103 research outputs found

    Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems

    Get PDF
    In the {\sc Hitting Set} problem, we are given a collection F\cal F of subsets of a ground set VV and an integer pp, and asked whether VV has a pp-element subset that intersects each set in F\cal F. We consider two parameterizations of {\sc Hitting Set} below tight upper bounds: p=mkp=m-k and p=nkp=n-k. In both cases kk is the parameter. We prove that the first parameterization is fixed-parameter tractable, but has no polynomial kernel unless coNP\subseteqNP/poly. The second parameterization is W[1]-complete, but the introduction of an additional parameter, the degeneracy of the hypergraph H=(V,F)H=(V,{\cal F}), makes the problem not only fixed-parameter tractable, but also one with a linear kernel. Here the degeneracy of H=(V,F)H=(V,{\cal F}) is the minimum integer dd such that for each XVX\subset V the hypergraph with vertex set VXV\setminus X and edge set containing all edges of F\cal F without vertices in XX, has a vertex of degree at most d.d. In {\sc Nonblocker} ({\sc Directed Nonblocker}), we are given an undirected graph (a directed graph) GG on nn vertices and an integer kk, and asked whether GG has a set XX of nkn-k vertices such that for each vertex y∉Xy\not\in X there is an edge (arc) from a vertex in XX to yy. {\sc Nonblocker} can be viewed as a special case of {\sc Directed Nonblocker} (replace an undirected graph by a symmetric digraph). Dehne et al. (Proc. SOFSEM 2006) proved that {\sc Nonblocker} has a linear-order kernel. We obtain a linear-order kernel for {\sc Directed Nonblocker}

    Hierarchies of Inefficient Kernelizability

    Full text link
    The framework of Bodlaender et al. (ICALP 2008) and Fortnow and Santhanam (STOC 2008) allows us to exclude the existence of polynomial kernels for a range of problems under reasonable complexity-theoretical assumptions. However, there are also some issues that are not addressed by this framework, including the existence of Turing kernels such as the "kernelization" of Leaf Out Branching(k) into a disjunction over n instances of size poly(k). Observing that Turing kernels are preserved by polynomial parametric transformations, we define a kernelization hardness hierarchy, akin to the M- and W-hierarchy of ordinary parameterized complexity, by the PPT-closure of problems that seem likely to be fundamentally hard for efficient Turing kernelization. We find that several previously considered problems are complete for our fundamental hardness class, including Min Ones d-SAT(k), Binary NDTM Halting(k), Connected Vertex Cover(k), and Clique(k log n), the clique problem parameterized by k log n

    Alternative parameterizations of Metric Dimension

    Get PDF
    A set of vertices WW in a graph GG is called resolving if for any two distinct x,yV(G)x,y\in V(G), there is vWv\in W such that distG(v,x)distG(v,y){\rm dist}_G(v,x)\neq{\rm dist}_G(v,y), where distG(u,v){\rm dist}_G(u,v) denotes the length of a shortest path between uu and vv in the graph GG. The metric dimension md(G){\rm md}(G) of GG is the minimum cardinality of a resolving set. The Metric Dimension problem, i.e. deciding whether md(G)k{\rm md}(G)\le k, is NP-complete even for interval graphs (Foucaud et al., 2017). We study Metric Dimension (for arbitrary graphs) from the lens of parameterized complexity. The problem parameterized by kk was proved to be W[2]W[2]-hard by Hartung and Nichterlein (2013) and we study the dual parameterization, i.e., the problem of whether md(G)nk,{\rm md}(G)\le n- k, where nn is the order of GG. We prove that the dual parameterization admits (a) a kernel with at most 3k43k^4 vertices and (b) an algorithm of runtime O(4k+o(k)).O^*(4^{k+o(k)}). Hartung and Nichterlein (2013) also observed that Metric Dimension is fixed-parameter tractable when parameterized by the vertex cover number vc(G)vc(G) of the input graph. We complement this observation by showing that it does not admit a polynomial kernel even when parameterized by vc(G)+kvc(G) + k. Our reduction also gives evidence for non-existence of polynomial Turing kernels

    Parameterized Study of the Test Cover Problem

    Full text link
    We carry out a systematic study of a natural covering problem, used for identification across several areas, in the realm of parameterized complexity. In the {\sc Test Cover} problem we are given a set [n]={1,...,n}[n]=\{1,...,n\} of items together with a collection, T\cal T, of distinct subsets of these items called tests. We assume that T\cal T is a test cover, i.e., for each pair of items there is a test in T\cal T containing exactly one of these items. The objective is to find a minimum size subcollection of T\cal T, which is still a test cover. The generic parameterized version of {\sc Test Cover} is denoted by p(k,n,T)p(k,n,|{\cal T}|)-{\sc Test Cover}. Here, we are given ([n],T)([n],\cal{T}) and a positive integer parameter kk as input and the objective is to decide whether there is a test cover of size at most p(k,n,T)p(k,n,|{\cal T}|). We study four parameterizations for {\sc Test Cover} and obtain the following: (a) kk-{\sc Test Cover}, and (nk)(n-k)-{\sc Test Cover} are fixed-parameter tractable (FPT). (b) (Tk)(|{\cal T}|-k)-{\sc Test Cover} and (logn+k)(\log n+k)-{\sc Test Cover} are W[1]-hard. Thus, it is unlikely that these problems are FPT

    The Directed Dominating Set Problem: Generalized Leaf Removal and Belief Propagation

    Full text link
    A minimum dominating set for a digraph (directed graph) is a smallest set of vertices such that each vertex either belongs to this set or has at least one parent vertex in this set. We solve this hard combinatorial optimization problem approximately by a local algorithm of generalized leaf removal and by a message-passing algorithm of belief propagation. These algorithms can construct near-optimal dominating sets or even exact minimum dominating sets for random digraphs and also for real-world digraph instances. We further develop a core percolation theory and a replica-symmetric spin glass theory for this problem. Our algorithmic and theoretical results may facilitate applications of dominating sets to various network problems involving directed interactions.Comment: 11 pages, 3 figures in EPS forma

    A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

    Get PDF
    Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions

    Lossy Kernelization

    Get PDF
    In this paper we propose a new framework for analyzing the performance of preprocessing algorithms. Our framework builds on the notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our definitions combine well with approximation algorithms and heuristics. The key new definition is that of a polynomial size α\alpha-approximate kernel. Loosely speaking, a polynomial size α\alpha-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance (I,k)(I,k) to a parameterized problem, and outputs another instance (I,k)(I',k') to the same problem, such that I+kkO(1)|I'|+k' \leq k^{O(1)}. Additionally, for every c1c \geq 1, a cc-approximate solution ss' to the pre-processed instance (I,k)(I',k') can be turned in polynomial time into a (cα)(c \cdot \alpha)-approximate solution ss to the original instance (I,k)(I,k). Our main technical contribution are α\alpha-approximate kernels of polynomial size for three problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors. These problems are known not to admit any polynomial size kernels unless NPcoNP/polyNP \subseteq coNP/poly. Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the path and Set Cover parameterized by the universe size do not admit even an α\alpha-approximate kernel of polynomial size, for any α1\alpha \geq 1, unless NPcoNP/polyNP \subseteq coNP/poly. In order to prove this lower bound we need to combine in a non-trivial way the techniques used for showing kernelization lower bounds with the methods for showing hardness of approximationComment: 58 pages. Version 2 contain new results: PSAKS for Cycle Packing and approximate kernel lower bounds for Set Cover and Hitting Set parameterized by universe siz
    corecore