19 research outputs found

    Kinetic models for polymers with inertial effects

    Full text link
    Novel kinetic models for both Dumbbell-like and rigid-rod like polymers are derived, based on the probability distribution function f(t,x,n,n˙)f(t, x, n, \dot n) for a polymer molecule positioned at xx to be oriented along direction nn while embedded in a n˙\dot n environment created by inertial effects. It is shown that the probability distribution function of the extended model, when converging, will lead to well accepted kinetic models when inertial effects are ignored such as the Doi models for rod like polymers, and the Finitely Extensible Non-linear Elastic (FENE) models for Dumbbell like polymers.Comment: 23 pages, 2 figure

    Kinetic models for dilute solutions of dumbbells in non-homogeneous flows revisited

    Full text link
    We propose a two fluid theory to model a dilute polymer solution assuming that it consists of two phases, polymer and solvent, with two distinct macroscopic velocities. The solvent phase velocity is governed by the macroscopic Navier-Stokes equations with the addition of a force term describing the interaction between the two phases. The polymer phase is described on the mesoscopic level using a dumbbell model and its macroscopic velocity is obtained through averaging. We start by writing down the full phase-space distribution function for the dumbbells and then obtain the inertialess limits for the Fokker-Planck equation and for the averaged friction force acting between the phases from a rigorous asymptotic analysis. The resulting equations are relevant to the modelling of strongly non-homogeneous flows, while the standard kinetic model is recovered in the locally homogeneous case

    Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange-Galerkin method, Part II: A linear scheme

    Get PDF
    This is the second part of our error analysis of the stabilized Lagrange-Galerkin scheme applied to the Oseen-type Peterlin viscoelastic model. Our scheme is a combination of the method of characteristics and Brezzi-Pitk\"aranta's stabilization method for the conforming linear elements, which leads to an efficient computation with a small number of degrees of freedom especially in three space dimensions. In this paper, Part II, we apply a semi-implicit time discretization which yields the linear scheme. We concentrate on the diffusive viscoelastic model, i.e. in the constitutive equation for time evolution of the conformation tensor a diffusive effect is included. Under mild stability conditions we obtain error estimates with the optimal convergence order for the velocity, pressure and conformation tensor in two and three space dimensions. The theoretical convergence orders are confirmed by numerical experiments.Comment: See arXiv:1603.01339 for Part I: a nonlinear schem

    Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers

    Get PDF
    We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier-Stokes equations in a bounded domain Ω⊂Rd\Omega \subset R^d, d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor appearing on the right-hand side in the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined through the associated probability density function that satisfies a Fokker-Planck type parabolic equation, a crucial feature of which is the presence of a centre-of-mass diffusion term. We require no structural assumptions on the drag term in the Fokker-Planck equation; in particular, the drag term need not be corotational. We perform a rigorous passage to the limit as first the spatial discretization parameter, and then the temporal discretization parameter tend to zero, and show that a (sub)sequence of these finite element approximations converges to a weak solution of this coupled Navier-Stokes-Fokker-Planck system. The passage to the limit is performed under minimal regularity assumptions on the data: a square-integrable and divergence-free initial velocity datum u0u_0 for the Navier-Stokes equation and a nonnegative initial probability density function ψ0\psi_0 for the Fokker-Planck equation, which has finite relative entropy with respect to the Maxwellian M
    corecore