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Abstract

A set of vertices W in a graph G is called resolving if for any two distinct x, y ∈ V (G), there is
v ∈W such that dG(v, x) 6= dG(v, y), where dG(u, v) denotes the length of a shortest path between u
and v in the graph G. The metric dimension md(G) of G is the minimum cardinality of a resolving
set. The Metric Dimension problem, i.e. deciding whether md(G) 6 k, is NP-complete even for
interval graphs (Foucaud et al., 2017). We study Metric Dimension (for arbitrary graphs) from the
lens of parameterized complexity. The problem parameterized by k was proved to be W[2]-hard by
Hartung and Nichterlein (2013) and we study the dual parameterization, i.e., the problem of whether
md(G) 6 n− k, where n is the order of G. We prove that the dual parameterization admits (a) a
kernel with at most 6(k+1) vertices and (b) a randomized algorithm of runtime O∗(4k+o(k)). Hartung
and Nichterlein (2013) also observed that Metric Dimension is fixed-parameter tractable when
parameterized by the vertex cover number vc(G) of the input graph. We complement this observation
by showing that it does not admit a polynomial kernel even when parameterized by vc(G) + k, unless
NP ⊆ coNP/poly. Our reduction also gives evidence for non-existence of polynomial Turing kernels.
We also prove that Metric Dimension parameterized by bandwidth or cutwidth does not admit a
polynomial kernel, unless NP ⊆ coNP/poly. Finally, using Eppstein’s results (2015) we show that
Metric Dimension parameterized by max-leaf number does admit a polynomial kernel.

1 Introduction
A set of vertices W of a graph G is a resolving set for G if for any two distinct x, y ∈ V (G), there is
v ∈W such that dG(v, x) 6= dG(v, y), where dG(u, v) denotes the length of a shortest path between u and
v in the graph G. The metric dimension md(G) of G is the minimum cardinality of a resolving set for G.
The metric dimension of graphs was introduced independently by Slater [39] and Harary and Melter [27].
Metric Dimension as a computational problem was first mentioned in the literature by Garey and
Johnson [22] and its decision version is defined as follows.

Input: A graph G and an integer k.
Problem: Does G have a resolving set of size at most k?

Metric Dimension

Garey and Johnson [22] proved this problem to be NP-complete in general. Their proof was never
published, a reduction from 3SAT was provided by Khuller et al. [33]. Diaz et al. [12] showed that the
problem is NP-complete even when restricted to planar graphs of bounded degree but that it is solvable
in polynomial time on the class of outer-planar graphs.

Prior to this, not much was known about the computational complexity of this problem except that it
is polynomial-time solvable on trees (see [39, 33]), although there are several results proving combinatorial
bounds on the metric dimension of various graph classes [7]. Subsequently, Epstein et al. [16] showed
that this problem is NP-complete on split graphs, bipartite and co-bipartite graphs. They also showed
that the weighted version of Metric Dimension can be solved in polynomial time on paths, trees,
cycles, co-graphs and trees augmented with k edges for a fixed k. Hoffmann and Wanke [30] extended the
tractability results to a subclass of unit disk graphs, while Foucaud et al. [20] showed that this problem is
NP-complete on interval graphs.
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The parameterized complexity of Metric Dimension under the standard parameterization—the
metric dimension of the input graph—was open until 2012, when Hartung and Nichterlein [28] proved that
it is W[2]-hard. Foucaud et al. [20] showed the problem becomes fixed-parameter tractable when restricted
to interval graphs. The parameterized complexity of Metric Dimension on graphs of bounded treewidth
is currently unresolved (the question of whether it is polynomial-time solvable on graphs of treewidth 2 is
still open), however, Belmonte et al. [3] proved that it is FPT when parameterized by the treelength1 plus
the solution size. In a different line of work, Eppstein [15] showed that Metric Dimension is FPT when
parameterized by the max-leaf number of the input graph alone.

In this paper we initiate the study of the parametric dual of Metric Dimension. To avoid confusion,
we will use k to denote the (standard) parameter and phrase the parameterized dual as follows:

Input: A graph G and an integer k.
Problem: Does G have a resolving set of size at most n− k?

Saving Landmarks

We call a set T of vertices of G a co-resolving set if V (G) \ T is a resolving set of G. Clearly, an instance
of Saving Landmarks is positive if and only if there is a co-resolving set T of size at least k.

This choice of parameterization is informed by previous studies of the parametric dual (see e.g.
[2, 9, 25, 26, 37]): problems that are hard with respect to the standard parameter often admit FPT-
algorithms or even polynomial kernels under the dual parameter. A classic example is the Independent
Set problem which is W[1]-hard while its dual, the Vertex Cover problem is among the earliest
problems shown to be in FPT and even admits a linear vertex kernel.

We add yet another entry to the list of hard problems with tractable duals by showing that Saving
Landmarks admits a linear vertex kernel and a single-exponential FPT algorithm. Concretely, we prove
the following two results.

Theorem 1. Saving Landmarks admits a kernel with at most 6(k + 1) vertices.

Theorem 2. Saving Landmarks can be solved by an O∗(4k+o(k))-time algorithm.

We will also consider two variants of metric dimension studied in [6, 17, 18, 31, 40]. A vertex set R in a
graph G is an adjacency-resolving set if all vertices in V (G) \R have a distinct neighborhood within R. A
locating-dominating set in G is an adjacency-resolving set, which is also a dominating set of G. Observe
that a adjacency-resolving set and locating-dominating set are resolving sets. The problems Adjacency
Dimension (Adjacency Domination Dimension, respectively) consist of deciding whether a connected
graph G has an adjacency-resolving set (a locating-dominating set) of size at most k. Similar to Metric
Dimension, Adjacency Dimension and Adjacency Domination Dimension are NP-complete [6, 18].
We also study the Metric Dimension problem from the kernelization perspective when parameterized by
the vertex cover number of the input graph. As Hartung and Nichterlein observed [28], the parameterization
of Metric Dimension by the vertex cover number of the input graph (denoted Metric Dimension[VC])
can be easily seen to be in FPT. It is therefore natural to ask whether this structural parameterization
allows a polynomial kernel in general graphs, a question we answer in the negative. In fact, we show that
not only is the problem unlikely to admit a polynomial kernel with the vertex cover as the parameter,
even adding the size of the solution (the metric dimension of the graph) to the parameter is unlikely to
be helpful in this regard. Specifically, we prove the following result:

Theorem 3. Metric Dimension[VC + k], Adjacency Dimension[VC + k] and Adjacency Domi-
nation Dimension[VC + k] do not admit polynomial kernels unless NP ⊆ coNP/poly.

The reduction used in the proof of Theorem 3 also gives evidence for non-existence of polynomial Turing
kernels, generalisations of (ordinary) kernels, informally introduced in the end of Section 4.1.

We further consider parameterizations by the bandwidth and cutwidth of the input graph. Bandwidth
and cutwidth are classic graph layout parameters with numerous practical applications. The bandwidth
of a graph is defined as the minimum possible stretch of a linear ordering of its vertices where the stretch
of an ordering is the maximum, taken over all edges of G, of the distance between the endpoints of an

1The length of a tree decomposition is the maximum diameter of the bags in this tree-decomposition and the treelength
of a graph is the minimum length over all tree decompositions.
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edge in the ordering. The cutwidth of a graph on the other hand is the minimum possible width of a
linear ordering of its vertices where the width of an ordering is the maximum, taken over all prefixes
of this ordering, of the number of edges with exactly one endpoint in a prefix. For survey papers on
these and related parameters, see, e.g., [8, 11, 38]. We obtain a negative result regarding the existence of
polynomial kernels for Metric Dimension parameterized by either of these two parameters.

Theorem 4. Unless NP ⊆ coNP/poly, neither Metric Dimension[bw] nor Metric Dimension[cw]
has a polynomial kernel, even when restricted to connected instances.

To the best of our knowledge, the parameterized complexities of Metric Dimension[bw] and Metric
Dimension[cw] are not known yet. It would be interesting to determine them.
Finally, we show that Eppstein’s [15] result on the parameterized tractabiliy of Metric Dimension
parameterized by the max-leaf number implies the existence of a polynomial kernel for the same parameter.

Theorem 5. Metric Dimension parameterized by the max-leaf number has a polynomial kernel.

2 Preliminaries
For a graph G we denote by dG the standard distance-metric where dG(u, v) is the length of a shortest
path between vertices u, v ∈ V (G). We denote by NG(v) and NG[v] the open and closed neighbourhood
of a vertex. We omit the subscript G if clear from the context in all these notations. As customary, the
number of vertices of a graph G under consideration will be denoted by n.

Two vertices u, v are true twins if NG[u] = NG[v] (implying that uv ∈ E(G)) and they are false twins
if NG(u) = NG(v) (implying that uv 6∈ E(G)). A twin class is a maximal vertex set in G in which all
vertices are pairwise true twins or in which all vertices are pairwise false twins.

A vertex set S ⊆ V (G) resolves a set T ⊆ V (G) if for every pair of distinct vertices u, v ∈ T there
exists at least one vertex w ∈ S such that dG(u,w) 6= dG(v, w). We will also say that a pair u, v is
resolved by S if the above holds and further that sets A,B are distinguished by S if every pair u ∈ A,
v ∈ B is resolved by S. A vertex subset S ⊆ V (G) is a resolving set of G if S resolves V (G). We call the
members of such a set S landmarks.

A vertex set S ⊆ V (G) resolves a set T ⊆ V (G) via adjacencies if for every pair of distinct
vertices u, v ∈ T there exists at least one vertex w ∈ S such that uw ∈ E(G) but vw 6∈ E(G) or vice
versa. In other words, all vertices in T have a distinct neighbourhood in S. We call such a set S
a adjacency-resolving set of T . If a set S dominates and adjacency-resolves V (G) then we call S a
locating-dominating set of G.

Parameterized complexity is a two dimensional framework for studying the computational complexity
of a problem. One dimension is the input size n and the other is a parameter k. A problem is said to
be fixed parameter tractable (FPT) or in the class FPT, if it can be solved in time f(k) · nO(1) for some
computable function f . We refer to the books of Cygan et al. [10] and Downey and Fellows [14] for
detailed introductions to parameterized complexity.

Kernelization offers a mathematically rigorous way of analysing and comparing preprocessing algorithms
for NP-hard problems in general and for parameterized problems in particular. A generalized kernel2 of
size g(k) from a parameterized problem Π1 to a parameterized problem Π2 is a polynomial time algorithm
that takes as input an instance (I, k) of Π1 (where k is the parameter for Π1) and outputs an instance
(I ′, k′) of Π2 (where k is the parameter for Π2) such that (I, k) is a yes-instance of Π1 if and only if
(I ′, k′) is a yes-instance of Π2 and |I ′|+ k′ 6 g(k). The notion of “effective” preprocessing is captured
by requiring the function g to be polynomially bounded, in which case the generalized kernel is called a
polynomial generalized kernel. When Π1 and Π2 coincide, a generalized kernel from Π1 to Π2 is called a
kernel of Π1. The reader is referred to Cygan et al. [10], Downey and Fellows [14], Fomin et al. [19] and
the surveys [34, 35] for a comprehensive introduction to the topic of kernelization.

Definition 6 (Pruned graph). For a graph G we define the pruned graph G̃ as the graph obtained
(up to isomorphism) from G by iteratively removing vertices from twin-classes of size three or larger. We
say that a graph is pruned if G = G̃.

2It is called a bikernel (as it involves two problems) in Alon et al. [1] and some other papers.
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The following observation simply follows from the fact that among a twin class U in G, all but one vertex
of U must be contained in any resolving set. Thus, we may assume that all vertices of V (G) \ V (G̃) are
in a resolving set and obtain the following:

Observation 7. A graph G has a resolving set of size k if and only if the pruned graph G̃ has a resolving
set of size k − (|V (G)| − |V (G̃)|).

Consequently, we call an instance (G, k) of Metric Dimension or Saving Landmarks reduced if G is
pruned.

3 Standard Parameterization for Saving Landmarks

We present two positive results in this section, namely, that Saving Landmarks admits a linear vertex
kernel and a single-exponential FPT algorithm.

We begin by describing the kernel. Assume in the following that the input instance (G, k) is pruned as
per Observation 7. This will be the only reduction rule. Now we will prove the first result of this section.

Theorem 1. Saving Landmarks admits a kernel with at most 6(k + 1) vertices.

Proof. Recall the instance (G, k) is pruned, i.e. every twin class has at most two vertices. We may assume
that k > 1 and G is of order at least 12. Let H be a graph obtained from G by deleting a vertex in each
twin class of size 2.

Recall that a locating-dominating set is a resolving set. Garijo et al. [23] proved that every graph of
order p > 4 without twin vertices has a locating-dominating set of size at most b 23pc+ 1, which can be
computed in polynomial time. Thus, md(H) 6 b 23 tc+ 1, where t is the order of H. Observe that adding a
twin vertex to H may increase the metric dimension of H by at most 1. To obtain G from H, we add
n− t vertices and thus

md(G) 6
2t

3
+ 1 + n− t 6 5n

6
+ 1

since t > n/2. If n− k > 5n
6 + 1, (G, k) is a positive instance. Otherwise, n− k < 5n

6 + 1 and n
6 6 k + 1

implying that n 6 6(k + 1).

Let us now move on to the second result, the single-exponential FPT algorithm. To better describe the
algorithm, let us introduce a definition. For a set X ⊆ V (G), we say that two vertices u and v are
X-equidistant if d(u,w) = d(v, w) for every w ∈ X, i.e., if X fails to resolve u and v. Note that this
induces an equivalence relation over V (G).

The main ingredient will be the fact that a solution to Saving Landmarks is witnessed already by a
small resolving set.

Lemma 8. Let T be a co-resolving set of a graph G. Then there exists a set S ⊆ V (G) \ T of size at
most |T | that resolves T .

Proof. We construct S iteratively as follows. Begin with S = ∅ and pick a pair u, v of S-equidistant
vertices in T . Since V (G) \ T resolves T , there exists a vertex w ∈ V (G) \ T that distinguishes u
and v. Add w to S and partition T into equivalence classes of S-equidistant vertices. Pick a new pair of
S-equidistant vertices from one of the classes and repeat. Observe that the number of equivalence classes
increases with every addition to S, hence after at most |T | steps the set S resolves every pair in T .

We are now ready to complete the proof of Theorem 2.

Theorem 2. Saving Landmarks can be solved by an O∗(4k+o(k))-time algorithm.

Proof. We may assume that n > 2k. Let us first show the following claim: there exists a co-resolving set
T of G of size at least k if and only if there is a partition V (G) = R ]B of V (G) such that R contains at
least k equivalence classes of B-equidistant vertices. Suppose that there exists a co-resolving set T of G
of size at least k. Then by Lemma 8, there is a set S ⊆ V (G) \ T of size at most |T | that resolves T . Let
T ⊆ R and S ⊆ B for a partition V (G) = R ]B. Then B resolves T and hence R has at least |T | > k
equivalence classes of B-equidistant vertices. Suppose now that there is a partition R ]B of V (G) such
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that R has at least k equivalence classes of B-equidistant vertices. Choose a vertex from each equivalence
class to form a set T . Then T is a co-resolving set of G.

The above claim leads to the following randomised algorithm. Choose a natural number N defined
later on. Repeat N times the following: uniformly at random partition the vertices of G into B and R,
and derive equivalence classes of B-equidistant vertices in R. If the number of classes is at least k, then
conclude that (G, k) is a yes-instance and stop. If after all repetitions we do not conclude that (G, k) is a
yes-instance, then we conclude that (G, k) is a no-instance.

Let us argue about the success probability of the randomised algorithm and how to choose N . The
probability that for a random partition the vertices of G as V (G) = R ]B, R has at least k equivalence
classes of B-equidistant vertices is at least the probability that T ⊆ R and S ⊆ B, where sets T, S are as
in Lemma 8 and |T | = k. Consequently, the probability of this event is at least 2−|T |−|S| > 4−k. Thus,
N = 4k is enough to achieve a constant success probability, see e.g. Chapter 5 of [10].

Observe that every loop in the randomised algorithm can be executed in polynomial time. Thus, the
running time of the randomised algorithm is O∗(4k). The randomised algorithm can be derandomised
using the standard (n, k)-universal set technique (see e.g. Section 5.6 of [10]), which brings an additional
o(k) to the exponent of the running time.

4 Structural parameterizations for Metric Dimension

As Hartung and Nichterlein observed [28], Metric Dimension[VC] is trivially FPT by virtue of Obser-
vation 7: After reducing the size of each twin class to at most two, any instance with a vertex cover X
of size t will have at most t + 2t+1 vertices. In sparse graph classes, the twin reduction even results
in a polynomial-size kernel: in classes of bounded expansion (e.g. planar graphs or graphs excluding a
topological minor), the number of twin classes in V (G) \X is bounded linearly in t and in nowhere dense
classes by t1+o(1) (cf. Lemma 4.3 and Corollary 4.4 in [21]). Furthermore, if the input graphs stem from
a d-degenerate class, the number of twin-classes and thus the number of vertices in the kernel is bounded
by O(td+1); a fact that follows easily from the observation that in such a class at most dt vertices in the
independent set can have degree more than d.

It is therefore natural to ask whether this structural parameterization allows a polynomial kernel in
general graphs, a question we answer in the negative. In fact, in Section 4.1 we will show that adding to
VC the size of the solution k (the metric dimension of the graph) is unlikely to be helpful in this regard.
(In what follows, Metric Dimension[VC+k] is Metric Dimension parameterized by VC+k.)

Note that for any parameter w which is bounded by the vertex cover number of the graph, such as
treedepth, pathwidth or treewidth, Theorem 3 and Corollary 9 proved in Subsection 4.1 provide evidence
against polynomial kernels and polynomial Turing kernels, parameterized by w as well. However, there
remain more restrictive structural parameters that are not bounded by the vertex cover number, such
as bandwidth or cutwidth. In Section 4.2, we show that unless NP ⊆ coNP/poly, Metric Dimension
admits no polynomial kernel even under these parameters.

In Section 4.3, using results of Eppstein [15] we show that Metric Dimension admits a polynomial
kernel when parameterized by maximum leaf number.

4.1 Parameterization by VC + k

In the Hitting Set problem, the input is a set system F over a universe U and a non-negative integer `
and the goal is to decide whether there is a set X ⊆ U of size at most ` such that X ∩R 6= ∅ for every
R ∈ F . We refer to the sets in F as hyperedges and always assume without loss of generality that F has
no copies of hyperedges as we may delete them without changing the output.

Theorem 3. Metric Dimension[VC + k], Adjacency Dimension[VC + k] and Adjacency Domi-
nation Dimension[VC + k] do not admit polynomial kernels unless NP ⊆ coNP/poly.

Proof. First we will prove the theorem for Metric Dimension[VC + k] and then observe that the proof
implies the theorem for the other two problems. We do this by using the notion of Polynomial Parameter
Transformation (PPT) which is a reduction that can be used to propagate polynomial kernelization
hardness results. A PPT from a problem Π1 to a problem Π2 is a polynomial time algorithm that
takes as input an instance (x1, k1) of Π1 and outputs an equivalent instance (x2, k2) of Π2 such that
k2 = k

O(1)
1 . Consequently, if Π1 is an NP-hard language and Π2 is in NP, then a PPT from Π1 to Π2
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Figure 1: A schematic of the reduction from a Hitting Set[|U | + `] instance (U,F , `) to a Metric
Dimension[VC + k] instance. The drawing on the left shows the basic construction and the drawing on
the right shows the addition of false and true twins (an edge between a white set and its grey counterpart
indicates that they are true twins, the absence of an edge that they are false twins). Note that the
construction removes edges between the set U and F ′ (indicated by the dashed red lines).

and a polynomial kernel for Π2 together imply a polynomial kernel for Π1. Since Hitting Set[|U |+ `],
i.e. parameterized by the size of the universe and the solution size does not admit a polynomial kernel
unless NP ⊆ coNP/poly [13], it is sufficient for us to provide a polynomial parameter transformation
from Hitting Set[|U |+ `] to Metric Dimension[VC + k].

Let (U,F , `) be a Hitting Set instance with n = |U | and m = |F|. We construct a graph G as
follows (cf. Figure 1):

1. Begin with the usual bipartite representation of U,F , i.e., create a bipartite graph G = (U ∪ F , E)
where for vertices u ∈ U and R ∈ F we have uR ∈ E if and only if u ∈ R;

2. add tU := 2dlog2 ne vertices IU to the graph and edges between U, IU so that every vertex in U has
a unique neighbourhood in IU of size tU/2;

3. add tF := 2dlog2me vertices IF to the graph and edges between F and IF such that every vertex
in F has a unique neighbourhood in IF of size tF/2;

4. add three vertices aU , a, aF where N(aU ) = U , N(aF ) = F , and
N(a) = U ∪ F ∪ IU ∪ IF ∪ {aU , aF}, i.e., a is an apex vertex;

5. create true twin copies I ′U , I
′
F , a

′
U , a

′, a′F of IU , IF , aU , a, aF , and finally

6. create false twin copies F ′ of F but remove all edges from F ′ to U afterwards. For simplicity, we
will label the copy of any vertex R ∈ F by R′ ∈ F ′.

In summary, except for being adjacent to the apex vertices a, a′, vertices in IU∪I ′U neighbour only their twin
copy and vertices in U ; vertices in IF ∪I ′F neighbour only their twin copy and vertices in F ∪F ′; the edges
between U,F encode the hitting set instance; and the pairs {aU , a′U} and {aF , a′F} are apices for the sets U
and F ∪ F ′, respectively. Our construction concludes with (G,X, k) as the Metric Dimension[VC + k]
instance with the vertex cover X := V (G) \ (F ∪ F ′) and solution size k := `+ tU + tF + 3.
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Let us check that the parameter |X|+ k is polynomial in n and `:

|X|+ k = (2tU + 2tF + n+ 6) + (`+ tU + tF + 3)

= 3tU + 3tF + n+ `+ 9

= O(logm+ log n+ n+ `) = O(n+ `),

where we used that m 6 2n (there are no copies of hyperedges).
Since the construction is clearly a polynomial time construction, it remains to prove that (U,F , `)

is a yes-instance if and only if so is (G,X, k). Let us first show that if (U,F , `) is a yes-instance then
so is (G,X, k). Suppose that H ⊆ U is a hitting set for F of size `. We construct a landmark set S
for G by setting S = H ∪ IU ∪ IF ∪ {aU , a, aF}. Let us now argue that is indeed a resolving set. It
suffices to show that every pair u, v ∈ U ∪ I ′U ∪ F ∪ F ′ ∪ I ′F ∪{a′U , a′, a′F} of distinct vertices not in S is
distinguished by a vertex in S. Observe that U is distinguished from V (G) \ U by aU ∪ IU and u, v ∈ U
are distinguished by a vertex in IU belonging to N(u) but not to N(v). Similarly, F ∪F ′ is distinguished
from V (G) \ (F ∪ F ′) by aF ∪ IF , R,Q ∈ F (resp. R′, Q′ ∈ F ′, resp. R ∈ F , Q′ ∈ F ′ (R 6= Q)) are
distinguished by an appropriate vertex in IF , and R ∈ F , R′ ∈ F ′ are distinguished by any vertex in H
adjacent to R. It remains to observe that pairs of vertices in I ′U ∪ I ′F ∪{a′U , a′F} are distinguished by their
true twins, and a′ is distinguished from I ′U ∪ I ′F ∪ {a′U , a′F} by S since it is the only vertex except a to
neighbour both IU and IF . Thus, we conclude that S is a resolving set.

In the other direction, assume that S is a resolving set of size k for G. Observe that the diameter
of G equals 2 due to apex a. Since for each pair of twins at least one vertex has to be in any resolving
set, we may assume, without loss of generality, that IU ∪ IF ∪ {a, aU , aF} ⊆ S. Let us call this collection
of k− ` vertices3 S′ ⊆ S and let us see what it resolves in G. As argued above, every pair except those of
the form R ∈ F , R′ ∈ F ′ is certainly resolved by S′.

We also note that S′ indeed does not resolve such pairs R,R′; indeed, since the diameter of G is 2,
any pair of vertices can only be resolved by a landmark in the neighbourhood of at least one of these
vertices, and R and R′ have identical neighbourhoods inside S′ (recall that F and F ′ were originally
created as false twin sets). Hence S′ cannot resolve any pair R,R′ ∈ F ∪F ′ and these pairs must then be
resolved by the remaining ` vertices in S \ S′. All vertices outside of U ∪ F ∪ F ′ are either selected or
twins to selected vertices, hence we may assume that S \ S′ ⊆ U ∪ F ∪ F ′.

First, consider a potential landmark R or R′ in F ∪ F ′. Since F ∪ F ′ is an independent set in G and
G is of diameter 2, the only pairs (Q,Q′) resolved by this landmark but not by S′ has Q = R. Thus, for
any pair (R,R′) such that R ∈ S or R′ ∈ S, we could replace S ∩ {R,R′} by an arbitrary neighbour of R
in U for a new resolving set of at most the same cardinality as S.

Thus, let S be a resolving set and assume S ∩ (F ∪ F ′) = ∅. Let H = S ∩ U . It then follows from the
above discussion that for every R ∈ F , there is a vertex in H ∩N(R); thus H is a hitting set for the set
system F . We also have |H| 6 k − |S′| = `. We conclude that (U,F , `) is a yes-instance.

Recall that the graphG is of diameter 2. The fact that for graphs of diameter 2 Metric Dimension[VC+
k] is equivalent to Adjacency Dimension[VC+k], implies the theorem for Adjacency Dimension[VC+
k]. Since every resolving set of G must contain at least one of the apex vertices a or a′, for G Adjacency
Dimension[VC + k] is equivalent to Adjacency Domination Dimension[VC + k]. Thus, the theorem
holds for Adjacency Domination Dimension[VC + k] as well.

We note that this reduction also gives evidence against a more general form of kernelization. Where a
standard kernel can be understood as a many-one reduction from a problem to itself, with output size
bounded by a function of the parameter, a Turing kernel is the corresponding Turing reduction notion.
In other words, informally, a Turing kernel is a polynomial-time procedure that solves a parameterized
problem, with access to an oracle for the problem but with a bound f(k) on the maximum length of
the questions it may ask of the oracle. A polynomial Turing kernel is a Turing kernel with a bound
f(k) = kO(1) on the question size. For a more formal definition, see [29, 10]. It is known that there are
parameterized problems that do not allow a polynomial kernel (assuming NP 6⊆ coNP/poly) but which
do allow polynomial Turing kernels; cf. [29, 42, 32].

Although we do not have a framework for excluding polynomial Turing kernels that is as powerful as
that for excluding standard polynomial kernels, Hermelin et al. [29] defined a hierarchy of complexity
classes, conjectured to represent problems that do not allow polynomial Turing kernels. The most basic

3Recall that by definition, k := `+ tU + tF + 3.
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and most common of these hardness classes is WK[1], which is in turn contained in a larger class MK[2].
It is conjectured in [29] that no WK[1]-hard problem has a polynomial Turing kernel. Since Hitting
Set[n] is known to be MK[2]-hard [29], the above reduction gives the following.

Corollary 9. Metric Dimension[VC + k] is MK[2]-hard (hence also WK[1]-hard) under polynomial
parameter transformations, and does not allow a polynomial Turing kernel unless CNF-SAT[n] and
every other problem in MK[2] does. The same assertion holds for Adjacency Dimension[VC + k] and
Adjacency Domination Dimension[VC + k].

4.2 Parameterizations by Bandwidth and Cutwidth
For a graph G, a bijection π : V (G)→ {1, 2, . . . , |V (G)|} is called a linear ordering of V (G). The bandwitdh
bw(π) of π is max{|π(u)−π(v)| : uv ∈ E(G)}. The bandwidth bw(G) of G is the minimum of bw(π) over
all linear orderings π of V (G). The cutwidth cw(π) of π is max16i<|V (G)| |{uv ∈ E(G) : π(u) 6 i < π(v)}|.
The cutwitdh cw(G) of G is the minimum of cw(π) over all linear orderings π of V (G).

The problem of deciding whether bw(G) 6 k (cw(G) 6 k, respectively) is NP-complete [36] ([24],
respectively). The NP-completeness of the problems was proved for special classes of graphs; see lists
of such results in [11]. When k is the parameter, the problem of deciding whether cw(G) 6 k is
fixed-parameter tractable [41], while the problem of deciding whether bw(G) 6 k is W[k]-hard [4].

We will make use of the following relationship between the two measures:

Proposition 10. For every graph G, cw(G) 6 (bw(G))2.

Proof. Let π : V (G)→ [|V (G)|] be an ordering such that bw(π) = bw(G) = b. We argue that cw(π) 6 b2.
Recall that cw(π) = max16i<|V (G)| |{uv ∈ E(G) : π(u) 6 i < π(v)}|, where 1 6 i < |V (G)|. Fix some
i such that 1 6 i < |V (G)|. Observe that the number of edges uv such that π(u) 6 i < π(v) and
|π(u)− π(v)| = j (1 6 j 6 b) is at most j. Thus, the total number of such edges for 1 6 j 6 b is at most
b(b+ 1)/2 6 b2. Thus, cw(π) 6 b2 = (bw(G))2.

Let us now recall the framework of cross-composition, due to Bodlaender, Jansen and Kratsch [5] as we
use it in the main proof of this subsection.

Definition 11 (polynomial equivalence relation [5]). An equivalence relation R on Σ∗ is called a
polynomial equivalence relation if the following two conditions hold.

1. There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and y belongs to the same
equivalence class in time polynomial in |x|+ |y|.

2. For any finite set S ⊂ Σ∗ the equivalence relation R partitions the elements of S into a number of
classes that is polynomially bounded in the maximum size of an element of S.

Then OR-cross-compositions are then defined as follows.

Definition 12 (OR-cross-composition [5]). Let L ⊆ Σ∗ be a language, R a polynomial equivalence
relation on Σ∗, and let Q ⊆ Σ∗ × N be a parameterized problem. An OR-cross-composition of L into Q
(with respect to R) is an algorithm that, given t instances x1, . . . , xt ∈ Σ∗ of L belonging to the same
equivalence class of R, takes time polynomial in

∑t
i=1 |xi| and outputs an instance (y, k) ∈ Σ∗ × N, such

that the following hold:

1. The parameter value k is polynomially bounded in max16i6t |xi|+ log t,

2. The instance (y, k) is positive for Q if and only if at least one instance xi is positive for L.

We say that L OR-cross-composes into Q if there exists such an OR-cross-composition algorithm with
respect to some polynomial equivalence relation R.

OR-cross-compositions provide evidence against polynomial kernelizations in the following sense:

Theorem 13 ([5]). If an NP-hard language L OR-cross-composes into the parameterized problem Q,
then Q does not admit a polynomial kernelization unless NP ⊆ coNP/poly.
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To facilitate the lower bounds, we will give an OR-cross-composition from the improvement version of
the problem, which we call Improvement Metric Dimension. In this version, the input consists of a
graph G and a resolving set S ⊆ V (G), and the question is whether G has a resolving set of cardinality
at most |S| − 1. We show that this version of the problem is still NP-hard.

Lemma 14. The improvement version of Metric Dimension is NP-hard, even for instances with two
apex vertices.

Proof. We use the reduction from Hitting Set given in Theorem 3. We begin by showing that the
improvement version of Hitting Set, called Improvement Hitting Set, is itself NP-hard. Indeed, let
(U,F , k) be an instance of Hitting Set over a ground set U , and define an output instance as follows.
Let U ′ = U ∪ {x1, . . . , xk+1} where xi, i ∈ [k + 1] is a new element for each index i, and define a set
system

F ′ = {C ∪ {xi} | C ∈ F , i ∈ [k + 1]}.
Let S = {x1, . . . , xk+1}. Then (U ′,F ′, S) is a positive instance of Improvement Hitting Set if and
only if (U,F , k) is a positive instance of Hitting Set. Indeed, S is a hitting set for F ′, and it is clear
that there exists a hitting set for F ′ of size smaller than |S| if and only if there exists a hitting set for F
of cardinality k.

To complete the proof, we only need to observe that Theorem 3 describes a polynomial-time reduction
from Improvement Hitting Set to Improvement Metric Dimension. Note that the planted
solution S for (U ′,F ′, S) produces a resolving set S′ for the output graph G, with |S′| = k+ 1 (where k is
the parameter computed in Theorem 3), and the instance (G,S′) of Improvement Metric Dimension
is equivalent to the input instance (U ′,F ′, S) of Improvement Hitting Set. It is also clear that the
reduction runs in polynomial time. Finally, since the output of Theorem 3 has a pair of (true twin) apex
vertices, the last part of the present lemma holds as well.

We can now show the lower bound against a polynomial kernel for Metric Dimension parameterized
by bandwidth, Metric Dimension[bw]. First we will properly define this problem. Let Metric
Dimension[bw] be the problem with input ((G, π, k), w) where π is a linear ordering of V (G), w is
the bandwidth of π, and the question is whether G has a resolving set of cardinality at most k.4
Using Lemma 14 and Theorem 13, it essentially suffices for this result to consider the disjoint union of
input instances (of Improvement Metric Dimension), but this results in an output instance that is
disconnected. We show that the result also applies to connected instances of the problem.

Theorem 4. Unless NP ⊆ coNP/poly, neither Metric Dimension[bw] nor Metric Dimension[cw]
has a polynomial kernel, even when restricted to connected instances.

Proof. We will show an OR-cross-composition of Improvement Metric Dimension into connected
instances of Metric Dimension[bw] and argue about Metric Dimension[cw] afterwards.

By Lemma 14, we may restrict our attention to input instances with a pair of apex vertices. Let
R be an equivalence relation on instances of Improvement Metric Dimension where two instances
x = (G,S), y = (G′, S′) are equivalent if and only if |V (G)| = |V (G′)| and |S| = |S′|; clearly R is
a polynomial equivalence relation. Let an input of t instances x1, . . . , xt of Improvement Metric
Dimension be given, all belonging to the same equivalence class. Assume t > 2 (or else create an output
simply replicating the input with an arbitrary vertex ordering), and for i ∈ [t] write xi = (Gi, Si) and let
ui and vi denote the two apex vertices of Gi. For ease of presentation, we denote by Vi the set V (Gi) for
each i ∈ [t]. Let n = |V1| and k = |S1|; by definition n and k are invariant across all instances xi. We
define a vertex ordering πi of Vi by placing ui first and all other vertices in arbitrary order. We also
assume that ui ∈ Si; indeed, Si must contain either ui or vi, and if Si ∩ {ui, vi} = {vi} then we may
simply replace vi by ui in Si for an equivalent resolving set.

Finally, we define an output instance X = ((G, π, tk − 1), n) of Metric Dimension[bw] as follows.
We begin by letting G be the disjoint union of all graphs Gi. Then, for each 2 6 i 6 t we connect vertex
ui to vertex ui−1. We define an ordering π by using the orderings π1, . . . , πt in order. We first note that
π has bandwidth n: every edge uiui+1 has length n in π and no longer edges exist. It is also clear that G
is connected. Thus X is a valid connected instance of Metric Dimension[bw], with parameter value
n 6 maxi |xi|. To show that the above is an OR-cross-composition it remains to show that X is positive
if and only if at least one input instance xi is positive.

4The nested parentheses in the problem definition are in order to comply with the notation of Def. 12.
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On the one hand, assume that instance xi is positive, i ∈ [t]. Let S′i be a resolving set of xi of
cardinality k− 1. We claim that S′ := S′i ∪

⋃
j∈[t],j 6=i Sj is a resolving set for G. Specifically, we note that

any pair of vertices p, q ∈ Vj are resolved, by assumption, either by Sj or by S′i, and if p ∈ Va and q ∈ Vb
for some a 6= b, then p and q are resolved by the distance to u1 or to ut (note that at least one of u1 and
ut is contained in S′). Thus S′ is a resolving set for G. Also note that |S′| = tk − 1 as required.

On the other hand, let S′ be a resolving set for G with |S′| 6 tk − 1, and let i ∈ [t] be such that
|S′ ∩ Vi| < k, which exists by a counting argument. Let S′i = S′ ∩ Vi, by the same argument as above
we can assume that the apex ui is contained in S′i. We claim that S′i is a resolving set for Gi. Let
p, q ∈ Vi be an arbitrary pair of vertices. If either of p, q is in S′i, then clearly S′i resolves them. Hence
assume that p, q 6∈ S′i, in particular p, q 6= ui. Consider any vertex r ∈ S′ \ S′i. By our construction,
d(p, r) = d(q, r) = 1 + d(ui, r), and p and q are not resolved by r. Hence p and q must be resolved by
a vertex of S′i. This completes the proof and we arrive at an OR-cross-composition from an NP-hard
language into connected instances of Metric Dimension[bw]. Thus by Theorem 13 the polynomial
kernel lower bound for parameterization by bandwidth follows.

Finally, by Proposition 10, if Metric Dimension parameterized by cutwidth had a polynomial kernel
then the same would hold for Metric Dimension[bw]. We conclude that neither parameterization
admits a polynomial kernel under the stated complexity-theoretic assumptions.

We note that with a slight modification it is possible to provide evidence against kernelization of c-
connected instances for any constant c, by replacing the twin classes {ui, vi} by a collection {u1i , . . . , uci}
of true twin apex vertices, and by connecting uai with ubi+1 for all a, b ∈ [c] in the construction. Other
variations are also possible, to prevent these vertices from being twins in G; we omit the details.

4.3 Parameterization by Max-leaf Number
Finally, we consider a simple positive case. Recall that the max-leaf number of a graph G is the maximum
number of leaves in a spanning tree of G. Eppstein [15] showed that Metric Dimension is FPT

parameterized by the max-leaf number; we observe that his algorithm implies a polynomial kernel. We
note that no evidence needs to be given for the max-leaf number of the input; the theorem provides a
polynomial-time reduction algorithm such that for any input (G, k) where G is connected, the size of the
output is polynomially bounded by the max-leaf number of G.

Theorem 5. Metric Dimension parameterized by the max-leaf number has a polynomial kernel.

Proof. Let (G, k) be an instance of Metric Dimension and let p be the max-leaf number of G. Note
that we do not assume that p is provided explicitly. Eppstein [15] defines a branch in G as a maximal
path or cycle subgraph of G where every internal vertex has degree 2 in G. In other words, a branch
is either a single edge uv, or a path P between two vertices u, v in G, or a cycle C attached to a single
vertex v in G, where every vertex except u and v has degree 2. Note that the branches of G are easy
to compute, since every vertex of degree 2 belongs to a unique branch in G and every other branch is a
single edge where neither vertex is of degree 2. Eppstein shows the following:

Proposition 15 (Lemma 1 of [15]). A connected graph with max-leaf number p has O(p2) branches.

Thus, let X be the set of endpoints of branches in G; we have an upper bound |X| = O(p2). Also note
that every edge of G is contained in a branch; that every vertex of V (G) \X is degree 2 in G; and that
every pair of branches are internally vertex-disjoint. Hence we get a complete description of G by marking
those vertices that are part of X and writing down for every branch B the type of B (edge, cycle, or
path), its endpoint or endpoints, and the number of internal vertices of B coded in binary. This is a
complete description of G in O(p2 log n) bits, where n = |V (G)|. Let us call this encoding of a graph its
branch-encoding in the following. Our first step is to reduce the encoding size to a polynomial-length
description by bounding log n. For this, we need the main result of [15]:

Proposition 16 (Theorem 1 of [15]). The metric dimension of a connected graph G with b branches
can be computed in time O(n) + 2O(b3 log b) log n.

We consider two cases. Let b be the number of branches of G as constructed above. If n > 2b3 log b,
then the algorithm of Eppstein runs in total time nO(1) and we can afford to exhaustively solve G
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and produce an equivalent dummy output (a constant-sized positive or negative instance). Otherwise,
log n 6 b3 log b = O(p6 log p), and the branch-encoding of G uses O(p8 log p) bits. We can then finish the
generalised kernel by producing an output (G̃, k) where G̃ is the branch-encoding of G.

We now define the (artificial) problem Branch-Encoded Metric Dimension (BEMD) as taking an
input (G̃, k), where G̃ is a branch-encoded graph, and the instance is positive if and only if the graph G
encoded by G̃ has a resolving set of size at most k. Thus, the procedure described above is a polynomial
generalised kernelization from Metric Dimension parameterized by the max-leaf number into BEMD.
To complete the proof, it suffices to show that BEMD, as a decision problem, lies in NP. Indeed, in this
case there exists a polynomial-time reduction to Metric Dimension by the NP-completeness of the
latter, and given that the input instance to this reduction has total coding length pO(1) the same will
hold for the output.

Hence, it remains to show that BEMD has a polynomial-time verifiable witness, i.e., a witness that
can be verified in time polynomial in |X|+ b+ log n, where n is the number of vertices of the graph G
defined by the branch-encoding G̃. The existence of such a witness follows from Eppstein’s algorithm: in
broad terms, after guessing for each branch how many solution vertices it contains and their approximated
position (one of O(b2) many intervals on the branch called ‘stems‘), he shows that the remaining problem
of finding a solution that obeys theses guessed constraints can be encoded in an ILP with O(b) variables
and O(b3) linear constraints using numbers encodable with O(log n) bits. But then verifying whether a set
S is a solution to BEMD is equivalent to checking whether the variable assignment corresponding to S in
Eppstein’s ILP satisfies all O(b3) constraints, a task clearly possible in time polynomial in |X|+ b+ log n.
It follows that BEMD is contained in NP and finally that Metric Dimension parameterized by the
max-leaf number admits a polynomial kernel.

5 Conclusion
We initiated the study of the parameterized complexity of the dual of the classic Metric Dimension
problem and obtained a polynomial kernel as well as a single-exponential FPT algorithm. To the best of
our knowledge, this is the first non-trivial parameterization for Metric Dimension which leads to a
polynomial kernel. Since our focus in this article was on obtaining new classification results, we leave the
improvement of the kernel size or a potential proof of a lower bound on the bitsize of our kernel, to future
work. Our hardness results provide more evidence to support the view that Metric Dimension is a
notoriously hard problem from the computational point of view.

As we wrote in Section 1, to the best of our knowledge, the parameterized complexities of Metric
Dimension parameterized by the bandwidth and cutwidth of the input graph are not known yet. It would
be interesting to determine them. Finally, we note that it remains open whether Metric Dimension is
polynomial time solvable even on series-parallel graphs [3, 12]. Since series-parallel graphs are precisely
the graphs of treewidth 2, a negative answer would also imply that there is no XP algorithm for Metric
Dimension parameterized by the treewidth.

The feedback edge set of a graph G = (V,E) is the minimum number of edges whose deletion makes G
acyclic. Clearly, this number equals |E| − |V |+ c, where c is the number of connected components in G.
Epstein et al. [16] proved that Metric Dimension parameterized by feedback edge set is in XP and
Eppstein [15] asked whether the problem is FPT. It would be interesting to know whether the problem
admits a polynomial-size kernel.
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