to get information (using dependencies) about S, which is unauthorized to the

insider under consideration. Hence, the dashed square contains unauthorized data items.

In order to execute the insider’s task, the insider needs to get access to data items X and Y to

work on the data item A. Next, s/he needs an access to B to work on K and so on until s/he

reaches Q. Notice, that the insider can get access to Z before getting access to X or Y. That is,

s/he can work on M before working on A and vice versa because the two operations are

independent. However, s/he must work on A before working on K since they are dependent.

As discussed earlier, the dashed arrows indicate that the insider can use the data item L, which is

in his/her knowledgebase, along with the data item Z to get unauthorized information about the

data item S. If the system discovers this threat and denies the insider’s request to Z, the

availability of data items will be limited, which degrades the performance of the system. On the

other hand, if the system does not discover this threat, unauthorized information will be exposed,

which breaches the security of the system. To prevent the threat without limiting the insider’s

task, the insider should not get a read access to Z until the lifetime of L expires. However,

delaying the insider’s job until the lifetime of L expires is not a good solution always, since the

delay may be too long. To solve this problem, the insider is given access to other data items to

work on an independent operation(s) until the lifetime of L expires. For instance, the insider may

get access to X and Y to work on A first before s/he get access to Z. We can force the lifetime of

L to expire by giving other insiders who want to modify L write access on it. Thus, the lifetime

99

of L expires after it is updated by those insiders. In this case, after the insider under consideration

finishes his/her work on A, giving him/her access to Z does not pose threat. Obviously, this

approach enables concurrent insiders to get the accesses they need on different data items

without breaching the security of the system. This example shows the importance of organizing

accesses to data items in preventing insider threat and preserving the availability of data items.

The terms risky data item and risky request are used in the rest of the chapter to indicate data

items that can be combined to get unauthorized information. Definitions 31 and 32 formally

define these terms.

Definition 31 (A Risky Data Item). Given the knowledgebase(KB) of an insider, where KB= {k1,

…, kn}, ki is called a risky data item if it can be used with other data items, which can be

requested by the insider, to acquire unauthorized information.

Definition 32 (A Risky Request). A request Oij, which indicates the i
th

 request in the j
th

 task that

belongs to insider j, is called a risky request if it can be combined with a risky data item in j’s

knowledgebase to acquire unauthorized information.

For instance, in the previous example, the data item Z, when it is requested by the insider, is

called a risky request and the data item L in his/her knowledgebase is called a risky data item.

Organizing accesses to data items is applied by considering all concurrent insiders and their

tasks, the data items and operations required for each task, and the dependencies between

operations. It must be noted that investigating the knowledgebase of each insider is a major part.

100

Obviously, the system should have a full knowledge about the tasks that concurrent insiders are

planning to execute. However, insiders execute tasks in two ways: as a batch of operations or as

one operation at a time. The tasks in the latter case are called undeclared tasks, which are

defined formally as follows.

Definition 33 (Undeclared Tasks). A task S = {O1,O2,…, On}, where O1,O2,…, On are operations

on data items, is called an undeclared task if it is sent by an insider to be executed as one

operation at a time.

Clearly, the operations of an undeclared task are sent by insiders to be executed as one by one,

where each operation is executed in a single transaction. However, when a task is sent as one

transaction that contains all the operations needed by the task, the task is called a declared task.

Section 6.3 discusses the methods of organizing accesses in declared tasks, while section 6.4

discusses organizing accesses in undeclared tasks.

6.3 Organizing Operations in Declared Tasks

In this type of tasks, an insider sends a task’s operations in one transaction. Thus, the system has

full knowledge about the task the insider is planning to do. This enables the system to organize

the operations of concurrent tasks (before granting risky requests) in a good sequence, which

preserves the availability and security of data items.

To understand how to organize accesses, consider the relational database schema in Figure 6.2.

The database has the dependency {Rank Base_Salary}. Assume that the data items (Name,

101

Rank), (Rank, Base_Salary), and (Name, Experience) are insensitive information, while the data

items (Name, Base_Salary) and (Name, Total_Salary) are sensitive information. In addition,

suppose that the salary of an academic staff is computed using the formula: Total_Salary =

Base_Salary + 200 * Experience. Now, assume that there are two insiders who are concurrently

working on their tasks. Both insiders are not allowed to get information about sensitive data

items. The task of the first insider (Insider1) consists of the following queries.

Query 1: “Retrieve the name and the rank of all computer science professors”

 Select P.FName, P. LName, P.Rank

 From Professor P, Department D

 Where P.DeptID = D.DeptID and D.Dname = “Computer Science”

Query 2: “Retrieve the experience of professor Sami Gibson”

 Select P.Experience

 From Professor P

Professor Table

ID FName LName Rank Experience DeptID

20012 James White Assistant Prof 3 168

20013 Bob Tailor Full Prof 2 597

20014 Sami Gibson Associate Prof 5 168

Rank_Salary Table Department Table

Rank Base_Salary

DeptID Name Location

Assistant Prof 100K 168 Computer Science SSED

Associate Prof 120K 597 Electrical Engineering LKEF

Full Prof 140K

Figure 6.2. A Part of Academic Staff Database

102

 Where P.ID = 20014

Query 3:”Retrieve the Base_Salary of associate professors”

 Select R.Rank, R.Base_Salary

 From Rank_Salary R

 Where R.Rank=”Associate Prof”

Obviously, the result that is added to the knowledge of Insider1 if s/he is granted the privilege to

execute Query1 is: (< James White, Assistant Prof >, < Sami Gibson, Associate Prof >).

Similarly, if Insider1 is granted a privilege to execute Query2 and Query3, s/he will have the

information (< Sami Gibson, 5 >) and (< Associate Prof, 120K >) respectively. Now, suppose

that the task of the second insider (Insider2) consists of the following query.

Query 4:”Promote Sami Gibson to a Full Prof”

 Update table Professor

 Set Rank = ‘Full Prof’

 Where ID=20014

Assume that the queries Query1 and Query2 are executed successfully. Thus, Insider1 has the

rank and the experience of “Sami Gibson” in his/her knowledge. Next, if Query3 is executed,

Insider1 gets the knowledge < Associate Prof, 120K >. In this case, s/he can combine this

insensitive knowledge with the insensitive knowledge < Sami Gibson, Associate Prof > and

<Sami Gibson, 5> to get the unauthorized information <Sami Gibson, 120K> and <Sami Gibson,

121K>, which indicates the Base_Salary and Total_Salary of “Sami Gibson”. Although

103

executing the task of Insider2 after that changes this information, Insider1 still knows that at the

time s/he executed his/her query Sami’s total salary was 121K, which is correct and unauthorized

information. On the other hand, if the system discovers this threat and prevents Insider1’s

request, Insider1’s job will be rejected. Thus, both cases affect the system negatively.

Let us consider another scenario for satisfying the requests of the two insiders. Suppose that

Query4 is executed before Query3. This means that Insider2 promotes the rank of “Sami

Gibson” from associate professor to full professor before Insider1 gets access to the Base_Salary

of associate professors. In this case, if Insider1 uses the data item in his/her knowledgebase to

infer information, his/her inference will be incorrect. Thus, Insider1’s task will be executed

normally. Obviously, this scenario prevents insider threat without limiting the availability of data

items. Notice that the data item <Name, Rank>, which has been acquired by Query1 is called a

risky data item. Similarly, the request <Rank, Salary> that is requested by Query3 is called a

risky request. The request in Query4 (updating the rank of “Sami Gibson”) is called an

Effacement Request since it removes the threat of the risky request in Query3. An effacement

request is defined as follows.

Definition 34 (An Effacement Request). A request Oij, which indicates the i
th

 request in the j
th

task that belongs to insider j, is called an effacement request if it satisfies the following

conditions:

1- O=Write(R) ∧ (Write(R) (Expire(R) =True)).

2- (R ∈ KB(h)) ∧ (j ≠ h).

104

Definition 34 states that an effacement request by an insider j must be a write operation that

updates a data item R and makes it expire, where R belongs to the knowledgebase of a different

insider than j. That is, a write request by an insider j that updates a data item in his/her

knowledgebase is not considered an effacement request.

The example clarifies the importance of choosing the order of executing the requested operations

in preventing insider threat without limiting insiders’ tasks. It shows that the sequence <Query1,

Query2, Query3, Query4> pose a threat, while the sequence <Query1, Query2, Query4, Query3>

does not pose any threat. The first sequence is called a safe sequence, which is introduced next in

Definition 35. The next section discusses how to choose a safe sequence for executing the

operations of concurrent tasks.

Definition 35 (A Safe Sequence). Given a sequence of operations S = {O1,O2,…, On}, where

O1,O2,…, On are operations on data items that belong to concurrent tasks. S is called a Safe

Sequence if executing the operations in S’s order does not reveal unauthorized information and

preserves the availability of data items.

6.3.1 Choosing a Safe Sequence

After considering concurrent insiders in a system and their tasks, the system organizes the

accesses to data items to prevent any insider threat and preserve the availability. There are many

possible sequences of data access to execute a task. Finding a safe sequence is the objective of

this section. However, choosing a safe sequence of operations is not always achievable. Thus, in

these cases, an acceptable sequence should be chosen, which is defined as follows.

105

Definition 36 (Acceptable Sequence). Given a sequence of operations S = {O1,O2,…, On},

where O1,O2,…, On are operations on data items that belong to concurrent tasks. S is called an

Acceptable Sequence if executing the operations in S’s order reveals insignificant unauthorized

information, which does not pose any intolerable threat to the system, and preserves the

availability of data items.

Security administrators decide whether the revealed information is insignificant or not, or

whether it poses an intolerable threat. In order to choose either a safe or an acceptable sequence,

the risk of granting each request is computed. The risk of a request is the maximum difference

between the sensitivity of each data item that may be revealed by granting the request and the

threshold value of the insider about that data item. The following formula shows how to compute

the risk of requested operations, where Rj is a request by insider I, n is the number of data items

in the database under consideration, Sensitivity(di) is a the amount of information that may be

revealed about the data item di by granting Rj, and Threshold (I, di) is the threshold value of I

about di.

Risk(Rj)=
 (Sensitivity(di) - Threshold(I, di)) (1)

Formula 1 measures the risk of a request independently. That is, it looks at the knowledgebase of

the insider under consideration to see if the current request can be combined with some data

items in his/her knowledgebase to get unauthorized information. The formula does not pay

attention to other operations that are executed before it. However, the risk value of a sequence is

106

computed by considering the order of operation in the sequence. The risk of the each sequence is

computed using Formula 2, where n indicates the number of requests in a sequence.

Risk(Sj) = Σ
n

i=1 Risk(Ri|R1 … Ri-1) (2)

Obviously, the value that is computed in Formula 2 is the sum of the risk values of requests in a

sequence with taking into account the order of requests. To clarify this point, we should mention

that the risk of a request that is computed independently (the value computed in Formula 1)

differs when we consider previous requests. That is, as we discussed before, a request(s), say R,

may update a risky data item(s), say K, that exist in the knowledgebase of an insider and make it

expire. Thus, the insider who has K in his/her knowledgebase cannot use it with his/her risky

requests to infer unauthorized information. This action may reduce the risk values of successor

risky requests after R in the corresponding sequence that can be combined with K to infer

unauthorized information, which may reduce the risk value of the corresponding sequence.

Using this method, a safe or acceptable sequence is chosen, which poses the lowest risk among

different sequences. We should mention here that choosing a good sequence may be limited by

the fact that some operations are dependent on each other. That is, some operations must be

executed before other operations. Moreover, when producing a safe sequence, operations that

should be executed before effacement requests should be put before them in any sequence.

6.3.2 Limitations and Possible Solutions

Organizing accesses to data items either eliminates or significantly reduces the threat of a risky

request demanded by an insider. As discussed earlier, this is performed by letting other insiders

107

modify risky data items so that they are expired before they can be used with risky requests to

launch an attack. But what can be done if there is no insider who requests write accesses to risky

data items? To solve this problem, the granting of a risky request may be delayed until an

effacement request is made. However, this method would result in data unavailability and

degrading systems performance. Moreover, if the insider must get access to the requested data

item to perform his/her job on a timely manner, the mentioned solution is unacceptable.

When delay is unacceptable, an incorrect value of the risky request can be granted to the insider.

After that, the system corrects the results based on the correct value of that risky request. When

incorrect values of data items are provided to insiders, they will not be able to infer correct

values of dependent data items. We propose to do so when the inferable data is sensitive.

However, this approach may affect insiders’ trust about the system. To mitigate this issue,

incorrect but close enough values must be provided while making sure that the values still do not

disclose any sensitive data. To know how much information one can infer, the Neural

Dependency and Inference Graph (NDIG) is used. An example of NDIG is shown in Figure 6.3,

where cyclic inference edges are omitted for simplicity.

 A

X R Y

 M

90% 2%
8%

10%
90%

100% 100% 100%

Z

 S

L P

80%
10%

10%

Figure 6.3. A Part of an NDIG of a Database

108

For example, suppose that an insider K had accessed the data items L and P in this database.

Later, s/he requested the data item Z. Figure 6.4 shows K’s task and knowledgebase. Assume

that K’s threshold is 100% for all data items except for the sensitive data item S, which is 65%.

In addition, assume that the value of S ranges between 0 and 100, and it is computed using the

formula: S = 4*Z + L+ P.

Obviously, using the proposed approach, the insider is given an access to the data items X, R,

and Y to work on A first. S/he is not given access to risky request Z because he/she can combine

it with the risky data items L and P, which are in his/her knowledgebase, to get information more

than the allowed about the data item S. Suppose that at the time, there is no insider requesting a

write access on either L or P. In addition, assume that due to the time sensitive nature of insider

K’s task, the system has to grant him/her the access to data item Z. Clearly, granting the request

poses a threat. Thus, to avoid this threat, the insider is given an incorrect value of Z. Notice that

the given incorrect value does not mean that the value of Z is changed in the database. It means

A

X R Y

M

Z

 S

L P

 K’s KB

F

Figure 6.4. Insider K’s Task and Knowledgebase

109

that the system provides an incorrect value to the insider. However, this incorrect value should

satisfy two conditions, which are:

a) It should not be very different from the correct value, otherwise this would affect the

insider’s trust on the system if the insider has a guess on the range of the value.

b) Using the value, the user should not be able to make a correct estimation of the sensitive

data item.

After giving the insider an incorrect value of Z, the system should track the subsequent

modifications on the data items that the insider K makes using the incorrect value of Z and

correct those using the right value of Z. This process applies to other insiders who access such

damaged data items as well. Damage assessment and recovery are not the focus of the

dissertation and, therefore, the methods will not be discussed here. As a reference, interested

readers may review the work presented in [Yalamanchili04]. Notice that giving incorrect values

may pose work overhead to trace the changes and fix the affected data items. However, this

could be much less costly than breaching system security or rejecting insiders’ tasks. Moreover,

fixing affected data items can be performed when systems have less work overhead.

6.3.3 An Example Scenario

Let Table 6.1 represent the set of concurrent insiders in the system as demonstrated in Figure 6.2,

their knowledgebases and their current requests of data items. The dependencies in the database

are shown in Table 6.2. Table 6.3 shows the data items in the system and their sensitivity values.

In addition, it shows the threshold values of data items according to the insiders. The amount of

information an insider can get about a data item is computed depending on the NDIG of the

corresponding database.

110

Obviously, all requests are independent. Notice that both requests R1 and R2 read and write the

Base_Salary respectively. However, R1 read the Base_Salary of associate professors, which is

different from R2 that updates the Base_Salary of full professors. Thus, they are independent.

This offers flexibility in organizing them in a good manner to form the lowest risk sequence.

Clearly, there are six possible sequences for granting the requests, which are:

- S1= { U1.R(q1), U2.W(q2), U2.W(q3) }

- S2= { U1.R(q1), U2.W (q3), U2.W(q2) }

Table 6.1. Insiders and their Knowledgebases and Requests

Insiders Knowledgebase Requests

U1

K1 = < James White, Assistant Prof >

K2 = < Sami Gibson, Associate Prof >

K3 = < Sami Gibson, Experience = 5 >

R(q1) = Read(<Rank, Base_Salary> of Associate

Prof)

U2
_

W(q2) = Write(<Base_Salary> of Full Prof)

W(q3) = Write(<Rank> of Sami Gibson)

Table 6.2. Dependencies

No. Dependency

1 <Name,Rank>,<Rank,Base_Salary>, <Name,Experience> <Name, Total _Salary>

2 <Name,Rank>,<Rank,Base_Salary> <Name, Base_Salary>

Table 6.3. Sensitivity and Threshold Values of Data items

Data Item Sensitivity Threshold U1 Threshold U2

K1 20% 100% 50%

K2 20% 100% 40%

K3 10% 100% 100%

q1 50% 70% 70%

q2 70% 100% 100%

q3 80% 100% 100%

<Name, Total _Salary> 100% 10% 0%

<Name, Base_Salary> 100% 20% 10%

111

- S3= { U2.W(q2), U1.R(q1), U2.W(q3) }

- S4= {U2 .W(q2), U2.W(q3), U1.R(q1) }

- S5= {U2.W(q3), U2.W(q2), U1.R(q1) }

- S6= {U2.W(q3), U1.R(q1), U2.W(q2) }

Notice that the data items requested by insiders are allowed to both insiders. However, the data

item in request q1 can be combined with risky data items in U1’s knowledgebase to infer

unauthorized information. The risk of each independent request is computed using Formula 1 as

follows.

- Risk (U1.R(q1)) = 100% -10% = 90%.

- Risk (U2.W(q2)) = 0%.

- Risk (U2.W(q3)) = 0%.

Notice that negative Risk values are considered 0. The risk of each sequence is computed using

formula 2 as follows.

- Risk (S1) = Risk (U1.R(q1)) + Risk (U2.W(q2) | U1.R(q1)) + Risk (U2.W(q3) | U2.W(q2),

U1.R(q1)) = 90%+0%+0%=90%.

- Risk (S2) = 90%.

- Risk (S3) = 90%.

- Risk (S4) = 0%.

- Risk (S5) = 0%

- Risk (S6) = 0%.

112

Notice that in sequences S4, S5 and S6, the second insider U2 updates the Rank of “Sami Gibson”

to full professor before the first insider U1 gets access to the Base_Salary of associate professors.

Thus, the inference that U1 makes about the salary of “Sami Gibson” is wrong, which means that

these sequences are safe. However, the situation is different for the rest of sequences. In these

sequences, U1 deduces correct information about the Base_Salary and Total_Salary of “Sami

Gibson”. Obviously, the system can choose one of the sequences S4, S5 and S6 to grant accesses

to the insiders. Hence, the system does not need to compute the risk values for all possible

sequences when there a safe sequence exists, which can be produced directly by placing

effacement requests before risky requests in the sequence.

6.4 Organizing Operations in Undeclared Tasks

The method that was proposed in the previous section is applicable when tasks are declared.

Strictly speaking, that approach depends on the assumption that systems are familiar with all

operations of concurrent insiders’ tasks. Thus, the approach can check all concurrent tasks’

operations and produce a safe sequence when threat is discovered. However, this approach fails

when tasks are undeclared. In this case, systems are familiar with the operations that are

launched before discovering threat, but not all operations. Thus, the proposed approach in the

previous section cannot be used to produce a safe sequence in this case.

This section develops methods that can predict and prevent insider threat without limiting the

availability of data items in concurrent undeclared tasks. In order to achieve this goal, models are

proposed to predict the complete operations of undeclared tasks when threat is discovered. Then,

the predicted tasks are organized into a safe sequence.

113

6.4.1 Predicting the Complete Operations of Undeclared Tasks

As discussed earlier, preventing insider threat without limiting the availability of data items is

performed by organizing all operations of tasks into a safe sequence. Thus, the complete

operations of undeclared tasks should be predicted in order to produce a safe sequence.

Figure 6.5 shows the predicting process of the original tasks (complete operations) of undeclared

tasks. The predicting is needed when a threat alert is raised while concurrent undeclared tasks are

being executed. The alert occurs when an insider orders a risky request. At this point, the system

has only the operations that have been executed before raising the alert. These operations are

called partial tasks of the original tasks. Next, the partial tasks are compared to a set of training

tasks, which are a set of daily tasks that are normally executed in the system. The training tasks

set can be developed in two ways. First, it can be developed during the building of the system

itself by addressing all possible tasks that will be executed in the system. Second, it can be

developed using the tasks that exist in the log file.

The purpose of comparing partial tasks to training tasks is to retrieve a set of candidate tasks to

the partial tasks. The candidate tasks contain the correct (complete) tasks of the undeclared tasks

Executing

Tasks

Transaction

s

Threat Alert
Retrieve

Partial Tasks

Confirm?

P
ro

d
u

ce

Produce
Training

Tasks

Candidate

Tasks

Original

Tasks

Figure 6.5. Predicting Undeclared Tasks

114

(partial tasks). Retrieving candidate tasks is performed as follows. For each partial task t, each

task in the set of training tasks that starts with the same operations (from the left) of t is retrieved

as a candidate task for t. For instance, the task S = { r(x), r(y), w(a), r(b), w(k)} is retrieved as a

candidate task for the partial task Ps={r(x), r(y), w(a)}.

Retrieving all candidate tasks needs considering all possible ways of executing tasks. A task can

be executed in different ways. Insiders who have a specific role access the same data items to

perform a specific task. However, the order of accesses to data items to perform the task may

differ from one insider to another, which is due to the fact that a task can be executed using

different orders of its operations. For instance, suppose that the “Salary” of an academic staff is

computed as follows: Salary = Base_Salary + 200 * Experience. Now, to update the Salary of a

professor who finishes another year of experience, the task would be as follows.

{Read(Base_Salary), Write(Experience), Write(Salary)} or {Write(Experience), Read

(Base_Salary), Write(Salary)}. These two sequences of executing the task are called patterns of

the task. Notice that the patterns show that there is a precedence constraint between

{Read(Base_Salary) ,Write(Experience)} and Write(Salary), but there is no precedence

constraint between Read(Base_Salary) and Write(Experience). Thus, the latter two operations

can be executed in different orders. The following theorem states the conditions of considering

two tasks as patterns for a task.

Theorem 1. Given the two tasks: S = {Os1(ds1), Os2(ds2),…, Osn(dsn)} and X = {Ox1(dx1),

Ox2(dx2),…, Oxm(dxm)}, where (Os, ds) and (Ox,dx) indicates operations (read or write) and data

115

items that belong to tasks S and X respectively. S and X are considered two patterns for the same

task if the following conditions are satisfied.

1- n = m.

2- d:d ∈ S⇔ d ∈ X.

3- d :O(d) ∈ S⇔ O(d) ∈ X.

4- (O=Write): (Osi(dsi)Osj(dsj)) ⇔ (Oxi(dxi) Oxj(dxj)).

Theorem 1 states that two tasks are considered patterns for the same task if they have the same

number of data items, the same operations on the same data items, and the same order of write

operations.

Retrieving all candidate tasks requires checking all patterns of tasks. For instance, the task

{Read(Base_Salary), Write(Experience), Write(Salary)} may not exist in the set of training

tasks in this form. Instead, it may exist in the form:{Write(Experience), Read (Base_Salary),

Write(Salary)}. However, the task is still retrieved as a candidate task for the partial task

{Read(Base_Salary), Write(Experience)}. Notice that retrieved original tasks should be

confirmed by insiders to avoid executing incorrect tasks. The next section fully details this

approach.

6.4.2 Preventing Insider Threat and Preserving the Availability in Undeclared Tasks

As discussed earlier, the purpose of constructing training tasks is to discover the tasks of

undeclared tasks, and then, produce a safe sequence that prevent insider threat without limiting

insiders’ tasks. The prediction is required when an insider sends a risky request. The prediction

116

method is run for all concurrent insiders’ tasks. When the process is finished, a safe sequence can

be produced. The next section discusses this process in details.

6.4.2.1 The Algorithm

Algorithm 6.1 shows how to predict the full tasks of undeclared tasks and produce a safe

sequence. The algorithm works as follows. When an insider, say K, sends a risky request, the

algorithm starts predicting the candidate tasks of all undeclared tasks that are running

concurrently. The prediction is based on the previous operations that are executed before

discovering the risky request (steps1-2). For each insider, say Z, the prediction is performed by

comparing the previous operations that are executed by Z to the training tasks (step 3). As

discussed earlier, the training task(s) that starts (from the left) by the same operations, with

taking into account the patterns of tasks, is retrieved as a candidate tasks(s) for Z’s undeclared

task (step 4). After retrieving candidate tasks, their operations are organized in a safe sequence.

To produce a safe sequence, the algorithm searches for an effacement request for the risky data

item insider K’s knowledgebase (step 7 and step 13). Then, the algorithm organizes the

operations of tasks by executing the effacement request (and its precedent operations) before

executing the risky request to prevent the possible threat (steps 8-9 and steps 15 - 19). Notice

that, in step 25, if no effacement request exists, the algorithm denies the risky request to prevent

the threat. Hence, the precedent operations represent the operations that have to be executed

before the effacement request due to operations dependencies.

117

Algorithm 6.1 Preventing Insider Threat

Input: The set of concurrent insiders R={r1 … rn}, the set of concurrent tasks of insiders T={t1 … tn},

knowledgebases, the set of training tasks TT={Tt1..Ttz}, Safe Sequence SS ={}, operations dependencies,

Candidate Tasks set CT ={}, Risky Request (Rq), Risky Data Item (RD).

Assumptions: Training tasks that are stored in the system represent all tasks that are normally executed in the

system.

Output: A safe sequence for executing undeclared tasks’ operations.

1. For each insider ri ∈ R // when a risky request Rq is discovered

2. Retrieve ri’s previous requests L ={qi1… qix} //operations executed before the risky request

3. Let G = {Tt1… Tts} the set of training tasks that have L as starting operations // with taking into account the

 patterns of tasks

4. CTi = G // retrieve G as a candidate task(s) for ri’s undeclared task

5. If |CTk| =1 for all insiders rk ∈ R // one candidate task for each undeclared task

6. Correct _Task = CTk // Retrieve CTk as the correct task for rk’s undeclared task

7. Search for an effacement request (ER) //effacement request that updates the risky data item

8. If ER Exists

9. SS = {Oi=1, Oi=2, … , Oi=n}: index (ER)< index(RR) //organize the operations of tasks so that ER(and its

 precedent operations) is executed before the Rq

10. Else go to step 25

11. Else if |CTk| > 1 for an insider rk’s undeclared task// more than one candidate task?

12. Assume that the risky request Rq∈ tp, where tp is the task of rp// risky request

13. Search for an effacement request (ER)

14. If ER Exists

15. Let ER ∈Ttcbe an effacement request, where Ttc∈ CTf ∧ f ≠ p //effacement request

16. Suggest ER and its precedent operations to insider rf //executing the effacement request before the

 risky request

17. If rf accepts ER

18. Executes ER and its precedent operations //correct prediction of the f’s undeclared task

19. Execute Rq //since the threat is eliminated

118

The following example demonstrates how the algorithm works. Suppose that there are three

insiders R1, R2 and R3 who are executing their tasks concurrently. Assume that the

knowledgebase of insider R1 (KB(R1)) contains the data item p, which can be combined with the

data item d to infer the unauthorized information S1 using the dependency{(d, p) S1}. Thus, the

data item p is a risky data item. Now, assume that R1 requests the data item d, which is in this

case a risky request. Using step 1, the algorithm looks back at the previous requests that have

been executed by the insiders before discovering the risky request. Suppose that the previous

requests are as follows: [R1: r(a), r(b), w(c), r(d)], [R2: r(x),r(y),r(z)] and[R3: r(m), w(n)].Then,

the algorithm searches for candidate tasks that start with these operations (steps 2-4). Suppose

that the graphs of the retrieved candidate tasks are as shown in Figure 6.6. The double circle

around a request indicates an effacement request, while a circle indicates a risky request. Since

there are more than one candidate task that have been retrieved for an undeclared task, the

algorithm moves to step 11. Next, the algorithm checks which candidate task contains the

effacement request (steps 12-15). In this example, the effacement request is w(p), which is in the

first candidate task of insider R2’s undeclared task. The algorithm suggests this request (and its

precedent operations) to insider R2 (step 16).

20. Allow insiders to continue performing their tasks normally //after eliminating the threat

21. If another Rq is requested //another threat shows up

22. Repeat the steps 1 to 20

23. Else

24. Search for another ER and repeat steps 13-22// incorrect candidate task

25. Else if there is no ER exists //no effacement operations exist

26. Deny Rq

119

If insider R2 accepts and executes this request (steps 17- 18), the algorithm grants insider R1

his/her risky request r(d) to be executed after the effacement request (step 19). The executed

sequence of operations until this point is called a partial sequence. Next, the execution of the

operations of tasks is performed normally as they are requested by insiders until another risky

request appears. If the proposed effacement request w(p) is rejected by insider R2, this means that

the predicted task is incorrect. Thus, the algorithm searches for another effacement request (steps

23-24). If no effacement request exists, R1’s task is rejected to prevent the threat.

Notice that the algorithm completely organizes the operations of candidate tasks when one

candidate task is retrieved for each undeclared task (steps 5-10). It assumes that the candidate

tasks are the correct tasks. Whereas it produces a partial sequence (as in the example) when there

is more than one candidate task retrieved for an undeclared task (steps 11-24). In the latter case,

the algorithm does not organize all the operations of predicted tasks in a sequence. Instead, it

stops after executing the effacement request and the risky request respectively. Then, it enables

Figure 6.6.The Graphs of Candidate Tasks for the Undeclared Tasks of Insiders R1,R2 and R3

(a) The Candidate Tasks Graphs for R1’s Task (b) The Candidate Tasks Graphs for R2’s Task

(c) The Candidate Tasks Graphs for R3’s Task

(a) (b)

W(q)

W(p)

 R(y) R(z) R(x)

W(h)

W(g)

R(x) R(y)

W(j)

R(z)

W(e)

W(c)

R(a) R(b)

R(d)

W(k)

W(F)

R(a) R(d)

 W(c)

R(b) R(c)

(c)

W(y)

W(n)

R(m)

R(o)

W(l)

W(i)

R(m)

W(n)

R(n)

120

insiders to continue executing their operations normally. This choice is to eliminate the possible

overhead that may arise when predicting an incorrect task from the candidate tasks, which

requires re-predicting and reorganizing tasks operations.

In real scenarios, applying the algorithm could pose time overhead. However, not using the

approach limits the availability of data items (insiders’ tasks) or degrades a system’s security.

Strictly speaking, not discovering risky requests exposes systems’ sensitive information, which

poses dangerous effects on critical systems such as military systems. Similarly, discovering risky

requests and denying them to prevent insider threat limits the availability of data items and

affects insiders’ tasks, which degrades systems performance especially in online systems.

Contrarily, adopting the proposed approach prevents insider threat without affecting insiders’

tasks. The system may decide which is least costly according to its own requirements? Exposing

system’s sensitive assets or limiting the availability of data items or accepting the delay of

applying the proposed approaches. Section 6.5 demonstrates the conditions under which the

proposed approach works with greatest performance and least delay.

6.4.2.2 The Proof of Correctness

The algorithm consists of two main parts, which are predicting correct candidate tasks and

organizing the operations of predicted tasks in a safe sequence. The following theorems prove

that the algorithm addresses the correct steps to perform these parts.

Theorem 2. Given the training tasks Tt1,Tt2…Ttn , and a poset of operations S = {O1, O2… Ok}: S

⊂UT, where UT represents an undeclared task, then:

121

 Tti∊ CT(UT) ⇔ S ⊂ Tti ∧ Tti ∊ patterns(UT) ∧ (
)

Where S represents the set of operations that are executed to perform UT before discovering a

risky request, CT(UT) indicates the set of candidate tasks for UT.

The theorem addresses the conditions of considering a training task as a candidate task for an

undeclared task.

Proof:

The proof of this algorithm is fairly straight forward. Since UT is an undeclared task and the only

known part of it is S, any training task, say Tti, that starts with the operations of S could be the

correct task of UT (steps 2-4). In other words, the insider who has executed the operations in S, is

probably going to perform the training task Tti. Thus, Tti is considered a candidate task for UT.

Notice that the comparison is performed with taking into account the precedence constraints and

the patterns of tasks as discussed in 4.2 (step 3).□

Theorem 3. Given two sequences for executing the operations of concurrent tasks in a system,

S(O1…, ER,…,RR,…, On) and S’(O1,…, RR,…,ER,..., On), where Oi is an

operation, RR is a risky request and ER is an effacement request. Then:

- Threat (S) < Threat(S’).

- Availability (DI(S)) >Availability(DI(S’)), where DI(S) and DI(S’) indicates the data items in

S and S’ respectively.

122

The theorem states that executing an effacement request before a risky request prevents insider

threat and preserves the availability of data items. Choosing a safe sequence is performed using

steps 8-9 and 12-20.

Proof:

Suppose that RR, ER and RD are a risky request, an effacement request, and a risky data item

respectively. As discussed earlier, based on definitions 31 and 32, combining RR and RD may

expose unauthorized information, which is threat. On the contrary, if the system discovers this

threat when an insider requests RR, the system may deny RR, which reduces the availability of

the data items needed for the insider’s task. Thus, both possibilities are problematic. Next, the

correctness of the algorithm is proved by contradiction as follows.

(Proof by contradiction) Suppose that both sequences S and S’ are executed, but Threat(S) <

Threat(S’) and Availability(DI(S)) <Availability(DI(S’)). Now, in sequence S, ER is executed

before RR. This means that RD is expired before executing RR. Thus, the inference that is based

on combining RD with RR is incorrect, which means that no threat exists. Moreover, RR is

granted and executed, which means that the availability of data items is not limited. Meanwhile,

in S’, RR is executed before ER. In this case, the inference that is based on combining RR and RD

is correct since the value of RD is not expired yet, which is threat. Thus, Threat (S’) > Threat(S),

which contradicts the assumption. Contrarily, suppose that the system discovers this possible

threat and denies the insider access to RR to prevent the threat. This action limits the availability

of RR, which is a data item in S’. As a result, Availability(DI(S)) >Availability(DI(S’)).

Contradiction.□

123

The theorems above prove the correctness of predicting tasks graphs using the algorithm.

Moreover, they prove the correctness of organizing access privileges in preventing the threat and

increasing the availability of data items.

6.4.3 A Real World Example Scenario

The following example clarifies how the algorithm works in real world scenarios. Suppose that

the two insiders Amy and Ashley want to submit the following tasks to the corresponding

system. Hence, the insiders submit their tasks as one operation at a time. Amy’s task is as

follows.

Query1: Query2:

Select E.Address Select E.Rank

From Employee E From Employee E

Where E.Name=”Jif” Where E.Name=”Jif”

Where Ashley’s task is as follows.

Query3: Query4: Query5:

Select S.BaseSalary Update table Employee Update table Employee

From Employee S Set Experience= 5 Set Salary =BaseSalary +

Where S.Name=”Jif” Where Name= “Jif” 100*Experience

 Where Name= “Jif”

Suppose that the corresponding relational database has the following dependencies: {Rank

BaseSalary}, {Salary (BaseSalary, Experience)}, where Salary = BaseSalary + 100*

Experience. In addition, assume that Amy’s knowledgebase contains the information (Jif, 4),

124

which indicates the experience of Jif, and the information (Jif, Salary) is unauthorized

information to Amy. Now, suppose that Query1 and Query3 have been executed and Amy has

just submitted Query2, which contains a risky request Read(Rank). This request invokes the

algorithm. In this case, the algorithm starts predicting the candidate tasks for these undeclared

tasks. Assume that the algorithm has retrieved one candidate task for each task (steps 1-4) as

shown in Figure 6.7. In this case, the algorithm supposes that these are the correct candidate

tasks for the undeclared tasks (Steps 5-6). Step 7 searches for an effacement request, which is

w(Experience)(Query4) in this case, and step 8 organizes the operations in a safe sequence by

placing w(Experience) before Read(Rank). At the end, the safe sequence would be as follows:

{r(Address), w(Experience), r(Rank), r(BaseSalary), w(Salary)}.This sequence removes the

possible threat that may arise if Amy’s task is executed before Ashley’s task. Moreover, the

availability of data items is preserved and both tasks are executed.

6.5 Experiments and Analysis

The simulation was performed using SQL Server and MS C#.net to test the effectiveness of the

proposed approaches. A sample relational database of 10 tables was created manually. The

Figure 6.7. (a) Amy’s Task Graph (b) Ashley’s Task Graph

r(Rank) r(Address)

r(BaseSalary)

w(Experience)

w(Salary)

(a) (b)

125

dependencies and access permissions were created randomly. Similarly, different sizes of

training tasks were created randomly as well.

The simulation consists of two parts. The first part demonstrates the percentage of prevented

threat using a safe sequence under different conditions. It shows the effectiveness of the

proposed approaches discussed in section 6.3 (declared tasks). The second part demonstrates the

relationship between the positions of risky requests in risky transactions and the number of

retrieved candidate tasks. Moreover, it shows the relationship between the size of training sets

and the number of retrieved candidate tasks. This part shows demonstrates the effectiveness of

using the proposed approaches discussed in section 6.4 (undeclared tasks).

6.5.1 The Percentage of Safe Sequences

In this part, the simulation parameters consist of the number of concurrent insiders and the

percentage of write operations in transactions. For the same parameters’ values, the simulation

was executed many times and the average was taken as the result. Similarly, the simulation was

performed according to different sizes of training sets, and the average was taken as the final

result. We should mention here that all risky transactions were caught and prevented using the

proposed approaches. As discussed earlier, the proposed approaches prevent threat by choosing

a safe sequence, or denying insiders’ risky requests if finding a safe sequence (effacement

request) is not possible. The simulation shows the percentage of prevented threat using a safe

sequence in comparing to overall prevented threat. Producing a safe sequence prevents threat

without limiting the availability of data items. However, denying access requests prevents threat

but limits the availability of some data items. Hence, it is assumed that the system is able to find

126

a safe sequence when an effacement request exists. Figures 6.8 and 6.9 show the results of this

part of simulation.

Figure 6.8 shows the percentage of safe sequences using the proposed approach when the

number of concurrent insiders is variable. The percentage of write operations in transactions is

fixed at 50% in this simulation. As shown, the percentage of prevented threat is 0 at round 1.

This is expected since at round 1 the insiders start executing transactions. Thus, their

knowledgebases are empty, which means that there is no threat posed by their knowledgebase,

and as a result, there is no prevented threat. As knowledgebases grow, the threat may increase,

but the figure shows no trend such as increasing or decreasing in the percentage of safe

sequences. The analysis of this result is as follows. When the knowledgebase of an insider gets

larger, the probability of finding a risky data item and a risky request may increase. However, the

number of risky data items or risky requests by an insider is limited by the maximum number of

data items s/he can request to perform his/her task, which is set to be 6 for this simulation.

Moreover, there are many insiders in the system that may order effacement requests. This makes

the percentage (Safe Sequences/ Prevented Threats) stable in general as knowledgebases grow.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

1 2 3 4 5 6 7N
u
m

b
er

 o
f

S
af

e
S

w
q

u
en

ce
 /

N
u
m

b
er

 o
f

P
re

v
en

te
d

 T
h
re

at

Round Number

5

15

25

Number of

Concurrent

Insiders

Figure 6.8.The percentage of the prevented threat using a safe sequence in

comparing to different numbers of concurrent insiders.

127

The figure shows that the probability of finding a safe sequence increases when the number of

concurrent insiders increases. Clearly, increasing the number of concurrent insiders may increase

the number of risky requests. But the number of risky requests that may be demanded by an

insider is limited as discussed earlier. Whereas the number of effacement requests increases as

the number of concurrent insiders increase. Thus, the probability of finding an effacement

request (and a safe sequence) gets larger when the number of concurrent transactions increases.

Figure 6.9 shows the percentage of prevented threat using a safe sequence according to different

percentages of write operations. The number of concurrent insiders is fixed at 10 for this

simulation. The figure shows that when the percentage of write operations increases, the

percentage of finding a safe sequence increases. Obviously, increasing the write operations in the

concurrent transactions increases the possibility of finding effacement requests, which increases

the possibility of finding a safe sequence. Moreover, the figure shows that no increasing or

decreasing trend exists as the knowledgebases of insiders grow, which is the same result that is

shown in Figure 6.8.

0.000

0.100

0.200

0.300

0.400

0.500

1 2 3 4 5 6 7N
u
m

b
er

 o
f

S
af

e
S

eq
u
en

ce
/

N
u
m

b
er

 o
f

P
re

v
en

te
d

 T
h
re

at

Round Number

0.2

0.5

0.8

Figure 6.9. The percentage of the prevented threat using a safe sequence in comparing to

different percentages of write operations

Percentage of

Write

Operations

128

As discussed earlier, finding a safe sequence to run transactions is better than denying accesses

according to both security and availability viewpoints. The simulation shows that the probability

of finding a safe sequence gets larger as the number of concurrent insiders and the percentage of

write operations in transactions increase; the percentage of safe sequences reaches about 65%

when the number of insiders is 25 (with fixed write percentage = 50%), and it reaches about 40%

when the percentage of write operations is 80% (with fixed number of concurrent insiders = 10).

We should mention here that the number of posed threat depend also on the threshold values of

insiders about data items. Hence, insiders are assumed to have direct access permission to 30%

of data items in this simulation.

6.5.2 Retrieved Candidate Tasks

Predicting candidate tasks may pose delays in executing insiders’ tasks. The delay time depends

on the number of candidate (similar) tasks that may be retrieved when a risky request is

encountered. This part of simulation was performed to show how much delay is needed to

retrieve the correct candidate task of an insider’s task when using the proposed approach in

section 6.4 (undeclared tasks). The simulation was performed according to different sizes of

training tasks. Figure 6.10 shows the relationship between the number of retrieved candidate

tasks and the position of the risky request in a risky transaction. The figure shows that the

number of candidate tasks increases when the position of the risky request (RR) gets smaller.

This is a normal result since when a risky request is encountered in a transaction; the approach

looks back into the operations that are executed before the risky request in the transaction. Then,

it searches for tasks in the training set that start with the same set of data items, operations and

the order of write operations. Thus, when the number of these data items increases, the number

129

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

Round Number

Number of Retrieved

Candidate Tasks

Position of RR

of tasks that satisfy these conditions decreases. That is, when the position of RR gets greater, the

number of candidate tasks decreases, and vice versa.

The figure shows that the maximum number of retrieved candidate tasks for each insider is about

0.28, which happens when the position of RR is 2.1. These values are average values since the

simulation was performed for several rounds and the average was taken as the final result. This

number of candidate tasks poses little cost on delay when executing transactions, especially,

when this cost is compared to security or availability costs that would be paid in case of insider

attacks. However, this simulation was performed with 15 concurrent insiders and 150 training

tasks. The next figure reveals more details when these numbers get larger.

Figure 6.10.The relationship between the number of retrieved candidate tasks

and the position of a risky request (RR) in a risky transaction.

130

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

100 300 500 700 900

N
u
m

b
er

 o
f

re
tr

ie
v
ed

C

an
d

id
at

e

T
as

k
s

 *
 P

o
si

ti
o

n
 o

f
R

R

Training Set Size

10

20

30

Figure 6.11 shows the relationship between the number of candidate tasks and the size of the

training set according to different number of concurrent insiders. We should mention here that

the number of candidate tasks represents the average number for each insider, which has been

calculated according to several rounds. The figure shows that as the size of the training set

increases, the number of candidate tasks increases, which is a fairly straight forword restult.

Notice that, in y-axis, the number of candidate tasks is multplied by the postion of RR. This

conversion is to measure the number of candidate tasks according to the same postion of RR. For

instance, suppose that when the size of the training set is 300, the number of candidate tasks and

the position of RR are 1 and 2 respectively. Similarly, assume that when the size of the training

set is 500, those values are 0.5 and 3 respectively. To measure the number of candidate tasks

when the position of RR is 1 in both sizes of training sets, 1 is multiplied by 2 and 0.5 is

multiplied by 3. Notice that this conversion is performed by multiplication and not by division

since the postion of RR and the number of candidate tasks is inversely correlated.

Figure 6.11. The relationship between the number of retrieved candidate tasks and the size

of the training set.

Number of

Concurrent

Insiders

131

As shown in the figure, the number of retrieved candidate tasks for each insider is about 0.3

when the training set size is 100, but it reaches about 4 when the training set size is about 900.

Thus, the proposed approach works better when the number of daily transactions in a system gets

lower. The figure shows that there is no relationship between the number of concurrent insiders

and the number of candidate tasks. This is a normal result since the number of retrieved

candidate tasks in this simulation is the average for each insider. Strictly speaking, the

simulation was performed in several rounds, and the total number of retrieved candidate tasks is

divided by the number of rounds and the number of concurrent insiders in the system. Thus, as

the number of insiders increases, the total number of candidate tasks increases, but the average

stay the same in general.

132

7. Tackling Insider Threat in Cloud Relational Database Systems

7.1 Introduction

Using virtual machines to run applications is one of the main features of using the cloud, where

cloud platforms host many applications (tenants). Adopting multi-tenancy reduces the operating

cost by allowing powerful resources sharing among tenants. Managing virtual machines are

required in order to achieve affective recourses utilization. Load balancing are performed using

live migration [Das11], where virtual machines are migrated from overloaded nodes to idle (or

low-loaded) nodes. However, live migration may pose a delay in delivering services since it

limits the availability during migration process. Developing methodologies for efficient and low

cost live migration has got significant attentions by researchers. A number of methods have been

proposed for effective live migration such as Albatross [Das11] and Zehpyr [Elmore11].

Security is one of the major concerns when moving to the cloud. Proving the security of data in

the cloud is mandatory to achieve users’ trust of cloud providers. Multi-tenancy could be a

vulnerability source. For instance, an insider may use shared resources to breach the security of

other insiders’ tasks [Takabi10]. Moreover, the guarantee of protecting data that resides on the

cloud from the threat of cloud providers’ employees is a major requirement by customers.

Encryption is one of the methods suggested to protect data. For instance, CryptDB,

Homomorphic Encryption (HOM) and Encryption Deterministic (DET) are encryption methods

that can execute the operations of relational databases queries on encrypted data [Curino11].

These methods prevent the cloud providers’ employees from exposing users’ data even when

customers’ queries are executed. Besides protecting data, authentication of users is another major

133

concern when moving to cloud. Thus, the development of digital identity management systems is

crucial for cloud computing [Bertino09]. The agreements between cloud customers and cloud

providers regarding the security and offered services are set using Service Level Agreements

SLAs, which should be maintained by cloud providers.

Insider threat is one of the problems that worry organizations and individuals about cloud

computing. Moving data into the cloud increases the number of insiders, which increases insider

threat. Moreover, preventing data in the cloud from insiders may require new methodologies

different from those used to protect data stored locally. This chapter discusses insider threat at

cloud relational databases (cloud RDBMS). To the best of our knowledge, this is the first work

that tackles this problem at cloud RDBMS. As discussed earlier, knowledgebase is a serious

source for insider threat. Insiders can combine the data items that they accessed (in their

knowledgebases) with other data items that they can request to infer sensitive information. Cloud

RDBMS has new vulnerabilities that may enable insiders to breach the existed solutions and

launch attacks using their knowledgebases. One of these possible vulnerabilities is the migration

(live migration) of insiders’ tasks across availability zones and data centers due to load

balancing. This chapter shows how existing insider threat preventing methodologies, which

prevent insiders from exploiting their knowledgebases to pose threat, can be breached by insiders

in cloud RDBMS. Moreover, it proposes three models that can be used to prevent the threat of

knowledgebases in this new environment. Furthermore, it addresses the conditions under which

they can be used effectively. In addition, it discusses how to manage the effect of updating data

items in knowledgebases using the proposed models.

134

7.2 Insider Threat in Cloud Relational Databases

Cloud providers store data in multiple datacenters that are both geographically and logically

separated. A datacenter consists of connected servers and storage systems. Storage systems are

aggregated into storage pools to form logical storage, which can be accessed from different

computer systems that share the storage pool. One of the key benefits of this feature is that data

can be replicated or moved to other locations (storage locations) transparently to servers using it

[Stryer12].

Availability zones in each datacenter are connected via inexpensive and low latency network. To

achieve greater performance and fault tolerance, an application’s traffic may be distributed

across multiple availability zones and data centers, which is called elastic load balancing

[Amazon12a]. Figure 7.1 shows the structure of Amazon cloud services. The figure shows that

Amazon has five data centers across the globe. Each datacenter has more than one availability

zone (AZ) [Amazon12b].

Figure 7.1. Amazon’s Cloud Structure

N. California

Datacenter

AZ

(A)

AZ

(B)

Singapore Datacenter

AZ

(A)

AZ

(B)

Ireland Datacenter

AZ

(A)

AZ

(B)

Tokyo Datacenter

AZ (A)

AZ (B)

Public Internet Access

Low Latency Network

N. Virginia Datacenter

AZ

(A)

AZ

(C)

AZ

(B)

135

Cloud relational databases are fragmented and replicated to increase availability and reliability.

Replication of data across availability zones and datacenters should be consistent. Workloads on

replicas’ nodes are balanced using live migration, where tenants (applications) are migrated from

overloaded nodes to idle (or low-loaded) nodes to achieve load balancing. Users have no control

on choosing the location or the instance that they prefer. Cloud systems choose the server, the

location and the storage that are needed for executing a process depending on some criteria such

as the amount of load on servers or availability zones. Thus, different user’s requests may be

executed on different instances in the same availability zone or in different availability zones or

data centers.

Replication and load balancing increases the performance of cloud relational database systems.

However, it may increase the probability of insider threat. Such a threat arises when a cloud

relational database system fails to use the knowledgebase of insiders to detect threat. In other

words, an insider may combine data items s/he gets from database instances in different

availability zones to pose threat. Figure 7.2 shows the problem. The insider accesses the data

item D1 in the availability zone 1(AZ1) (that may have the knowledgebase of the insider) and then

accesses D2 in the availability zone n (AZn) (that may not have the insider’s knowledgebase). In

this case, the system on the availability zone n fails to detect this threat and enables the insider to

access D2. Thus, the insider combines the two data items and gets the sensitive information S1,

which is a threat.

In addition, insiders are allowed to access a cloud from any site on the globe, which is one of the

features that the cloud offers. Cloud systems connect insiders to the closest availability zone (if it

136

is not overloaded) to execute their queries in order to achieve the best performance. This means

that insiders may be connected to different availability zones when they travel and work from

different sites. In this case, insiders may be able to launch attacks using the same scenario

described in Figure 7.2. We should mention here that to the best of our knowledge no research

has discussed the threat of knowledgebase in cloud environment, and no research has addressed

how to manage knowledgebases in this new environment.

In light of the previous discussion, an up-to-date knowledgebase should be available to be

checked at each insider’s access for all insiders to prevent insider threat. Furthermore, the

knowledgebase of an insider should be updated after each access an insider performs. Thus,

cloud RDBMS needs new methodologies to build, store and synchronize knowledgebases in

cloud environments since local knowledgebase are no longer suitable.

Figure 7.2. Insider Threat in Cloud RDBMS

Insider K

D1
D2

S1

AZ1 AZ2 AZn

137

7.3 Mitigating the Threat of insiders’ knowledgebases

Securing cloud RDBMS against insider threat needs a methodology that monitors the activities

of insiders in different instances and locations of cloud relational databases. The knowledgebases

of insiders should be checked and synchronized to achieve this purpose. In traditional RDBMS,

building, maintaining, and checking knowledgebases are the responsibilities of organizations

(owners). Nonetheless, when moving to the cloud, these operations are transferred to cloud

providers (Cloud RDBMS). Keeping these responsibilities for local systems when moving to the

cloud violates the concept of cloud computing. Moreover, keeping the knowledgebase of an

insider in local storage needs transferring it with every access by the insider, which is an

infeasible way due to the network overhead that it poses especially when knowledgebase gets

large. This section introduces three frameworks to maintain knowledgebases in Cloud RDBMS,

and demonstrates the features and limitations of each one.

7.3.1 Peer-to-Peer Model

In this model, the knowledgebase of each insider is built and stored in all availability zones. At

each access of an insider to a data item in an availability zone, the knowledgebase of the insider

in the availability zone is updated. Next, the updates are sent to all other availability zones and

data centers simultaneously to keep knowledgebases consistent. Transactions are monitored

locally at each availability zone or database instance. Thus, insider threat monitoring is

performed locally without a need to communicate with other nodes. Figure 7.3 shows the

proposed framework, where AZ denotes an availability zone, LB denotes load balancing and

U(KBs) denotes updating of knowledgebases. As shown in the figure, an insider sends his/her

query to a cloud RDBMS. The cloud system sends the query to the closest availability zone. If

138

the availability zone has a high load, the query is transferred to another availability zone. In both

cases, the insider’s knowledgebase is checked to ensure that there is no threat. Once the query is

executed, the knowledgebase of the insider is updated and all replicas of the knowledgebase in

all other availability zones are updated as well.

A key benefit of this model is that there is no single point of failure. Moreover, transactions and

threat detection processes are executed fast since all processing are performed within a single

availability zone and no communications are needed with other zones of the cloud system.

Furthermore, the processing needed for manipulating knowledgebases are distributed among all

availability zones, which balances the load on them. The challenge that arises when using this

model is the profiling of activities (building knowledgebases) for each insider. Local profiling is

faster in processing transactions, but it imposes synchronization problems. Knowledgebases in

all database servers should be updated simultaneously. Otherwise, insiders may access different

data items in different sites (due to load balancing) and combine them using dependencies to

pose threat as discussed earlier. Keeping knowledgebases updated needs a lot of immediate

Figure 7.3. Peer-to-Peer Model

AZ2

Local KBs

Local KBs Local KBs

AZ1

 AZ4 AZ3

Query

LB/ U(KBs)

LB/ U(KBs)

LB/U(KBs)

LB/ U(KBs)
LB/ U(KBs)

LB/ U(KBs)

Local KBs

139

processing, which is both time and resources consuming, and it causes delays in processing

transactions. In summary, this model poses high network traffic and delays transaction

processing especially in case of large number of replicas. Therefore, this approach is suitable

when the number of instances is small.

To enhance the performance of this model, updating knowledgebases in some availability zones

can be postponed when the processing load or network traffic is high. In this case, new

processing requests by insiders should be distributed between up-to-date availability zones only.

Other availability zones can be updated when traffic is low. This helps in increasing the

performance of processing transactions and in decreasing the delay that may be caused in case of

high network traffic.

7.3.2 Centralized Model

This model uses a coordinator site that builds, stores, and manages the knowledgebases of all

insiders. Moreover, each insider’s query is sent to the coordinator first. Then, the coordinator

checks the query against insider threat using the insider’s knowledgebase that it has. If no threat

exists, the coordinator sends the query to one of the cloud RDBMS nodes (in an availability

zone) with taking into account the load balancing. After executing the query successfully, the

cloud RDBMS sends back an acknowledgement to the coordinator so that it can update the

knowledgebase of the insider. The model in this case has a bottleneck. That is, failure of the

coordinator turns down the entire system of insider threat prediction and prevention. Figure 7.4

shows the modified model. The modified model uses a secondary coordinator to mitigate the

bottleneck problem, which is similar to the idea used in damage recovery in distributed systems

140

by Zue and Panda [Zue04]. The secondary coordinator is used only in case of failure. However,

the secondary knowledgebase should be updated to keep both knowledgebases consistent as

shown in Figure 7.4, where U(KBs) indicates updating the knowledgebases, LB indicates load

balancing, and “Ackn.” denotes an acknowledgement.

The advantages of this model include relatively small amount of network traffic in compared to

the previous model. Thus, this model is more scalable than Peer-to-Peer model. Moreover, the

updates are synchronized between the instances of knowledgebases only (the primary and

secondary sites). That is, no delay occurs because of the synchronizing process between

knowledgebases instances. However, the delay may happen because all requests are inspected

Primary Coordinator

Figure 7.4. Centralized Model

AZ 1

Query/ LB

Q
u

er
y

/L
B

Q
u

er
y

/L
B

Cloud System

U(KBs)

Query

AZ 2 AZ n

A
ck

n
.

A
ck

n
.

A
ck

n
.

 Primary KBs

Secondary Coordinator

 Secondary KBs

141

and filtered at the central unit. Therefore, the central unit should be equipped with high

performance capabilities to carry out this job.

7.3.3 Mobile-Knowledgebases Model

This model has the advantages of Peer-to-Peer model, and mitigates its disadvantages. In this

model, an availability zone in a data center stores knowledgebases of insiders who are

geographically close to it, instead of storing knowledgebases of all insiders. For example, Figure

7.5 shows how knowledgebases of insiders in the USA may be stored; where Arkansas insiders’

knowledgebases can be stored in availability zone 4, and Washington insiders’ knowledgebases

can be stored in availability zone 1. Hence, availability zones may belong to different data

centers. This model depends on the assumption that insiders are highly probably performing

most of their work in one location (i.e. a company complex). However, an insider may perform

his/her work from different (geographically) locations, which is a key advantage of

Local KBs/Northwest Local KBs/Northeast

AZ 1

AZ 3

LB/send KBs/ U(KBs)

L
B

(sen
d

 K
B

s)/ U
(K

B
s)

LB(send KBs)/ U(KBs)

AZ 2

AZ4

L
B

(sen
d

 K
B

s)/ U
(K

B
s)

LB(send KBs)/ U(KBs)

Local KBs/Southwest Local KBs/Southeast

Figure 7.5. An Example of Mobile Knowledgebases Model

142

cloud computing. In this case, the cloud system should send a copy of the knowledgebase of the

insider to the new location to check his/her queries against insider threat. In the figure, Send KBs

stands for sending a copy of a knowledgebase of an insider, which may be needed when

balancing a load or when an insider accesses an availability zone that does not have his/her

knowledgebase.

To show how the model works, suppose that an insider, say Bob, works for a company in

Arkansas, which belongs to availability zone 4 (AZ4). Assume that Bob travelled to Washington,

which belongs to availability zone 1 (AZ1), and he wants to perform some work for his

company. Figure 7.6 shows how the model works in this case. Bob sends his query to the cloud

system, which forwards his request to AZ1. The cloud system in this availability zone checks

whether Bob’s knowledgebase exits or not. Since the knowledgebase is not available, the cloud

system in AZ1 contacts other availability zones asking for the knowledgebase of Bob.

Figure 7.6. Executing Queries in a Mobile-Knowledgebases Model

 AZ 2
AZ 1

AZ 3

 AZ 4

(1) Request

(2) KB unavailable

(3) KB search

(3) KB search

(3) KB search (4) Send the KB of the insider

(5) Check insider Threat
 (6) Execute

(7) Update KB

143

Availability zone 4, which has the knowledgebase, sends a copy of Bob’s knowledgebase to

AZ1. Then, the cloud system in AZ1 checks whether there is a threat posed by Bob. If there is no

threat, AZ1 executes Bob’s request and sends the updates on Bob’s knowledgebase to AZ4.

Algorithm 7.1 shows how this model works in details.

Algorithm 7.1. Executing Transactions and Insider Threat Prevention in Mobile-
Knowledgebases Model

Input. Dependencies, Knowledgebases
Output. Updated Knowledgebases, Insider Threat Prevention

1. For each insider K
2. Store an instance of the knowledgebase of K (KB(K)) in the closest AZ
3. For each transaction T submitted by an insider F to AZ J
4. Check the availability of KB(F) in J
5. If KB(F) exists in J
6. Retrieve KB(F) and the Dependencies graph DG
7. Use KB(F) and DG to detect insider threat
8. If an insider threat is detected
9. Deny T
10. Else
11. Execute T
12. Update KB(F) in the AZ J
13. Else
14. Send a “search request” for KB(F) to other availability zones
15. Retrieve KB(F) from its host AZ, say HAZ
16. Use KB(F) and DG to detect insider threat
17. If an insider threat is detected
18. Deny T
19. Else
20. Execute T
21. Sends the Updated KB(F) to HAZ

Mobile-Knowledgebases model eliminates the need to store knowledgebases of all insiders in

every availability zone as in Peer-to-Peer model. Moreover, it has less traffic than model since

updates of knowledgebases are sent to host availability zones only in case of “moving” insiders.

Thus, this model is more scalable than Peer-to-Peer model. Furthermore, a failure of an

availability zone does not affect the tasks of other insiders in other availability zones, which

means it does not have a bottleneck as in the Centralized model (more reliable). Furthermore, in

144

most cases, the model needs to process the transactions and manage the knowledgebases of some

insiders only, which means it has less processing overhead than other models.

This model can be optimized more in order to eliminate the need to send messages to all

availability zones searching for the knowledgebase of a “moving insider”. This can be achieved

by storing a directory for all insiders on an organization and their hosting availability zones.

Thus, when an insider’s request is sent to an availability zone other than his/her hosting one, the

cloud system at the new availability zone looks up the directory it has to retrieve the insider’s

hosting availability zone. Then, a message is sent to the hosting availability zone only to retrieve

the knowledgebase of the insider. Storing the directory of all insiders needs more storage, but it

greatly reduces the traffic overhead, especially when the number of availability zones and data

centers gets larger.

7.4 Managing Dependency Graphs and Updates on Data items in Cloud RDBMS

Knowledgebases and dependency graphs are major parts in insider threat prediction and

prevention models as discussed earlier. We suggest using the proposed dependency graphs,

which are NDIG and CDG, in insider threat mitigation models in cloud RDBMS. In traditional

insider threat mitigation models (in traditinoal RDBMS), dependency graphs are stored locally as

a part of the models. In cloud RDBMS, the location of NDIG and CDG depends on which model

we would adopt to manage knowledgebases. In Peer-to-Peer and Mobile-Knowledgebases

models, dependecy graphs should be stored in each availability zone since insider threat

prediction and prevention is performed at each one. However, in Centeralized model,

dependency graphs need to be stored at the coordinater’s sites only.

145

As discussed earlier, checking life times of data items in knowledgebases is crucial.

Knowledgebase in cloud RDBMS should be managed by taking into account the lifetimes of data

items such that expired data items are marked or deleted. Managing the lifetimes of data items in

cloud RDBMS depends on the model used for managing knowledgebases. Two possible ways

can be used to manage the lifetimes of data items in cloud relational databases (cloud RDB),

which are Exhaustive-Updating and Updating-on-Use.

7.4.1 Exhaustive-Updating Approach

In this approach, on each write access of a data item by an insider, all knowledgebases of

insiders are investigated searching for the data item. If the data item exists in one of to

knowledgebases, the value of the data item is checked against expiration. If the value is expired,

the data item is deleted or marked as expired. After completing this process, all instances of

affected knowledgebases should be updated. Notice that in this approach a threat prediction

model needs to investigate knowledgebase only to search for a risky data item and to check

whether its lifetime is expired or not.

Using this approach in Peer-to-Peer model is time consuming, and poses network traffic and

processing overhead since the Peer-to-Peer model maintains knowledgebases at each availability

zone. Once a knowledgebase is updated, the updates should be sent through networks to other

cloud RDBMS nodes. Therefore, this approach can be used in small systems that have small

number of insiders and data items and when the number of cloud RDB instances is small. In

Centralized Model, updating knowledgebases when using Exhaustive-Updating approach is

performed on the coordinators site only. Moreover, network traffic occurs between the primary

146

site and the secondary site only. Thus, less network traffic is posed in comparing to the previous

model, which means that it is more scalable. However, since all the processing of threat

prediction and prevention is performed at coordinators site, using this approach adds more load

to the coordinator’s node, which may overload it. Therefore, powerful capabilities should be

guaranteed and maintained at the node.

The workload of using this approach in Mobile- Knowledgebases model is distributed among

availability zones. Clearly, since the knowledgebases of a group of insiders are stored in the

closest availability zone, updating a knowledgebase is performed locally, and no update is sent

out through networks. That is, no network overhead is posed as in Peer-to-Peer model, and

contrarily to the Centralized Model, the processing overhead of maintaining knowledgebases is

distributed among all availability zones. Thus, the best performance of the Exhaustive-Updating

approach is achieved when it used with Mobile-Knowledgebases model.

7.4.2 Updating-on-Use Approach:

Contrary to the Exhaustive-Updating approach, this method does not update knowledgebases

immediately after each update. Instead, the lifetime of a data item is updated when it is checked

against insider threat only, which is performed as follows. At each read access to a data item by

an insider, if the data item can be used with a another data item, say F, in the insider’s

knowledgebase to pose threat, the timestamp of F (in the insider’s knowledgebase) is compared

to the write timestamp of F in the cloud RDB. If F was updated after the last access to it by the

insider, F is called P-Expired, which indicates Possibly Expired. Next, the value of F is

investigated to check whether F is expired or not. If it is expired, the data item is removed from

147

the knowledgebase of the insider or marked as expired. This two-phase checking process

eliminates the need to check the value of F in case it was not overwritten after the last access by

the insider. Obviously, this approach reduces the processing overhead needed to investigate the

entire knowledgebase at each write access. However, it adds more processing time to

transactions since it needs checking both knowledgebases and cloud RDBMS in order to check

the lifetimes of data items during transactions processing.

Adopting this approach in Peer-to-Peer model does not pose high network traffic overhead since

updates to knowledgebases are sent gradually, which greatly less than the overhead that is posed

when using Exhaustive-Updating approach. However, the processing time needed for

transactions is greater than that needed in Exhaustive-Updating approach as mentioned earlier.

Similarly, using this approach in Centralized Model reduces network traffic between the primary

and secondary coordinators when compared to the Exhaustive-Updating approach, and adds

more processing time to transactions. In Mobile-Knowledgebases model, no extra network traffic

is posed as in Exhaustive-Updating approach. However, similar to the other models, more

processing time is needed for transactions when adopting this approach.

148

8. CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The dissertation has studied insider threat in relational database systems. It has analyzed the

factors and capabilities that insiders have and use to launch attacks. These factors include the

accumulative knowledge that insiders get about data items and the dependencies and constraints

that they acquire through legal accesses to data items or through collaborating with other

insiders. The dissertation has classified dependencies into different types, and determined the

amount and type of knowledge that insiders get based on dependencies.

Modeling the dependencies and constraints among data items facilitates understanding the

structure of relational database systems. Furthermore, it enables defense systems to predict what

knowledge an insider can get when accessing a data item. Therefore, we have developed two

types of dependency graphs, which are Neural and Dependency Graph (NDIG) and Constraints

and Dependencies Graph (CDG). NDIG demonstrates the dependencies among data items.

Moreover, it shows the amount of information an insider can get about a data item when s/he

accesses another data item or a group of data items. In comparison, CDG shows both the

dependencies and constraints among data items. It tells what values of data items are stored in

insiders’ knowledgebases. In addition to dependencies and constraints, the dissertation has

shown how knowledgebases play a major role in posing insider threat. To represent

knowledgebases, the dissertation developed new knowledge graphs (KGs) that show the data

items that insiders have accessed as well as the amount of information they have about data

items. In addition, knowledge graphs demonstrate the data items about which insiders can infer

149

information. We have used knowledge graphs and dependency graphs to predict what knowledge

(authorized or unauthorized) an insider may get if s/he accesses a data item. We have used a new

graph called Threat Prediction Graph (TPG) that uses NDIG, CDG and KG to predict and

prevent unauthorized knowledge. A threat alert is raised when an insider gets more information

than allowed (based on a threshold value) about a data item. The dissertation has stated

algorithms, theorems, proofs and simulations to prove the effectiveness of the proposed models

in preventing unauthorized knowledge acquisition by insiders. The simulations have shown the

effectiveness of the proposed models in preventing unauthorized knowledge without affecting

the availability of data items. As shown by simulations, the percentage of prevented threat

(without denying read accesses) increases as the number of transactions and the percentage of

write operations in transactions increase, and it reaches about 30% when the percentage of write

operations in transactions is 0.80 (when the number of transactions is 250).

Unauthorized modifications of sensitive data items are another aspect of insider threat. The

dissertation has investigated this problem and addressed the paths insiders use to launch such

attacks. It has developed new graphs called Modification Graphs and Dependency Graphs that

show what data items an insider can change using legal write accesses or dependencies, and how

to predict insider threat. Furthermore, we have proposed approaches to prevent such threats by

hiding sensitive dependencies or denying some write access requests. In addition, we have stated

the conditions under which those solutions are best used. That is, we have shown that in some

cases allowing unauthorized modifications is better than hiding sensitive dependencies or

denying write requests, especially when the cost of affecting availability is greater than the cost

of exposing some sensitive information. Moreover, the dissertation has demonstrated when to

150

allow unauthorized modifications and when to prevent them based on the weight of sensitivity

and availability values of data items. Algorithms, theorems, proofs and simulations have been

provided to show the correctness and the effectiveness of the proposed approaches. The

simulation has shown that the proposed approaches work better when the percentage of write

operations in transactions gets larger.

The dissertation has addressed the importance of organizing accesses to data items in concurrent

tasks. It has shown how organizing accesses to data items can prevent insider threats without

affecting the availability of data items. We have shown how to compute the risk value of each

possible sequence of executing tasks operations. Based on the risk values, a safe sequence is

chosen and the operations of tasks are executed in the selected order. The dissertation has shown

how to select a safe sequence in both declared and undeclared tasks. However, if no safe

sequences are found, risky transactions are rejected. The effectiveness of the proposed

approaches was tested using simulations. In declared tasks, the simulations have shown the

percentage of prevented threat using safe sequences in comparison to all prevented threats. As

reported by simulations, the probability of finding a safe sequence increases as the number of

concurrent insiders and the percentage of write operations in transactions gets larger. The

simulations have addressed that the percentage of prevented threats using safe sequences reaches

about 65% when the number of concurrent insiders is 25 and the percentage of write operations

equals to 50%. Moreover, the percentage of prevented threats using safe sequences reaches about

40% when the percentage of operations is 80% and the number of concurrent insiders is 10.

151

Security concerns are the major issues when moving data to the cloud. One of these concerns is

the vulnerabilities that may be exploited by insiders to launch attacks. The dissertation has

discussed insider threat in cloud relational databases. It has shown how balancing workload

across availability zones and data centers may enable insiders to breach traditional insider threat

prevention models. To prevent such threats, the dissertation has demonstrated new insider threat

prediction and prevention models that are suitable for the cloud environment, which are Peer-to-

Peer model, Centralized model and Mobile-Knowledgebases model. It has shown how

knowledgebases, updates on data items and dependency graphs can be managed, synchronized

and used effectively to defend cloud RDBMS against insider threat. Furthermore, it has

addressed the conditions under which the models can work with highest performance, and has

presented the advantages and disadvantages of each model on processing time, network traffic

and overall cloud RDBMS performance.

8.2 Future Work

Defending cloud RDBMS against insider threat still needs more research. We plan to conduct

research on organizing the operations of concurrent tasks in the cloud environment similar to

what we have done for traditional relational databases. Moreover, we plan to conduct

experiments to establish the effectiveness of the proposed models in managing knowledgebases

in cloud RDBMS, and measure and compare the overhead (processing time and network traffic)

that the models can add to the cloud RDBMS.

152

REFERENCES

[AES] J. Daemen and V. Rijmen. “AES Proposal: Rijndael, AES Algorithm

Submission”. Available Online at <http://www.nist.gov/CryptoToolkit>.

[Althebyan08a] Q. Althebyan and B. Panda. “A knowledge-base model for insider threat

prediction”. In Proceedings the IEEE Workshop on Information Assurance

and Security.West Point, NY, USA, 2008.

[Althebyan08b] Q. Althebyan and B. Panda. “Performance analysis of an insider threat

mitigation model”. In Proceeding of the third IEEE International Conference

on Digital Information Management. 2008.

[Amzaon12a] Amazon Elastic Compute Cloud. Available Online at

<http://www.aws.amazon.com /ec2/>.

[Amazon12b] “Amazon Web Services: Overview of Security Processes”. Available

Online at <http://aws.amazon.com/security/>.

[Armbrust09] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G.

Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. “Above the Clouds:

A Berkeley View of Cloud Computing”. Technical Report. University of

California at Berkeley, 2009.

[Arshad09] J. Arshad, P. Townend and J. Xu,”Quantification of Security for Compute

Intensive Workloads in Clouds: An automatic intrusion diagnosis

approach for clouds,”International Journal of Automation and

Computing,vol. 8, pp. 286-296, 2011.

[Azure12] SQL Azure. Available Onlilne at <http://www.microsoft. com/application

platform/en/us/Key-Technologies/SQL-Azure.aspx>.

[Baraani96] A. Baraani-Dastjerdi, J. Pieprzyk, R. Safavi-Naini. “Security In Databases:

A survey Study”. University of Wollongong. 1996.

[Bertino09] E. Bertino, F. Paci, R. Ferrini, and N. Shang. “Privacy-preserving Digital

Identity Management for Cloud Computing”. IEEE Data Eng. Bull., pp.21-

27. 2009.

[Bishop03] M. Bishop. “Computer Security: Art and Science”. 1
st
 Edition, Addison-

Wesley, 2003.

[Bishop08] M. Bishop and C. Gates. “Defining the Insider Threat”. In Proceedings of

the 4th annual workshop on Cyber security and information intelligence

research, Oak Ridge, Tennessee, USA. 2008.

http://www.nist.gov/CryptoToolkit
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Panda:Brajendra.html

153

[Biskup07] J. Biskup , D. Embley and J. Lochner. “Reducing inference control to access

control for normalized database schemas”. Information Processing Letters,

2008.

[Boss] G. Boss, P. Malladi, D. Quan, L. Legregni and H. Hall. “Cloud computing”.

Available Online at <www.ibm.com/developerworks/websphere/zones/

hipods>

[Brackney04] R. Brackney and R. Anderson. “Understanding the insider threat”. In

Proceedings of 2004 workshop, Technical report, RAND Corporation, Santa

Monica, CA,USA. 2004.

[Bradford05] P. Bradford and N. Hu. “A Layered Approach to Insider Threat Detection

and Proactive forensics”. In Proceedings of the Twenty-First Annual

Computer Security Applications Conference, Tucson, AZ, USA. 2005.

[Brodsky00] A. Brodsky, C. Farkas and S. Jajodia. “Secure Databases: Constraints,

Inference Channels and Monitoring Disclosures”. IEEE Transactions on

Knowledge and Data Engineering. 2000.

[CERT11] “The 2011 CyberSecurity Watch Survey”. Available Online at

<www.cert.org/>

[Chagarlamudi09] M. Chagarlamudi, B. Panda, and Y. Hu. “Insider Threat in Database

Systems: Preventing Malicious Users' Activities in Databases”. In

Proceedings of the 6thInternational Conference on Information Technology,

Las Vegas, NV, USA, pp.1616-1620. 2009.

[Chinchani05] R. Chinchani, A. Iyer, H. Ngo and S. Upadhyaya. “Towards a Theory of

Insider Threat Assessment”. In Proceedings of the 2005 International

Conference of Dependable Systems and Networks (DSN’05). 2005.

[Chow09] R. Chow , P. Golle , M. Jakobsson , E. Shi , J. Staddon ,R. Masuoka and J.

Molina. “Controlling data in the cloud: outsourcing computation without

outsourcing control”. In Proceedings of the 2009 ACM workshop on Cloud

computing security. 2009.

[Chung99] C. Chung, M. Gertz and K. Levitt. “DEMIDS: A Misuse Detection System

for Database Systems”. In Proceedings of the IFIP TC-11 WG 11.5 Working

Conference on Integrity and Internal Controlling Information Systems,

Kluwer Academic Publishers. 1999.

[Conway72] R. Conway, W. Maxwell and H. Morgan. “On the Implementation of

Security Measures in Information Systems”. Communications of the ACM,

1972.

154

[Cooper08] R. Cooper. “Verizon Business Data Breach Security Blog”. Available

Online at <www.securityblog.verizonbusiness.com/2008/>

[Curnio] C. Curino, E.P.C. Jones, R.A. Popa, N. Malviya, E. Wu, S. Madden, H.

Balakrishnan, and N. Zeldovich. “Relational Cloud: a Database Service for

the cloud”. In Proceedings of CIDR. 2011

[Das11] S. Das, S. Nishimura, D. Agrawal, and A.E. Abbadi. “Albatross:

Lightweight Elasticity in Shared Storage Databases for the Cloud using Live

Data Migration”. In Proceedings of the 37th International Conference on

Very Large Data Bases (VLDB). 2011.

[David04] D. Woodruff and J. Staddon. “Private inference control”. In Proceedings of

the 11
th

 ACM conference on Computer and communications security.

2004.

[Dawson99] S. Dawson, S.De Capitani di Vimercati, and P. Samarati. “Specification and

enforcement of classification and inference constraints”. In Proceedings of

the 20th IEEE Symposium on Security and Privacy. 1999.

[DES] National Bureau of Standards. “DES modes of operation”. Available Online

at <csrc.nist.gov>

[Elmore11] A. Elmore, S. Das, D. Agrawal and A.E. Abbadi. “Zephyr: live migration

in shared nothing databases for elastic cloud platforms”. In Proceedings of

the SIGMOD Conference. 2011.

[Farkas01] C. Farkas, T. Toland and C. Eastman. “The Inference Problem and Updates

in Relational Databases”. In Proceedings of the 15th IFIP WG11.3 Working

Conference on Database and Application Security. 2001.

[Farkas07] C. Farkas and S. Jajodia. “The Inference Problem: A Survey”. ACM

SIGKDD Explorations. 2007.

[Forrester11] “The Value of Corporate Secrets”. Available Online at

<www.microsoft.com>

[Gordon05] L. Gordon, M. Loeb, W. Lucyshyn and R. Richardson. “Computer Crime

and Security Survey”. Available Online at <http://www.cpppe.umd.edu/>

[Garfinkel02] R. Garfinkel, R. Gopal, and P. Goes. “Privacy Protection of Binary

Confidential Data against Deterministic, Stochastic, and Insider Threat”.

Management Science. 2002.

http://dl.acm.org/citation.cfm?id=1030109

155

[Hacigumus12] H. Hacıgümüş, J. Tatemura, Y. Chi, W. Hsiung, H. Jafarpour, H. Moon and

O. Po. “CloudDB: A Data Store for All Sizes in the Cloud”. Available

Online at <http://www.nec-labs.com/dm/CloudDBweb.Pdf>.

[Harrison76] M. Harrison , W. Ruzzo and J. Ullman. “Protection in operating systems”.

Communications of the ACM. 1976.

[Heping05] Y. Heping, L. Bing, Y. Xiaoming, W. Wei, S. Baile and Y. Genxing,

“Controlling FD and MVD inferences in MLS”. In Proceedings of the 5
th

International Conference on Computer and Information Technology. 2005.

[Hu03] Y. Hu and B. Panda. “Identification of Malicious Transactions in Database

Systems”. In Proceedings of the 7
th

 International Database Engineering and

Applications Symposium. 2003.

[Hu06] N. Hu, P. Bradford and J. Liu. “Applying Role Based Access Control and

Genetic Algorithms to Insider Threat Detection”. In Proceedings of the 44
th

ACM Southeast Conference. 2006.

[Hwang09] K. Hwang, S. Kulkarni, and Y. Hu. “Cloud Security with Virtualized

Defense and Reputation-Based Trust Management”. IEEE International

Conference of Dependable, Autonomic, and Secure Computing (DASC 09),

IEEE CS Press. 2009.

[Jabbour09a] G. Jabbour and D.A. Menasc´e. “Stopping the Insider Threat: the case for

implementing autonomic defense mechanisms in computing systems”. In

Proceedings of the International Conference of Information Security and

Privacy. 2009.

[Jabbour09b] G. Jabbour and D.A. Menascé. “The Insider Threat Security Architecture: A

Framework for an Integrated, Inseparable, and Uninterrupted Self-Protection

Mechanism”. In Proceedings of the international Conference on

Computational Science and Engineering. 2009.

[Kaufman09] L. Kaufman. “Data Security in the World of Cloud Computing”. IEEE

Security & Privacy. 2009.

[Lampson71] B. Lampson. “Protection”. In Proceedings of the 5
th

 Princeton Conference

on Information Sciences and Systems. 1971.

[LII] “Information Security”. Available Online at

<http://www.law.cornell.edu/uscode/ 44/35 42.html>

[Marks96a] D. Marks. “Inference in MLS Database Systems”. IEEE Transactions on

Knowledge and Data Engineering. 1996.

http://dl.acm.org/citation.cfm?id=360333&CFID=75160964&CFTOKEN=30214654
http://dl.acm.org/citation.cfm?id=360333&CFID=75160964&CFTOKEN=30214654
http://dl.acm.org/citation.cfm?id=360333&CFID=75160964&CFTOKEN=30214654

156

[Marks96b] D. Marks , Amihai Motro and Sushil Jajodia. “Enhancing the Controlled

Disclosure of Sensitive Information”. In Proceedings of the 4
th

 European

Symposium on Research in Computer Security. 1996.

[Mathew10] S. Mathew, M. Petropoulos, H. Ngo and S. Upadhyaya. “A Data-Centric

Approach to Insider Attack Detection in Database Systems”. In Proceedings

of the 12
th

 International Symposium on Recent Advances in Intrusion

Detection. 2009.

[Maybury05] M. Maybury, P. Chase, B. Cheikes, D. Brackney, S. Matznera, T.

Hetherington, B. Wood, C. Sibley, J. Marin, and T. Longstaff. “Analysis

and Detection of Malicious Insiders”. In Proceedings of the International

Conference on Intelligence Analysis. 2005.

[Meza05] B. Aleman-Meza, P. Burns, M. Eavenson, D. Palaniswami, A. Sheth. “An

Ontological Approach to the Document Access Problem of Insider Threat”.

In Proceedings of the International Conference on Intellegence and Security

Informatics, 2005.

[Morgenstern87] M. Morgenstern. “Security and Inference in Multilevel Database and

Knowledge-Base Systems”. ACM SIGMOD Record. New York, Vol. 16,

pp. 357 – 373, December 1987.

[Motahari09] S. Motahari, S. Ziavras, M. Naaman, M. Ismail and Q. Jones. “Social

Inference Risk Modeling in Mobile and Social Applications”. In

Proceedings of CSE (3). 2009.

[Murata89] T. Murata. “Petri nets: Properties, analysis and applications”. In Proceedings

of the IEEE. 1989.

[NIST95] “An Introduction to Computer Security: The NIST Handbook”. Available

Online at <http://www.nist.gov>.

[Park06] S. Park, and J. Giordano. “Role-based Profile analysis for scalable and

accurate insider-anomaly detection”. In Proceedings of the 25
th

 IEEE

International Performance, Computing and Communications Conference.

2006.

[Probst10] C. Probst, J. Hunker, D. Gollmann and M. Bishop (Eds.). “Insider Threat in

Cyber Security”. 1st Edition, Springer. 2010.

[RDS12] Amazon Relational Databases. Available Online at

<http://aws.amazon.com/rds/>

http://www.nist.gov/

157

[Rivest78] R. Rivest, A. Shamir, L. Adleman. “A method for obtaining digital

signatures and public-key crypto systems”. Communications of the ACM,

1978.

[Shanon48] C. E. Shannon. “A mathematical theory of communication”. Bell System

Technical Journal, (1948).

[Spitzner03] L. Spitzner. “Honeypots: Catching the Insider Threat”. In Proceedings of

the 19
th

 Annual Computer Security Applications Conference. 2003.

[Stachour90] P. Stachour , B. Thuraisingham. “Design of LDV: A Multilevel Secure

Relational Database Management”. IEEE Transactions on Knowledge and

Data Engineering. 1990.

[Stryer12] P. Stryer. “Understanding Data Centers and Cloud Computing”. White

Paper, Available Online at <http://www.globalknowledge.se/pdf/ WP_DC_

DataCenterCloudComputing1.pdf>.

[Subashini10] S. Subashini and V. Kavitha. “A Survey on Security Issues in Service

Delivery Models of Cloud Computing”. Journal of Network and Computer

Applications. 2010.

[Su87] T. Su and G. Ozsoyglu. “Data dependencies and inference control in

multilevel relational database systems”. In Proceedings of the IEEE

Symposium on Security and Privacy. 1987.

[Su91] T. Su and G. Ozsoyoglu. “Controlling FD and MVD Inferences in

Multilevel Relational Database Systems, IEEE Transactions on Knowledge

and Data Engineering. 1991.

[Takabi10] H. Takabi, J.B.D. Joshi, and G. Ahn. “Security and Privacy Challenges in

Cloud Computing Environments”. IEEE Security & Privacy. 2010.

[Wang09] C. Wang, Q. Wang, K.Ren, W. Lou. “Ensuring Data Storage Security in

Cloud Computing”. In Proceedings of 17
th

 IEEE International Workshop on

Quality of Service. 2009.

[White09a] J. White, B. Panda, Q. Yaseen, W. Li and K. Nguyen. “Detecting Malicious

Insider Threats using a Null Affinity Temporal Three Dimensional Matrix

Relation”. In Proceedings of the 7
th

 International Workshop on Security in

Information Systems. 2009.

[White09b] J. White and B. Panda. “Automatic Identification of Critical Data Items in a

Database to Mitigate the Effects of Malicious Insiders”. In Proceedings of

the the 5th International Conference on Information Systems Security. 2009

http://dl.acm.org/citation.cfm?id=627407&CFID=75633695&CFTOKEN=69758504
http://dl.acm.org/citation.cfm?id=627407&CFID=75633695&CFTOKEN=69758504
http://dl.acm.org/citation.cfm?id=627407&CFID=75633695&CFTOKEN=69758504
http://dl.acm.org/citation.cfm?id=627485&CFID=75633695&CFTOKEN=69758504
http://dl.acm.org/citation.cfm?id=627485&CFID=75633695&CFTOKEN=69758504
http://dl.acm.org/citation.cfm?id=627485&CFID=75633695&CFTOKEN=69758504

158

[Yalamanchili04] R. Yalamanchili and B. Panda. “Transaction Fusion: A Model for Data

Recovery from Information Attacks”. Journal of Intelligent Information

Systems. 2004.

[Yaseen09] Q. Yaseen and B. Panda. “Knowledge Acquisition and Insider Threat

Prediction in Relational Database Systems”. In Proceedings of the

International Workshop on Software Security Processes. 2009.

[Yaseen10a] Q. Yaseen and B. Panda. “Organizing Access Privileges: Maximizing

the Availability and Mitigating the Threat of Insiders Knowledgebase”.

In Proceedings of the 4
th

International Conference on Network and System

Security. 2010.

[Yaseen10b] Q. Yaseen and B. Panda. “Predicting and Preventing Insider Threat in

Relational Database Systems”. In Proceedings of the 4
th

 IFIP WG 11.2

Workshop in Information Security Theory and Practice. 2010.

[Yaseen10c] Q. Yaseen and B. Panda. “Malicious Modification Attacks by Insiders in

Relational Databases: Prediction and Prevention”. In Proceedings of the

Second IEEE International Conference on Information Privacy, Security,

Risk and Trust (PASSAT2010). 2010.

[Yaseen11] Q. Yaseen and B. Panda. “Enhanced Insider Threat Detection Model that

Increases Data Availability”. In Proceedings of the 7
th

 International

Conference of Distributed Computing and Internet Technology. 2011.

[Yaseen12a] Q. Yaseen and B. Panda, “Mitigating Insider Threat without Limiting the

Availability in Undeclared Tasks”, In Proceedings of the 6
th
 IEEE Conference on

Software Security and Reliability (SERE2012), Washington D.C, June 2012 [To

Appear].

[Yaseen12b] Q. Yaseen and B. Panda, “Insider Threat Mitigation: Preventing Unauthorized

Knowledge Acquisition”, International Journal of Information Security, 2012 [To

Appear].

[Yip98] R. Yip and K. Levitt. “Data Level Inference Detection in Database

Systems”. In Proceedings of the 11
th

 IEEE Computer Security Foundations

Workshop. 1998.

[Zuo04] Y. Zuo and B. Panda. “Fuzzy Dependency and its Applications in Damage

Assessment and Recovery”. In Proceedings of the 5
th

 Annual IEEE

Information Assurance Workshop. 2004.

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2012

	Mitigating Insider Threat in Relational Database Systems
	Qussai Yaseen
	Recommended Citation

	tmp.1468936806.pdf.JYX0r

