7 research outputs found

    Kinect-Based Correction of Overexposure Artifacts in Knee Imaging with C-Arm CT Systems

    Get PDF
    Objective. To demonstrate a novel approach of compensating overexposure artifacts in CT scans of the knees without attaching any supporting appliances to the patient. C-Arm CT systems offer the opportunity to perform weight-bearing knee scans on standing patients to diagnose diseases like osteoarthritis. However, one serious issue is overexposure of the detector in regions close to the patella, which can not be tackled with common techniques. Methods. A Kinect camera is used to algorithmically remove overexposure artifacts close to the knee surface. Overexposed near-surface knee regions are corrected by extrapolating the absorption values from more reliable projection data. To achieve this, we develop a cross-calibration procedure to transform surface points from the Kinect to CT voxel coordinates. Results. Artifacts at both knee phantoms are reduced significantly in the reconstructed data and a major part of the truncated regions is restored. Conclusion. The results emphasize the feasibility of the proposed approach. The accuracy of the cross-calibration procedure can be increased to further improve correction results. Significance. The correction method can be extended to a multi-Kinect setup for use in real-world scenarios. Using depth cameras does not require prior scans and offers the possibility of a temporally synchronized correction of overexposure artifacts. To achieve this, we develop a cross-calibration procedure to transform surface points from the Kinect to CT voxel coordinates

    A Probabilistic Framework for Statistical Shape Models and Atlas Construction: Application to Neuroimaging

    Get PDF
    Accurate and reliable registration of shapes and multi-dimensional point sets describing the morphology/physiology of anatomical structures is a pre-requisite for constructing statistical shape models (SSMs) and atlases. Such statistical descriptions of variability across populations (regarding shape or other morphological/physiological quantities) are based on homologous correspondences across the multiple samples that comprise the training data. The notion of exact correspondence can be ambiguous when these data contain noise and outliers, missing data, or significant and abnormal variations due to pathology. But, these phenomena are common in medical image-derived data, due, for example, to inconsistencies in image quality and acquisition protocols, presence of motion artefacts, differences in pre-processing steps, and inherent variability across patient populations and demographics. This thesis therefore focuses on formulating a unified probabilistic framework for the registration of shapes and so-called \textit{generalised point sets}, which is robust to the anomalies and variations described. Statistical analysis of shapes across large cohorts demands automatic generation of training sets (image segmentations delineating the structure of interest), as manual and semi-supervised approaches can be prohibitively time consuming. However, automated segmentation and landmarking of images often result in shapes with high levels of outliers and missing data. Consequently, a robust method for registration and correspondence estimation is required. A probabilistic group-wise registration framework for point-based representations of shapes, based on Student’s t-mixture model (TMM) and a multi-resolution extension to the same (mrTMM), are formulated to this end. The frameworks exploit the inherent robustness of Student’s t-distributions to outliers, which is lacking in existing Gaussian mixture model (GMM)-based approaches. The registration accuracy of the proposed approaches was quantitatively evaluated and shown to outperform the state-of-the-art, using synthetic and clinical data. A corresponding improvement in the quality of SSMs generated subsequently was also shown, particularly for data sets containing high levels of noise. In general, the proposed approach requires fewer user specified parameters than existing methods, whilst affording much improved robustness to outliers. Registration of generalised point sets, which combine disparate features such as spatial positions, directional/axial data, and scalar-valued quantities, was studied next. A hybrid mixture model (HMM), combining different types of probability distributions, was formulated to facilitate the joint registration and clustering of multi-dimensional point sets of this nature. Two variants of the HMM were developed for modelling: (1) axial data; and (2) directional data. The former, based on a combination of Student’s t, Watson and Gaussian distributions, was used to register hybrid point sets comprising magnetic resonance diffusion tensor image (DTI)-derived quantities, such as voxel spatial positions (defining a region/structure of interest), associated fibre orientations, and scalar measures reflecting tissue anisotropy. The latter meanwhile, formulated using a combination of Student’s t and Von-Mises-Fisher distributions, is used for the registration of shapes represented as hybrid point sets comprising spatial positions and associated surface normal vectors. The Watson-variant of the HMM facilitates statistical analysis and group-wise comparisons of DTI data across patient populations, presented as an exemplar application of the proposed approach. The Fisher-variant of the HMM on the other hand, was used to register hybrid representations of shapes, providing substantial improvements over point-based registration approaches in terms of anatomical validity in the estimated correspondences

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data

    Online courses for healthcare professionals: is there a role for social learning?

    Get PDF
    Background: All UK postgraduate medical trainees receive supervision from trained supervisors. Training has traditionally been delivered via face to face courses, but with increasing time pressures and complex shift patterns, access to these is difficult. To meet this challenge, we developed a two-week massive open online course (MOOC) for faculty development of clinical supervisors. Summary of Work: The MOOC was developed by a group of experienced medical educators and delivered via the FutureLearn (FL) platform which promotes social learning through interaction. This facilitates building of communities of practice, learner interaction and collaboration. We explored learner perceptions of the course, in particular the value of social learning in the context of busy healthcare professionals. We analysed responses to pre- and post-course surveys for each run of the MOOC in 2015, FL course statistics, and learner discussion board comments. Summary of Results: Over 2015, 7,225 learners registered for the course, though 6% left the course without starting. Of the 3,055 learners who began the course, 35% (1073/3055) were social learners who interacted with other participants. Around 31% (960/3055) learners participated fully in the course; this is significantly higher than the FL average of 22%. Survey responses suggest that 68% learners worked full-time, with over 75% accessing the course at home or while commuting, using laptops, smart phones and tablet devices. Discussion: Learners found the course very accessible due to the bite-sized videos, animations, etc which were manageable at the end of a busy working day. Inter-professional discussions and social learning made the learning environment more engaging. Discussion were rated as high quality as they facilitated sharing of narratives and personal reflections, as well as relevant resources. Conclusion: Social learning added value to the course by promoting sharing of resources and improved interaction between learners within the online environment. Take Home Messages: 1) MOOCs can provide faculty development efficiently with a few caveats. 2) Social learning added a new dimension to the online environment
    corecore