3 research outputs found

    Kinematic Design of a 6-DOF Parallel Manipulator with Decoupled Translation and Rotation

    No full text

    Matériaux composites à renfort végétal pour l'amélioration des performances de systèmes robotiques

    Get PDF
    Improvement of the robot’s performances is a major challenge in the industrial field. In general, improvement objectives are increasing workspace, transportable capacity, speed and precision of the robot. To achieve these objectives, it must increase rigidity, reduce weight and increase damping capacity of the robot. Currently, the robots are generally made of metals: aluminum or steel, which limits their performances due to low damping capacity of these materials.Composite materials present an advantage to combine different materials, which leads to a variety of composite material properties. Among the types of reinforcements, carbon fibers show high modulus that enables robotic parts with high static rigidities to be designed. However, carbon fibers have generally a low damping capacity. Natural fibers have low density, good specific properties and high damping capacity.This thesis focuses on the improvement of the performances of the 3CRS parallel robot by using the composite material to redesign robot parts initially made of aluminum. The thesis begins with static and dynamic characterizations of the original robot. Then, the shape of segments of the robotic arms is optimized with respect to applying force on the robot. A hybrid laminated composite reinforced with carbon fibers and flax fibers is proposed for the use. This combination enables to combine the advantages of two fiber types in a composite for using in high loaded components. The structure of the new hybrid laminated composite is optimized and a composite segment is then fabricated in order to validate the design. Finally, the analysis of the new robot with composite arms is executed. The result shows that the new robot has a slightly higher rigidity, lighter mass and considerably greater damping capacity in comparison with the original robot. Therefore, the application of the hybrid composite could improve the static and dynamic performances and increases considerably the accuracy in operation of the robot 3CRS.L’amélioration des performances des robots est un enjeu important dans le domaine industriel. Les objectifs visés sont l’augmentation de l’espace de travail, de la capacité de charge transportable, de la vitesse de travail et de la précision du robot. Pour atteindre ces objectifs, il faut en général augmenter la rigidité, diminuer la masse et augmenter la capacité d’amortissement du robot. Les robots actuels sont généralement fabriqués en métaux : aluminium ou acier, ce qui limite leurs performances en raison des faibles capacités d’amortissement des vibrations de ces matériaux. Les matériaux composites présentent l’avantage de combiner des matériaux différents, ce qui conduit à une variété de leurs performances. Parmi les types de renforts, les fibres de carbone présentent un module d’élasticité élevé permettant la conception de pièces de grandes rigidités statiques mais elles possèdent une faible capacité d’amortissement. Les fibres végétales, par contre, possèdent une faible densité, de bonnes propriétés spécifiques et des capacités d’amortissement élevées. Cette thèse porte sur l’amélioration des performances d’un robot parallèle 3CRS en utilisant des matériaux composites pour reconcevoir des pièces initialement fabriquées en aluminium. La thèse commence d’abord par une caractérisation des comportements statiques et dynamiques du robot initial constitué de bras en aluminium. Ensuite, la forme des segments des bras robotiques est optimisée par rapport aux sollicitations mécaniques sur le robot. Un nouveau composite stratifié hybride renforcé par des fibres de carbone et des fibres de lin est alors proposé. Cette combinaison permet d’allier les avantages des deux types de fibres dans un composite pour le dimensionnement des composants sous sollicitation élevée. La structure de ce nouveau composite a été optimisée puis un segment est fabriqué pour valider la conception. Finalement, l’étude du nouveau robot avec des bras en matériaux composites a été réalisée, les résultats montrent que la rigidité du robot augmente, sa masse diminue légèrement et sa capacité d’amortissement augmente considérablement par rapport au robot initial. Donc, l’application du composite stratifié hybride peut améliorer les performances statiques et dynamiques et augmenter significativement la précision en fonctionnement du robot 3CRS

    Basis for the development of micro-parallel kinematic machines

    Get PDF
    [ES] El presente trabajo pretende sentar las bases del desarrollo de micromáquinas herramienta paralelas. Se plantean condiciones básicas y se propone un proceso de selección de configuraciones paralelas con miras a su implementación como micromáquinas herramienta. Con base en requerimientos e índices de desempeño se seleccionó una configuración paralela con todas las cualidades solicitadas para desempeñar tareas de micromecanizado. Se aborda con mayor detalle el proceso de selección para un caso de estudio donde 3 ejes traslacionales de movimiento son requeridos. Con base en el resultado del proceso de selección y en especificaciones de diseño, se construyó y se evaluó un prototipo de micromáquina herramienta paralela. El resultado de la investigación realizada muestra que es factible realizar tareas de micromecanizado con el prototipo de micromáquina herramienta paralela.[EN] This work aims to establish the development basis of parallel configurations based micromachine tools. Basic conditions are identified from typical micromachine tools in order to propose a selection process of parallel configurations with the aim to develop micro-parallel kinematic machines. Based on requirements and performance indices a 3DOF parallel configuration is selected. The selection process is applied for a case of study where 3 axes of movement are required. Based on previous results and specifications, a prototype of micro-parallel kinematic machine is built and evaluated. Through test analysis, the micro-parallel kinematic machine is proved to be feasible and applicable for micro-manufacturing.Se agradece a los coordinadores del grupo de Micromecánica y Mecatrónica del CCADET-UNAM, Dr. Leopoldo Ruiz Huerta y Dr. Alberto Caballero Ruiz, por sus valiosos comentarios y la oportunidad de desarrollar el trabajo de investigación con el apoyo de la DGEP-UNAM y los proyectos PAPIME PE105909 y CONACYT 60895.Yáñez Valdez, R. (2014). Bases para el desarrollo de Micromáquinas Herramienta Paralelas. Revista Iberoamericana de Automática e Informática industrial. 11(2):212-223. https://doi.org/10.1016/j.riai.2014.02.004OJS212223112Angeles, J. 2004. The qualitative synthesis of parallel manipulators. Mechanical Design 126(4) pp. 617-624.Aracil, R., Saltarén, R., Sabater, J. Reinoso, O. 2006. Robots paralelos: máquinas con un pasado para una robótica del futuro. Revista Iberoamericana de Automática e Informática Industrial 3(1) pp. 26-28.Arakelian, V., Briot, S., Guegan, S., Le Flecher, J. 2005. Design and prototyping of new 4, 5 and 6 degrees of freedom parallel manipulators based on the copying properties of the pantograph linkage. Proceedings of 36th International Symposium on Robotics ISR, Tokyo, Japan.Ataka, T. 1999. The experimental microfactory system in japanese national R&D project. R&D Department, Scientific Instruments Division, Seiko Instruments Inc. 36-1.Beltrami, I., Joseph, C., Clavel, R., Bacher, J.P., Bottinelli, S. 2004. Micro- and nanoelectric-discharge machining. Materials Processing Technology, 149(1-3) pp. 263-265.Clavel, R. 1988. DELTA, a fast robot with parallel geometry. International Symposium on Industrial Robots. 12-17 Lausanne, pp. 91-100.Chablat, D., Wenger, Ph. 2003. Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide. IEEE Transactions on Robotics and Automation 19(3) pp. 403-410.Dario, P., Menciassi, A., Stefanini, C., Accoto, D. 2002. Miniaturization of biomedical micromachines. 2nd. Annual International IEEE- EMBS Special Topic Conference on Micrtechnologies in Medicine & Biology. IEEE. Madison, Wisconsin USA, pp. 291-296.Dario, P., Valleggi, R., Carrozza, M.C., Montesit M. C., and Coccot M. 1992. Microactuators for microrobots: A critical survey. Micromechanic and Microengineering 2, pp. 141-157.Denton, M. 2009. Hexapod CNC router strolls into action. Micro manufacturing, http://www.micromanufacturing.com/showthread.php? p=734. accessed: Octubre 2009.Detter, H., Popovic G. 2000. Industrial demands on micromechanical products. IEEE Proc. 22nd International Conference on Microelectronics, NIS, Serbia, 14-17 May, pp. 61-67.Dhanorker, A., Özel, T. 2008. Meso-micro scale milling for micro manufacturing. Mechatronics and Manufacturing Systems 1(1) pp. 23-42.Dornfeld, D., Min, S., Takeuchi, Y. 2006. Recent advances in mechanical micromachining. Manufacturing Technology 55(2) pp. 745-768.Ehmann, K.F., DeVor, R.E., Kapoor, S.G., Cao, J. 2008. Design and analysis of micro/meso-scale machine tools. Wang, L. and Xi, J. (Eds.) Smart Devices and Machines for Advanced Manufacturing. Springer, pp. 283-318.Frazier, A.B. 1995. The miniaturization technologies: Past, present, and future. IEEE Transactions on Industrial Electronics 42(5) pp. 423-430.Fujita, H., Toshiyoshi, H., Hashiguchi, G., Wada, Yasou. 2001. Micromachined tools for nano technology. RIKEN Review. Focused on Science and Technology in Micro/Nano Scale (36) pp. 12-15.Gogu, G. 2004. Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations. European Journal of Mechanics A/Solids 23, pp. 1021-1039.Gogu, G. 2008. Structural synthesis of Parallel Robots, Part 1: Methodology. Springer, Solid Mechanics and its applications Vol. 149. pp. 275.Gosselin, C., Masouleh, M., Duchaine, V., Richard, P-L., Foucault, S., Kong, X. 2007. Parallel mechanisms of the multipteron family: Kinematic Architectures and Benchmarking. International Conference on Robotics and Automation. IEEE. Roma, Italy, 10-14 April, pp. 555-560.Gosselin, C.M., Kong, X. 2004. Cartesian parallel manipulators, US Patent No. 6,729,202 B2.Heikkilä, H.R., Karjalainen, I.T., Uusitalo, J.J., Vuola, A.S., Tuokko, R. O. 2007. Possibilities of a microfactory in the assembly of small part and products-first result of the M4-project. Proceedings of the International Symposium on Assembly and Manufacturing, Ann Arbor, Michigan, USA.Jang, S.H., Jung, Y.M., Hwang, H.Y., Choi, Y.H., Park, J.K. 2008. Development of a reconfigurable micro machine tool for microfactory. International Conference on Smart Manufacturing Application. KINTEX. Gyeonggi-do, Korea, pp. 190-195.Jin, Y., Chen, I.M., Yang, G. 2006. Kinematic design of a 6-DOF parallel manipulator with decoupled translation and rotation. IEEE Transactions on Robotics 22(3) pp. 545-551.Kang, D.S., Seo, T.W., Yoon, Y.H., Shin, B.S., Liu, X-J., Kim, J. 2006 A micro positioning parallel mechanism platform with 100 degree tilting capability. Manufacturing Technology 55(1) pp. 377-380.Kawahara, N., Suto, T., Hirano, T., Ishikawa, Y., Kitahara, T., Ooyama, N., Ataka T. 1997. Microfactories; new applications for micromachine technology to the manufacture of small products. Microsystem Technologies 3(2) pp. 37-41.Kong, X., Gosselin, C.M. 2002. Type synthesis of linear translational parallel manipulators. J. Lenarcic, F. Thomas (Eds.), Advances in Robot Kinematics: Theory and Applications, Kluwer Academic Publishers, pp. 453-462.Kussul, E., Baidyk, T., Ruiz-Huerta, L., Caballero-Ruiz, A., Velasco, G. 2006. Scaling down of microequipment parameters. Precision Engineering 30(2) pp. 211-222.Kussul, E., Baidyk, T., Ruiz-Huerta, L., Caballero-Ruiz, A., Velasco, G., Kasatkina, I. 2002. Development of micromachine tool prototypes for microfactories. Micromechanics and Microengineering 12(6) pp. 795-812.Kussul, E., Rachkovskij, D., Baidyk, T., Talayev, S. 1996. Micromechanical engineering: a basis for the low-cost manufacturing of mechanical microdevices using microequipment. Micromechanical and Microengineering 6(4) pp. 410-425.Kussul, E., Ruiz-Huerta, L., Caballero-Ruiz, A., Kasatkin, A., Kasatkiana, L., Baidyk, T., Velasco, G. 2004. CNC machine tools for low cost micro devices manufacturing. Journal of applied research and technology 2(1) pp. 76-91.Li, H., Lai, X., Li, C., Lin, Z., Miao, J., Ni, J. 2008. Development of meso-scale milling machine tool and its performance analysis. Frontiers of Mechanical Engineering in China 3(1) pp. 59-65.Li, X., Wang, J., Li, W. 2007. Current state and prospect of micro- machining. Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China, pp. 1414-1419.Li, Y., Bone, G. 2001. Are parallel manipulators more energy efficient? Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation, Alberta, Canada, pp. 41-46.Liang, Y., Zhaol, Y., Bai Q., Wang, S., Wang, B., Chen, M., Dou, J. 2006. Study on micromachine tools in fabrication of microparts. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, pp. 856-859.Mekid, S., Gordon, A., Nicholson, P. 2004. Challenges and rationale in the design of miniaturised machine tool. Proceedings of the 34th International MATADOR Conference at UMIST, Springer, pp. 456-471.Merlet, J.P. 2006. Parallel Robots. Springer. ISBN-10: 1-4020-4132-2.Moreno, H., Saltaren, R., Carrera, I., Puglisi, L., Aracil R. 2012. Índices de desempeño de robots manipuladores: una revisión del Estado del Arte. Revista Iberoamericana de Automática e Informática industrial 9(2) pp. 111-122.Okazaki, Y., Kitahara, T. 2000. Micro-lathe equipped with closed-loop numerical control. 2nd International Workshop on Microfactories. Fribourg Switzerland, Oct 9-10, pp. 87-90.Okazaki, Y., Mishima, N, and Ashida, K. 2002. Microfactory and micro machine tools. First Kore-Japan Conference on Positioning Technology, pp. 1-6.Perroud, S., Codourey, A., Mussard Y. 2003. A miniature robot for the microfactory. Switzerland, CSEM Centre Suisse d’Electronique et de Microtechnique.PI. 2013. Physik Instrumente. Accessed: April 2013, www.physikinstrumente.com/.Press, W., Teukolsky, S., Vetterling, W., Flannery, B. 2002. Numerical recipes in C, The art of scientific computing. Cambridge University Press.Rehsteiner, F., Neugebauer, R., Spiewak, S., Wieland, F. 1999. Putting parallel kinematics machines (PKM) to productive work. Manufacturing Technology 48(1) pp. 345-350.Ruiz, L. 2000. Desarrollo de microtecnología mecánica para aplicaciones de instrumentación. Memoria SOMI XV Congreso Nacional de Instrumentación. Guadalajara, Jalisco México.Singh, K. 2008. Expect changes when entering ‘micro’ world. Micro Manufacturing 1(1).Slocum, A.H. 1992. Precision machine design: Macromachine design philosophy and its applicability to the design of micromachines. Proceedings of Micro Electro Mechanical Systems, MEMS ‘92. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robot., Travemunde, Germany, pp. 37-42.Sparacino, F., Hervé, J. 1993. Synthesis of parallel manipulators using lie-groups Y-star and H-robot. International Workshop on Advanced Robotics, Tsukuba, Japan, November 8-9, pp. 75-80.Staffetti, E., Bruyninckx, H., De Schutter, J. 2002. On the invariance of manipulability indices. J. Lenarcic, Thomas, F. (Eds.) Advances in Robot Kinematics, Kluwer Academic Publishers, pp. 57-66.Tanaka, M. 2001. Development of desktop machining microfactory. RIKEN review: Focused on Advances on Micro Mechanical Fabrication Techniques, No. 34, pp. 46-49.Tlusty, J., Ziegert, J., Ridgeway, S. 1999. Fundamental comparison of the use of serial and parallel kinematics for machines tools. Manufacturing Technology 48(1) pp. 351-356.Tsai, L.W. 1997. Multi-degree-of-freedom mechanisms for machine tools and the like, US Patent No. 5,656,905.Tsai, L.W. 1998. Systematic enumeration of parallel manipulator. Technical Research Report. T. R. 98-33, pp. 1-11.Wang, Y., Zou, H., Zhao, Y., Li, M. 1997. Design and kinematics of a parallel manipulator for manufacturing. Manufacturing Technology 46(1) pp. 297-300.Wu, Z., Rizk, R., Fauroux, J.C., Gogu, G. 2007. Numerical simulation of parallel robots with decoupled motions and complex structure in a modular design approach. Tichkiewitch, S., Tollenaere, M., Ray, P., (Eds.) Advances in Integrated Design and Manufacturing in Mechanical Engineering II, Springer. Part 3 pp. 129-144.Yangmin, L., Qingsong, X. 2006. A new approach to the architecture optimization of a general 3-puu translational parallel manipulator. Intelligent & Robotic Systems 46(1) pp. 59-72.Yoshikawa, T. 1985. Manipulability of robotic mechanism. The International Journal of Robotic Research 4(2) pp. 3-9.Youssef, H., El-Hofi, H. 2008. Machining technology. Machine tools and operations. CRC Press.Zanganeh, K., Angeles, J. 1997. Kinematic isotropy and the optimum design of parallel manipulators. Journal of Robotics Research 16(2) pp. 185-197.Zhang, D. 2009. Parallel robotic machine tools, Springer. ISBN: 978-1-4419-1116-2.Zhang, D., Xi, F., Mechefske, C.M., Lang, S. 2004. Analysis of parallel kinematic machine with kinetostatic modelling method. Robotics and Computer-Integrated Manufacturing 20(2) pp. 151-165
    corecore