196 research outputs found

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Biologically Inspired Modelling for the Control of Upper Limb Movements: From Concept Studies to Future Applications

    Get PDF
    Modelling is continuously being deployed to gain knowledge on the mechanisms of motor control. Computational models, simulating the behaviour of complex systems, have often been used in combination with soft computing strategies, thus shifting the rationale of modelling from the description of a behaviour to the understanding of the mechanisms behind it. In this context, computational models are preferred to deterministic schemes because they deal better with complex systems. The literature offers some striking examples of biologically inspired modelling, which perform better than traditional approaches when dealing with both learning and adaptivity mechanisms. Can these theoretical studies be transferred into an application framework? That is, can biologically inspired models be used to implement rehabilitative devices? Some evidences, even if preliminary, are presented here, and support an affirmative answer to the previous question, thus opening new perspectives

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues ā€œKinematics and Robot Design II, KaRD2019ā€ (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and ā€œKinematics and Robot Design III, KaRD2020ā€ (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on ā€œmechanisms and roboticsā€.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of worldā€™s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be oā†µered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    A Bio-inspired Distributed Control Architecture: Coupled Artificial Signalling Networks

    Get PDF
    This thesis studies the applicability of computational models inspired by the structure and dynamics of signalling networks to the control of complex control problems. In particular, this thesis presents two different abstractions that aim to capture the signal processing abilities of biological cells: a stand-alone signalling network and a coupled signalling network. While the former mimics the interacting relationships amongst the components in a signalling pathway, the latter replicates the connectionism amongst signalling pathways. After initially investigating the feasibility of these models for controlling two complex numerical dynamical systems, Chirikov's standard map and the Lorenz system, this thesis explores their applicability to a difficult real world control problem, the generation of adaptive rhythmic locomotion patterns within a legged robotic system. The results highlight that the locomotive movements of a six-legged robot could be controlled in order to adapt the robot's trajectory in a range of challenging environments. In this sense, signalling networks are responsible for the robot adaptability and inter limb coordination as they self-adjust their dynamics according to the terrain's irregularities. More generally, the results of this thesis highlight the capacity of coupled signalling networks to decompose non-linear problems into smaller sub-tasks, which can then be independently solved

    Review of machine learning methods in soft robotics

    Get PDF
    Soft robots have been extensively researched due to their flexible, deformable, and adaptive characteristics. However, compared to rigid robots, soft robots have issues in modeling, calibration, and control in that the innate characteristics of the soft materials can cause complex behaviors due to non-linearity and hysteresis. To overcome these limitations, recent studies have applied various approaches based on machine learning. This paper presents existing machine learning techniques in the soft robotic fields and categorizes the implementation of machine learning approaches in different soft robotic applications, which include soft sensors, soft actuators, and applications such as soft wearable robots. An analysis of the trends of different machine learning approaches with respect to different types of soft robot applications is presented; in addition to the current limitations in the research field, followed by a summary of the existing machine learning methods for soft robots
    • ā€¦
    corecore