24 research outputs found

    Epidemic Threshold in Continuous-Time Evolving Networks

    Get PDF
    Current understanding of the critical outbreak condition on temporal networks relies on approximations (time scale separation, discretization) that may bias the results. We propose a theoretical framework to compute the epidemic threshold in continuous time through the infection propagator approach. We introduce the {\em weak commutation} condition allowing the interpretation of annealed networks, activity-driven networks, and time scale separation into one formalism. Our work provides a coherent connection between discrete and continuous time representations applicable to realistic scenarios.Comment: 13 pages, 2 figure

    Competition and dual users in complex contagion processes

    Full text link
    We study the competition of two spreading entities, for example innovations, in complex contagion processes in complex networks. We develop an analytical framework and examine the role of dual users, i.e. agents using both technologies. Searching for the spreading transition of the new innovation and the extinction transition of a preexisting one, we identify different phases depending on network mean degree, prevalence of preexisting technology, and thresholds of the contagion process. Competition with the preexisting technology effectively suppresses the spread of the new innovation, but it also allows for phases of coexistence. The existence of dual users largely modifies the transient dynamics creating new phases that promote the spread of a new innovation and extinction of a preexisting one. It enables the global spread of the new innovation even if the old one has the first-mover advantage.Comment: 9 pages, 4 figure

    Competing contagion processes: Complex contagion triggered by simple contagion

    Full text link
    Empirical evidence reveals that contagion processes often occur with competition of simple and complex contagion, meaning that while some agents follow simple contagion, others follow complex contagion. Simple contagion refers to spreading processes induced by a single exposure to a contagious entity while complex contagion demands multiple exposures for transmission. Inspired by this observation, we propose a model of contagion dynamics with a transmission probability that initiates a process of complex contagion. With this probability nodes subject to simple contagion get adopted and trigger a process of complex contagion. We obtain a phase diagram in the parameter space of the transmission probability and the fraction of nodes subject to complex contagion. Our contagion model exhibits a rich variety of phase transitions such as continuous, discontinuous, and hybrid phase transitions, criticality, tricriticality, and double transitions. In particular, we find a double phase transition showing a continuous transition and a following discontinuous transition in the density of adopted nodes with respect to the transmission probability. We show that the double transition occurs with an intermediate phase in which nodes following simple contagion become adopted but nodes with complex contagion remain susceptible.Comment: 9 pages, 4 figure

    Social contagions on interdependent lattice networks

    Get PDF
    Although an increasing amount of research is being done on the dynamical processes on interdependent spatial networks, knowledge of how interdependent spatial networks influence the dynamics of social contagion in them is sparse. Here we present a novel non-Markovian social contagion model on interdependent spatial networks composed of two identical two-dimensional lattices. We compare the dynamics of social contagion on networks with different fractions of dependency links and find that the density of final recovered nodes increases as the number of dependency links is increased. We use a finite-size analysis method to identify the type of phase transition in the giant connected components (GCC) of the final adopted nodes and find that as we increase the fraction of dependency links, the phase transition switches from second-order to first-order. In strong interdependent spatial networks with abundant dependency links, increasing the fraction of initial adopted nodes can induce the switch from a first-order to second-order phase transition associated with social contagion dynamics. In networks with a small number of dependency links, the phase transition remains second-order. In addition, both the second-order and first-order phase transition points can be decreased by increasing the fraction of dependency links or the number of initially-adopted nodes.This work was partially supported by National Natural Science Foundation of China (Grant Nos 61501358, 61673085), and the Fundamental Research Funds for the Central Universities. (61501358 - National Natural Science Foundation of China; 61673085 - National Natural Science Foundation of China; Fundamental Research Funds for the Central Universities)Published versio

    Dynamics of organizational culture: Individual beliefs vs. social conformity

    Get PDF
    The complex nature of organizational culture challenges our ability to infers its underlying dynamics from observational studies. Recent computational studies have adopted a distinct different view, where plausible mechanisms are proposed to describe a wide range of social phenomena, including the onset and evolution of organizational culture. In this spirit, this work introduces an empirically-grounded, agent-based model which relaxes a set of assumptions that describes past work - (a) omittance of an individual's strive for achieving cognitive coherence, (b) limited integration of important contextual factors - by utilizing networks of beliefs and incorporating social rank into the dynamics. As a result, we illustrate that: (i) an organization may appear to be increasingly coherent in terms of organizational culture, yet be composed of individuals with reduced levels of coherence, (ii) the components of social conformity - peer-pressure and social rank - are influential at different aggregation levels.Comment: 20 pages, 8 figure
    corecore