991 research outputs found

    On Advanced Mobility Concepts for Intelligent Planetary Surface Exploration

    Get PDF
    Surface exploration by wheeled rovers on Earth's Moon (the two Lunokhods) and Mars (Nasa's Sojourner and the two MERs) have been followed since many years already very suc-cessfully, specifically concerning operations over long time. However, despite of this success, the explored surface area was very small, having in mind a total driving distance of about 8 km (Spirit) and 21 km (Opportunity) over 6 years of operation. Moreover, ESA will send its ExoMars rover in 2018 to Mars, and NASA its MSL rover probably this year. However, all these rovers are lacking sufficient on-board intelligence in order to overcome longer dis-tances, driving much faster and deciding autonomously on path planning for the best trajec-tory to follow. In order to increase the scientific output of a rover mission it seems very nec-essary to explore much larger surface areas reliably in much less time. This is the main driver for a robotics institute to combine mechatronics functionalities to develop an intelligent mo-bile wheeled rover with four or six wheels, and having specific kinematics and locomotion suspension depending on the operational terrain of the rover to operate. DLR's Robotics and Mechatronics Center has a long tradition in developing advanced components in the field of light-weight motion actuation, intelligent and soft manipulation and skilled hands and tools, perception and cognition, and in increasing the autonomy of any kind of mechatronic systems. The whole design is supported and is based upon detailed modeling, optimization, and simula-tion tasks. We have developed efficient software tools to simulate the rover driveability per-formance on various terrain characteristics such as soft sandy and hard rocky terrains as well as on inclined planes, where wheel and grouser geometry plays a dominant role. Moreover, rover optimization is performed to support the best engineering intuitions, that will optimize structural and geometric parameters, compare various kinematics suspension concepts, and make use of realistic cost functions like mass and consumed energy minimization, static sta-bility, and more. For self-localization and safe navigation through unknown terrain we make use of fast 3D stereo algorithms that were successfully used e.g. in unmanned air vehicle ap-plications and on terrestrial mobile systems. The advanced rover design approach is applica-ble for lunar as well as Martian surface exploration purposes. A first mobility concept ap-proach for a lunar vehicle will be presented

    The power dissipation method and kinematic reducibility of multiple-model robotic systems

    Get PDF
    This paper develops a formal connection between the power dissipation method (PDM) and Lagrangian mechanics, with specific application to robotic systems. Such a connection is necessary for understanding how some of the successes in motion planning and stabilization for smooth kinematic robotic systems can be extended to systems with frictional interactions and overconstrained systems. We establish this connection using the idea of a multiple-model system, and then show that multiple-model systems arise naturally in a number of instances, including those arising in cases traditionally addressed using the PDM. We then give necessary and sufficient conditions for a dynamic multiple-model system to be reducible to a kinematic multiple-model system. We use this result to show that solutions to the PDM are actually kinematic reductions of solutions to the Euler-Lagrange equations. We are particularly motivated by mechanical systems undergoing multiple intermittent frictional contacts, such as distributed manipulators, overconstrained wheeled vehicles, and objects that are manipulated by grasping or pushing. Examples illustrate how these results can provide insight into the analysis and control of physical systems

    Fast Approximate Clearance Evaluation for Rovers with Articulated Suspension Systems

    Full text link
    We present a light-weight body-terrain clearance evaluation algorithm for the automated path planning of NASA's Mars 2020 rover. Extraterrestrial path planning is challenging due to the combination of terrain roughness and severe limitation in computational resources. Path planning on cluttered and/or uneven terrains requires repeated safety checks on all the candidate paths at a small interval. Predicting the future rover state requires simulating the vehicle settling on the terrain, which involves an inverse-kinematics problem with iterative nonlinear optimization under geometric constraints. However, such expensive computation is intractable for slow spacecraft computers, such as RAD750, which is used by the Curiosity Mars rover and upcoming Mars 2020 rover. We propose the Approximate Clearance Evaluation (ACE) algorithm, which obtains conservative bounds on vehicle clearance, attitude, and suspension angles without iterative computation. It obtains those bounds by estimating the lowest and highest heights that each wheel may reach given the underlying terrain, and calculating the worst-case vehicle configuration associated with those extreme wheel heights. The bounds are guaranteed to be conservative, hence ensuring vehicle safety during autonomous navigation. ACE is planned to be used as part of the new onboard path planner of the Mars 2020 rover. This paper describes the algorithm in detail and validates our claim of conservatism and fast computation through experiments

    Kinematic Modelling and State Estimation of Exploration Rovers

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in IEEE Robotics and Automation Letters. The final authenticated version is available online at: http://dx.doi.org/10.1109/LRA.2019.2895393.[Abstract] State estimation is crucial for exploration rovers. It provides the pose and velocity of the rover by processing measurements from onboard sensors. Classical wheel odometry only employs encoder measurements of the two wheels in the differential drive. As a consequence, input noise can lead to large uncertainties in the estimated results. Also, the estimation models used in classical wheel odometry are nonlinear, and the linearization process that propagates the mean and covariance of the estimated state introduces additional errors in the process. This letter puts forward a novel wheel odometry approach for six-wheeled rovers. A kinematic model is formulated to relate the velocity of the wheels and the chassis, and later used to develop the corresponding estimation model. The components of the velocity of the chassis, decomposed in the chassis-fixed coordinate frame, are selected as the system state in the estimation, which results in a linear model. The motions of all wheels are fused together to provide the measurements. Wheel slip is considered random Gaussian noise in this kinematic model. The continuous-time Kalman filter is employed to process the model. Experimental validation with six-wheeled rover prototypes was used to confirm the validity of the proposed approach.MINECO; RYC-2016-2022

    Planetary rovers and data fusion

    Get PDF
    This research will investigate the problem of position estimation for planetary rovers. Diverse algorithmic filters are available for collecting input data and transforming that data to useful information for the purpose of position estimation process. The terrain has sandy soil which might cause slipping of the robot, and small stones and pebbles which can affect trajectory. The Kalman Filter, a state estimation algorithm was used for fusing the sensor data to improve the position measurement of the rover. For the rover application the locomotion and errors accumulated by the rover is compensated by the Kalman Filter. The movement of a rover in a rough terrain is challenging especially with limited sensors to tackle the problem. Thus, an initiative was taken to test drive the rover during the field trial and expose the mobile platform to hard ground and soft ground(sand). It was found that the LSV system produced speckle image and values which proved invaluable for further research and for the implementation of data fusion. During the field trial,It was also discovered that in a at hard surface the problem of the steering rover is minimal. However, when the rover was under the influence of soft sand the rover tended to drift away and struggled to navigate. This research introduced the laser speckle velocimetry as an alternative for odometric measurement. LSV data was gathered during the field trial to further simulate under MATLAB, which is a computational/mathematical programming software used for the simulation of the rover trajectory. The wheel encoders came with associated errors during the position measurement process. This was observed during the earlier field trials too. It was also discovered that the Laser Speckle Velocimetry measurement was able to measure accurately the position measurement but at the same time sensitivity of the optics produced noise which needed to be addressed as error problem. Though the rough terrain is found in Mars, this paper is applicable to a terrestrial robot on Earth. There are regions in Earth which have rough terrains and regions which are hard to measure with encoders. This is especially true concerning icy places like Antarctica, Greenland and others. The proposed implementation for the development of the locomotion system is to model a system for the position estimation through the use of simulation and collecting data using the LSV. Two simulations are performed, one is the differential drive of a two wheel robot and the second involves the fusion of the differential drive robot data and the LSV data collected from the rover testbed. The results have been positive. The expected contributions from the research work includes a design of a LSV system to aid the locomotion measurement system. Simulation results show the effect of different sensors and velocity of the robot. The kalman filter improves the position estimation process

    Planetary Rover Inertial Navigation Applications: Pseudo Measurements and Wheel Terrain Interactions

    Get PDF
    Accurate localization is a critical component of any robotic system. During planetary missions, these systems are often limited by energy sources and slow spacecraft computers. Using proprioceptive localization (e.g., using an inertial measurement unit and wheel encoders) without external aiding is insufficient for accurate localization. This is mainly due to the integrated and unbounded errors of the inertial navigation solutions and the drifted position information from wheel encoders caused by wheel slippage. For this reason, planetary rovers often utilize exteroceptive (e.g., vision-based) sensors. On the one hand, localization with proprioceptive sensors is straightforward, computationally efficient, and continuous. On the other hand, using exteroceptive sensors for localization slows rover driving speed, reduces rover traversal rate, and these sensors are sensitive to the terrain features. Given the advantages and disadvantages of both methods, this thesis focuses on two objectives. First, improving the proprioceptive localization performance without significant changes to the rover operations. Second, enabling adaptive traversability rate based on the wheel-terrain interactions while keeping the localization reliable. To achieve the first objective, we utilized the zero-velocity, zero-angular rate updates, and non-holonomicity of a rover to improve rover localization performance even with the limited available sensor usage in a computationally efficient way. Pseudo-measurements generated from proprioceptive sensors when the rover is stationary conditions and the non-holonomic constraints while traversing can be utilized to improve the localization performance without any significant changes to the rover operations. Through this work, it is observed that a substantial improvement in localization performance, without the aid of additional exteroceptive sensor information. To achieve the second objective, the relationship between the estimation of localization uncertainty and wheel-terrain interactions through slip-ratio was investigated. This relationship was exposed with a Gaussian process with time series implementation by using the slippage estimation while the rover is moving. Then, it is predicted when to change from moving to stationary conditions by mapping the predicted slippage into localization uncertainty prediction. Instead of a periodic stopping framework, the method introduced in this work is a slip-aware localization method that enables the rover to stop more frequently in high-slip terrains whereas stops rover less frequently for low-slip terrains while keeping the proprioceptive localization reliable

    System Design, Motion Modelling and Planning for a Recon figurable Wheeled Mobile Robot

    Get PDF
    Over the past ve decades the use of mobile robotic rovers to perform in-situ scienti c investigations on the surfaces of the Moon and Mars has been tremendously in uential in shaping our understanding of these extraterrestrial environments. As robotic missions have evolved there has been a greater desire to explore more unstructured terrain. This has exposed mobility limitations with conventional rover designs such as getting stuck in soft soil or simply not being able to access rugged terrain. Increased mobility and terrain traversability are key requirements when considering designs for next generation planetary rovers. Coupled with these requirements is the need to autonomously navigate unstructured terrain by taking full advantage of increased mobility. To address these issues, a high degree-of-freedom recon gurable platform that is capable of energy intensive legged locomotion in obstacle-rich terrain as well as wheeled locomotion in benign terrain is proposed. The complexities of the planning task that considers the high degree-of-freedom state space of this platform are considerable. A variant of asymptotically optimal sampling-based planners that exploits the presence of dominant sub-spaces within a recon gurable mobile robot's kinematic structure is proposed to increase path quality and ensure platform safety. The contributions of this thesis include: the design and implementation of a highly mobile planetary analogue rover; motion modelling of the platform to enable novel locomotion modes, along with experimental validation of each of these capabilities; the sampling-based HBFMT* planner that hierarchically considers sub-spaces to better guide search of the complete state space; and experimental validation of the planner with the physical platform that demonstrates how the planner exploits the robot's capabilities to uidly transition between various physical geometric con gurations and wheeled/legged locomotion modes

    ORYX 2.0: A Planetary Exploration Mobility Platform

    Get PDF
    This project involved the design, manufacturing, integration, and testing of ORYX 2.0, a modular mobility platform. ORYX 2.0 is a rover designed for operation on rough terrain to facilitate space related technology research and Earth exploration missions. Currently there are no low-cost rovers available to academia or industry, making it difficult to conduct research related to surface exploration. ORYX 2.0 fills this gap by serving as a ruggedized highly mobile research platform with many features aimed at simplifying payload integration. Multiple teleoperated field testing trials on a variety of terrains validated the rover’s ruggedness and ability to operate soundly. Lastly, a deployable pan-tilt camera was designed, built, and tested, as an example payload

    ORYX 2.0: A Planetary Exploration Mobility Platform

    Get PDF
    This project involved the design, manufacturing, integration, and testing of ORYX 2.0, a modular mobility platform. ORYX 2.0 is a rover designed for operation on rough terrain to facilitate space related technology research and Earth exploration missions. Currently there are no low-cost rovers available to academia or industry, making it difficult to conduct research related to surface exploration. ORYX 2.0 fills this gap by serving as a ruggedized highly mobile research platform with many features aimed at simplifying payload integration. Multiple teleoperated field testing trials on a variety of terrains validated the rover\u27s ruggedness and ability to operate soundly. Lastly, a deployable pan-tilt camera was designed, built, and tested, as an example payload

    Encoderless position estimation and error correction techniques for miniature mobile robots

    Get PDF
    This paper presents an encoderless position estimation technique for miniature-sized mobile robots. Odometry techniques, which are based on the hardware components, are commonly used for calculating the geometric location of mobile robots. Therefore, the robot must be equipped with an appropriate sensor to measure the motion. However, due to the hardware limitations of some robots, employing extra hardware is impossible. On the other hand, in swarm robotic research, which uses a large number of mobile robots, equipping the robots with motion sensors might be costly. In this study, the trajectory of the robot is divided into several small displacements over short spans of time. Therefore, the position of the robot is calculated within a short period, using the speed equations of the robot's wheel. In addition, an error correction function is proposed that estimates the errors of the motion using a current monitoring technique. The experiments illustrate the feasibility of the proposed position estimation and error correction techniques to be used in miniature-sized mobile robots without requiring an additional sensor
    corecore