316 research outputs found

    Large deployable antenna program. Phase 1: Technology assessment and mission architecture

    Get PDF
    The program was initiated to investigate the availability of critical large deployable antenna technologies which would enable microwave remote sensing missions from geostationary orbits as required for Mission to Planet Earth. Program goals for the large antenna were: 40-meter diameter, offset-fed paraboloid, and surface precision of 0.1 mm rms. Phase 1 goals were: to review the state-of-the-art for large, precise, wide-scanning radiometers up to 60 GHz; to assess critical technologies necessary for selected concepts; to develop mission architecture for these concepts; and to evaluate generic technologies to support the large deployable reflectors necessary for these missions. Selected results of the study show that deployable reflectors using furlable segments are limited by surface precision goals to 12 meters in diameter, current launch vehicles can place in geostationary only a 20-meter class antenna, and conceptual designs using stiff reflectors are possible with areal densities of 2.4 deg/sq m

    Development of a Novel Double-Ring Deployable Mesh Antenna

    Get PDF
    This paper addresses a type of deployable mesh antenna consisting of the double-ring deployable truss edge frame and the cable net reflector. The structural design concept of the deployable antennas is presented. The deployable truss is designed and the geometric relationship of each strut length is formulated. Two types of radial truss elements are described and compared. The joint pattern and the active cables of the final design concept are determined. The pattern of the cable net is the three-orientation grid. Two connection schemes between the reflector and the deployable edge frame are investigated. The design parameters and the shape adjustment mechanism of this cable net are determined. The measurement test technologies of the antennas on the ground including test facilities, deployment test, and measurement and adjustment test are proposed. The antenna patterns are analyzed based on the real surfaces of the reflector obtained by the reflective surface accuracy measurement. The tests and analytic results indicated that the accuracy of the reflective surface is high and is suitable for low-frequency communication

    Large Space Antenna Systems Technology, part 1

    Get PDF
    A compilation of the unclassified papers presented at the NASA Conference on Large Space Antenna Systems Technology covers the following areas: systems, structures technology, control technology, electromagnetics, and space flight test and evaluation

    Design and Dynamic Equivalent Modeling of Double-Layer Hoop Deployable Antenna

    Get PDF
    This study proposes deployable units driven by elastic hinges and a double-layer hoop deployable antenna composed of these units. A rational modeling method based on the energy equivalence principle is presented to develop an equivalent model of the double-layer hoop antenna in accordance with the structural characteristics of the antenna. The equivalent beam models of the rods with elastic hinges are proposed. The relationship of geometrical and material parameters is established considering the strain energy and the kinetic energy of the periodic unit, which are the same as those of the equivalent beam in the same displacement field. The equivalent model of the antenna is obtained by assembling several equivalent beam models in the circumferential direction. The precision of the equivalent model of the antenna is acceptable as found by comparing the modal analysis results obtained through equivalent model calculation, finite element simulation, and modal test

    Activities of the Center for Space Construction

    Get PDF
    The Center for Space Construction (CSC) at the University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the center is to conduct research into space technology and to directly contribute to space engineering education. The center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Science. The college has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction is prominent evidence of this record. At the inception of CSC, the center was primarily founded on the need for research on in-space construction of large space systems like space stations and interplanetary space vehicles. The scope of CSC's research has now evolved to include the design and construction of all spacecraft, large and small. Within this broadened scope, our research projects seek to impact the underlying technological basis for such spacecraft as remote sensing satellites, communication satellites, and other special purpose spacecraft, as well as the technological basis for large space platforms. The center's research focuses on three areas: spacecraft structures, spacecraft operations and control, and regolith and surface systems. In the area of spacecraft structures, our current emphasis is on concepts and modeling of deployable structures, analysis of inflatable structures, structural damage detection algorithms, and composite materials for lightweight structures. In the area of spacecraft operations and control, we are continuing our previous efforts in process control of in-orbit structural assembly. In addition, we have begun two new efforts in formal approach to spacecraft flight software systems design and adaptive attitude control systems. In the area of regolith and surface systems, we are continuing the work of characterizing the physical properties of lunar regolith, and we are at work on a project on path planning for planetary surface rovers

    A research on a reconfigurable hypar structure for architectural applications

    Get PDF
    Thesis (Master)--İzmir Institute of Technology, Architecture, İzmir, 2013Includes bibliographical references (leaves: 102-108)Text in English; Abstract: Turkish and Englishxii, 108 leavesKinetic design strategy is a way to obtain remarkable applications in architecture. These kinetic designs can offer more advantages compared to conventional ones. Basic knowledge of different disciplines is necessary to generate kinetic designs. In other words, interdisciplinary studies are critical. Therefore, architect's knowledge must be wide-ranging in order to increase novel design approaches and applications. The resulting rich hybrid products increase the potential of the disciplines individually. Research on kinetic structures shows that the majority of kinetic structures are deployable. However, deployable structures can only be transformed from a closed compact configuration to a predetermined expanded form. The motivation of the present dissertation is generating a novel 2 DOF 8R reconfigurable structure which can meet different hyperbolic paraboloid surfaces for architectural applications. In order to obtain this novel structure; the integration between the mechanism science and architecture is essential. The term reconfigurable will be used in the present dissertation to describe deployable structures with various configurations. The novel reconfigurable design utilizes the overconstrained Bennett linkage and the production principals of ruled surfaces. The dissertation begins with a brief summary of deployable structures to show their shortcomings and their lack of form flexibility. Afterward, curved surfaces, basic terms in mechanisms and overconstrained mechanisms were investigated. Finally, a proposed novel mechanism which is inspired from the basic design principles of Bennett linkage and the fundamentals of ruled surfaces are explained with the help of kinematic diagrams and models

    The 1980 Large space systems technology. Volume 2: Base technology

    Get PDF
    Technology pertinent to large antenna systems, technology related to large space platform systems, and base technology applicable to both antenna and platform systems are discussed. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. A total systems approach including controls, platforms, and antennas is presented as a cohesive, programmatic plan for large space systems

    Deployable antenna demonstration project

    Get PDF
    Test program options are described for large lightweight deployable antennas for space communications, radar and radiometry systems

    The 21st Aerospace Mechanisms Symposium

    Get PDF
    During the symposium technical topics addressed included deployable structures, electromagnetic devices, tribology, actuators, latching devices, positioning mechanisms, robotic manipulators, and automated mechanisms synthesis. A summary of the 20th Aerospace Mechanisms Symposium panel discussions is included as an appendix. However, panel discussions on robotics for space and large space structures which were held are not presented herein
    corecore